1
|
Zhao X, Huang P, Li G, Feng Y, Zhendong L, Zhou C, Hu G, Xu Q. Overexpression of Pitx1 attenuates the senescence of chondrocytes from osteoarthritis degeneration cartilage-A self-controlled model for studying the etiology and treatment of osteoarthritis. Bone 2020; 131:115177. [PMID: 31783149 DOI: 10.1016/j.bone.2019.115177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
To explore the role of low expression of Pitx1 in degenerative cartilage tissue. A cartilage injury model was established by using the cartilage scratch method. The newly generated tissue by BrdU labeled in injured cartilage region expressed SOX-9 and Col2A1 in 5-week-old rats. Compared with that, the number of BrdU-positive cells was lower in 4-month-old cartilage injury model rats. Compared with that in lateral cartilage, the expression of Pitx1 was lower in medial cartilage. Compared with chondrocytes derived from the lateral cartilage, chondrocytes derived from the medial cartilage exhibited significantly increased cell aging, as determined by SA-β-GAL staining; downregulated Pitx1 expression; reduced autophagy levels; and decreased Col2A1 expression in a chondrogenic differentiation assay. Inhibition of Pitx1 expression in chondrocytes from the lateral cartilage significantly increased the ratio of cell senescence. Overexpression of Pitx1 in chondrocytes derived from the medial cartilage decreased the cell senescence ratio. In a luciferase assay, Pitx1 was found to promote Sirt1 gene transcription. Decreased Pitx1 expression is an essential cause of cartilage degeneration in the medial tibial plateau. The described self-controlled model is an excellent way to study OA etiology and screen therapeutic drugs for OA.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Huang
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gen Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Feng
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lv Zhendong
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chun Zhou
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyu Hu
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Qingrong Xu
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai JiaoTong University, 160 Pujian Road, Shanghai 200127, China; Department of Orthopaedics, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 2000, Jiangyue Road, Shanghai 201112, China.
| |
Collapse
|
2
|
Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae. PLoS Genet 2013; 9:e1003894. [PMID: 24204306 PMCID: PMC3814309 DOI: 10.1371/journal.pgen.1003894] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/05/2013] [Indexed: 11/24/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae and most other eukaryotes, mitotic recombination is important for the repair of double-stranded DNA breaks (DSBs). Mitotic recombination between homologous chromosomes can result in loss of heterozygosity (LOH). In this study, LOH events induced by ultraviolet (UV) light are mapped throughout the genome to a resolution of about 1 kb using single-nucleotide polymorphism (SNP) microarrays. UV doses that have little effect on the viability of diploid cells stimulate crossovers more than 1000-fold in wild-type cells. In addition, UV stimulates recombination in G1-synchronized cells about 10-fold more efficiently than in G2-synchronized cells. Importantly, at high doses of UV, most conversion events reflect the repair of two sister chromatids that are broken at approximately the same position whereas at low doses, most conversion events reflect the repair of a single broken chromatid. Genome-wide mapping of about 380 unselected crossovers, break-induced replication (BIR) events, and gene conversions shows that UV-induced recombination events occur throughout the genome without pronounced hotspots, although the ribosomal RNA gene cluster has a significantly lower frequency of crossovers. Nearly every living organism has to cope with DNA damage caused by ultraviolet (UV) exposure from the sun. UV causes various types of DNA damage. Defects in the repair of these DNA lesions are associated with the human disease xeroderma pigmentosum, one symptom of which is predisposition to skin cancer. The DNA damage introduced by UV stimulates recombination and, in this study, we characterize the resulting recombination events at high resolution throughout the yeast genome. At high UV doses, we show that most recombination events reflect the repair of two sister chromatids broken at the same position, indicating that UV can cause double-stranded DNA breaks. At lower doses of UV, most events involve the repair of a single broken chromatid. Our mapping of events also demonstrates that certain regions of the yeast genome are relatively resistant to UV-induced recombination. Finally, we show that most UV-induced DNA lesions are repaired during the first cell cycle, and do not lead to recombination in subsequent cycles.
Collapse
|
3
|
Mieczkowski PA, Lemoine FJ, Petes TD. Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair (Amst) 2006; 5:1010-20. [PMID: 16798113 DOI: 10.1016/j.dnarep.2006.05.027] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Homologous recombination between dispersed repeated genetic elements is an important source of genetic variation. In this review, we discuss chromosome rearrangements that are a consequence of homologous recombination between transposable elements in the yeast Saccharomyces cerevisiae. The review will be divided into five sections: (1) Introduction (mechanisms of homologous recombination involving ectopic repeats), (2) Spontaneous chromosome rearrangements in wild-type yeast cells, (3) Chromosome rearrangements induced by low DNA polymerase, mutagenic agents or mutations in genes affecting genome stability, (4) Recombination between retrotransposons as a mechanism of genome evolution, and (5) Important unanswered questions about homologous recombination between retrotransposons. This review complements several others [S. Liebman, S. Picologlou, Recombination associated with yeast retrotransposons, in: Y. Koltin, M.J. Leibowitz (Eds.), Viruses of Fungi and Simple Eukaryotes, Marcel Dekker Inc., New York, 1988, pp. 63-89; P. Lesage, A.L. Todeschini, Happy together: the life and times of Ty retrotransposons and their hosts, Cytogenet. Genome Res. 110 (2005) 70-90; D.J. Garfinkel, Genome evolution mediated by Ty elements in Saccharomyces, Cytogenet. Genome Res. 110 (2005) 63-69] that discuss genomic rearrangements involving Ty elements.
Collapse
Affiliation(s)
- Piotr A Mieczkowski
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
4
|
Lesage P, Todeschini AL. Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 2005; 110:70-90. [PMID: 16093660 DOI: 10.1159/000084940] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 03/18/2004] [Indexed: 11/19/2022] Open
Abstract
The aim of this review is to describe the level of intimacy between Ty retrotransposons (Ty1-Ty5) and their host the yeast Saccharomyces cerevisiae. The effects of Ty location in the genome and of host proteins on the expression and mobility of Ty elements are highlighted. After a brief overview of Ty diversity and evolution, we describe the factors that dictate Ty target-site preference and the impact of targeting on Ty and adjacent gene expression. Studies on Ty3 and Ty5 have been especially informative in unraveling the role of host factors (Pol III machinery and silencing proteins, respectively) and integrase in controlling the specificity of integration. In contrast, not much is known regarding Ty1, Ty2 and Ty4, except that their insertion depends on the transcriptional competence of the adjacent Pol III gene and might be influenced by some chromatin components. This review also brings together recent findings on the regulation of Ty1 retrotransposition. A large number of host proteins (over 30) involved in a wide range of cellular processes controls either directly or indirectly Ty1 mobility, primarily at post-transcriptional steps. We focus on several genes for which more detailed analyses have permitted the elaboration of regulatory models. In addition, this review describes new data revealing that repression of Ty1 mobility also involves two forms of copy number control that act at both the trancriptional and post-transcriptional levels. Since S. cerevisiae lacks the conserved pathways for copy number control via transcriptional and post-transcriptional gene silencing found in other eukaryotes, Ty1 copy number control must be via another mechanism whose features are outlined. Ty1 response to stress also implicates activation at both transcriptional and postranscriptional steps of Ty1. Finally, we provide several insights in the role of Ty elements in chromosome evolution and yeast adaptation and discuss the factors that might limit Ty ectopic recombination.
Collapse
Affiliation(s)
- P Lesage
- Institut de Biologie Physico-Chimique, CNRS UPR 9073, Paris, France.
| | | |
Collapse
|
5
|
Garfinkel DJ, Nyswaner K, Wang J, Cho JY. Post-transcriptional Cosuppression of Ty1 Retrotransposition. Genetics 2003; 165:83-99. [PMID: 14504219 PMCID: PMC1462740 DOI: 10.1093/genetics/165.1.83] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
To determine whether homology-dependent gene silencing or cosuppression mechanisms underlie copy number control (CNC) of Ty1 retrotransposition, we introduced an active Ty1 element into a naïve strain. Single Ty1 element retrotransposition was elevated in a Ty1-less background, but decreased dramatically when additional elements were present. Transcription from the suppressing Ty1 elements enhanced CNC but translation or reverse transcription was not required. Ty1 CNC occurred with a transcriptionally active Ty2 element, but not with Ty3 or Ty5 elements. CNC also occurred when the suppressing Ty1 elements were transcriptionally silenced, fused to the constitutive PGK1 promoter, or contained a minimal segment of mostly TYA1-gag sequence. Ty1 transcription of a multicopy element expressed from the GAL1 promoter abolished CNC, even when the suppressing element was defective for transposition. Although Ty1 RNA and TyA1-gag protein levels increased with the copy number of expressible elements, a given element's transcript level varied less than twofold regardless of whether the suppressing elements were transcriptionally active or repressed. Furthermore, a decrease in the synthesis of Ty1 cDNA is strongly associated with Ty1 CNC. Together our results suggest that Ty1 cosuppression can occur post-transcriptionally, either prior to or during reverse transcription.
Collapse
Affiliation(s)
- David J Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702-1201, USA.
| | | | | | | |
Collapse
|
6
|
Friedl AA, Liefshitz B, Steinlauf R, Kupiec M. Deletion of the SRS2 gene suppresses elevated recombination and DNA damage sensitivity in rad5 and rad18 mutants of Saccharomyces cerevisiae. Mutat Res 2001; 486:137-46. [PMID: 11425518 DOI: 10.1016/s0921-8777(01)00086-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Saccharomyces cerevisiae genes RAD5, RAD18, and SRS2 are proposed to act in post-replicational repair of DNA damage. We have investigated the genetic interactions between mutations in these genes with respect to cell survival and ectopic gene conversion following treatment of logarithmic and early stationary cells with UV- and gamma-rays. We find that the genetic interaction between the rad5 and rad18 mutations depends on DNA damage type and position in the cell cycle at the time of treatment. Inactivation of SRS2 suppresses damage sensitivity both in rad5 and rad18 mutants, but only when treated in logarithmic phase. When irradiated in stationary phase, the srs2 mutation enhances the sensitivity of rad5 mutants, whereas it has no effect on rad18 mutants. Irrespective of the growth phase, the srs2 mutation reduces the frequency of damage-induced ectopic gene conversion in rad5 and rad18 mutants. In addition, we find that srs2 mutants exhibit reduced spontaneous and UV-induced sister chromatid recombination (SCR), whereas rad5 and rad18 mutants are proficient for SCR. We propose a model in which the Srs2 protein has pro-recombinogenic or anti-recombinogenic activity, depending on the context of the DNA damage.
Collapse
Affiliation(s)
- A A Friedl
- Institute of Radiation Biology, GSF-National Research Center for Environment and Health, P.O. Box 1149, 85758, Oberschleissheim, Germany.
| | | | | | | |
Collapse
|
7
|
Abstract
Prokaryotic and eukaryotic cells have developed a network of DNA repair systems that restore genomic integrity following DNA damage from endogenous and exogenous genotoxic sources. One of the mechanisms used to repair damaged chromosomes is genetic recombination, in which information present as a second chromosomal copy is used to repair a damaged region of the genome. In this review, I summarized what is known about the molecular and cellular mechanisms by which various DNA-damaging agents induce recombination in yeast. The yeast Saccharomyces cerevisiae has served as an excellent model organism to study the induction of recombination. It has helped to define the basic phenomenology and to isolate the genes involved in the process. Given the evolutionary conservation of the various DNA repair systems in eukaryotes, it is likely that the knowledge gathered about induced recombination in yeast is applicable to mammalian cells and thus to humans. Many carcinogens are known to induce recombination and to cause chromosomal rearrangements. An understanding of the mechanisms, by which genotoxic agents cause increased levels of recombination will have important consequences for the treatment of cancer, and for the assessment of risks arising from exposure to genotoxic agents in humans.
Collapse
Affiliation(s)
- M Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
8
|
Pâques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999. [PMID: 10357855 DOI: 10.0000/pmid10357855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.
Collapse
Affiliation(s)
- F Pâques
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
9
|
Liefshitz B, Steinlauf R, Friedl A, Eckardt-Schupp F, Kupiec M. Genetic interactions between mutants of the 'error-prone' repair group of Saccharomyces cerevisiae and their effect on recombination and mutagenesis. Mutat Res 1998; 407:135-45. [PMID: 9637242 DOI: 10.1016/s0921-8777(97)00070-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have created an isogenic series of yeast strains that carry genetic systems to monitor different types of recombination and mutation [B. Liefshitz, A. Parket, R. Maya, M. Kupiec, The role of DNA repair genes in recombination between repeated sequences in yeast, Genetics 140 (1995) 1199-1211.]. In the present study we characterize the effect of mutations in genes of the 'error-prone' or postreplicative repair group on recombination and mutation. We show that rad5 and rad18 strains have elevated levels of spontaneous recombination, both of ectopic gene conversion and of recombination between direct repeats. The increase in recombination levels is similar in both mutants and in the rad5 rad18 double mutant, suggesting that the RAD5 and RAD18 gene products act together with respect to spontaneous recombination. In contrast, RAD5 and RAD18 play alternative roles in mutagenic repair: mutations in each of these genes elevate spontaneous forward mutation at the CAN1 locus, but when both genes are deleted, a low level of spontaneous mutagenesis is seen. The RAD5/RAD18 pathway of mutagenic repair is dependent on the REV3-encoded translesion polymerase. We analyze the interactions between the RAD5 and RAD18 gene products and other repair genes. The high recombination levels seen in rad5 and rad18 mutants is dependent on the RAD1, RAD51, RAD52, and RAD57 genes. The Srs2 helicase plays an important role in creating the recombinogenic substrate(s) processed by the RAD5 and RAD18 gene products.
Collapse
Affiliation(s)
- B Liefshitz
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Israel
| | | | | | | | | |
Collapse
|
10
|
Friedl AA, Kiechle M, Fellerhoff B, Eckardt-Schupp F. Radiation-induced chromosome aberrations in Saccharomyces cerevisiae: influence of DNA repair pathways. Genetics 1998; 148:975-88. [PMID: 9539418 PMCID: PMC1460056 DOI: 10.1093/genetics/148.3.975] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Radiation-induced chromosome aberrations, particularly exchange-type aberrations, are thought to result from misrepair of DNA double-strand breaks. The relationship between individual pathways of break repair and aberration formation is not clear. By electrophoretic karyotyping of single-cell clones derived from irradiated cells, we have analyzed the induction of stable aberrations in haploid yeast cells mutated for the RAD52 gene, the RAD54 gene, the HDF1(= YKU70) gene, or combinations thereof. We found low and comparable frequencies of aberrational events in wildtype and hdf1 mutants, and assume that in these strains most of the survivors descended from cells that were in G2 phase during irradiation and therefore able to repair breaks by homologous recombination between sister chromatids. In the rad52 and the rad54 strains, enhanced formation of aberrations, mostly exchange-type aberrations, was detected, demonstrating the misrepair activity of a rejoining mechanism other than homologous recombination. No aberration was found in the rad52 hdf1 double mutant, and the frequency in the rad54 hdf1 mutant was very low. Hence, misrepair resulting in exchange-type aberrations depends largely on the presence of Hdf1, a component of the nonhomologous end-joining pathway in yeast.
Collapse
Affiliation(s)
- A A Friedl
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Strahlenbiologie, Oberschleissheim, Germany.
| | | | | | | |
Collapse
|
11
|
Abstract
Mitotic recombination in the yeast Saccharomyces cerevisiae is induced when cells are irradiated with UV or X-rays, reflecting the efficient repair of damage by recombinational repair mechanisms. We have used multiply marked haploid strains that allow the simultaneous detection of several types of ectopic recombination events. We show that inter-chromosomal ectopic conversion of lys2 heteroalleles and, to a lesser extent, direct repeat recombination (DRR) between non-tandem repeats, are increased by DNA-damaging agents; in contrast, ectopic recombination of the naturally occurring Ty element is not induced. We have tested several hypotheses that could explain the preferential lack of induction of Ty recombination by DNA-damaging agents. We have found that the lack of induction cannot be explained by a cell cycle control or by an effect of the mating-type genes. We also found no role for the flanking long terminal repeats (LTRs) of the Ty in preventing the induction. Ectopic conversion, DRR, and forward mutation of artificial repeats show different kinetics of induction at various positions of the cell cycle, reflecting different mechanisms of recombination. We discuss the mechanistic and evolutionary aspects of these results.
Collapse
Affiliation(s)
- M Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel.
| | | |
Collapse
|
12
|
Nevo-Caspi Y, Kupiec M. Induction of Ty recombination in yeast by cDNA and transcription: role of the RAD1 and RAD52 genes. Genetics 1996; 144:947-55. [PMID: 8913740 PMCID: PMC1207634 DOI: 10.1093/genetics/144.3.947] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae ectopic recombination has been shown to occur at high frequencies for artificially created repeats, but at relatively low frequencies for a natural family of repeated sequences, the Ty family. Little is known about the mechanism(s) that prevent recombination between repeated sequences. We have previously shown that nonreciprocal recombination (gene conversion) of a genetically marked Ty can be induced either by the presence of high levels of Ty cDNA or by transcription of the marked Ty from a GAL1 promoter. These two kinds of induction act in a synergistic manner. To further characterize these two kinds of Ty recombination, we have investigated the role played by the RAD52 and RAD1 genes. We have found that the RAD52 and RAD1 gene products are essential to carry out transcription-induced Ty conversion whereas cDNA-mediated conversion can take place in their absence.
Collapse
Affiliation(s)
- Y Nevo-Caspi
- Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Ramat-Aviv, Israel
| | | |
Collapse
|
13
|
Liefshitz B, Parket A, Maya R, Kupiec M. The role of DNA repair genes in recombination between repeated sequences in yeast. Genetics 1995; 140:1199-211. [PMID: 7498763 PMCID: PMC1206687 DOI: 10.1093/genetics/140.4.1199] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The presence of repeated sequences in the genome represents a potential source of karyotypic instability. Genetic control of recombination is thus important to preserve the integrity of the genome. To investigate the genetic control of recombination between repeated sequences, we have created a series of isogenic strains in which we could assess the role of genes involved in DNA repair in two types of recombination: direct repeat recombination and ectopic gene conversion. Naturally occurring (Ty elements) and artificially constructed repeats could be compared in the same cell population. We have found that direct repeat recombination and gene conversion have different genetic requirements. The role of the RAD51, RAD52, RAD54, RAD55, and RAD57 genes, which are involved in recombinational repair, was investigated. Based on the phenotypes of single and double mutants, these genes can be divided into three functional subgroups: one composed of RAD52, a second one composed of RAD51 and RAD54, and a third one that includes the RAD55 and RAD57 genes. Among seven genes involved in excision repair tested, only RAD1 and RAD10 played a role in the types of recombination studied. We did not detect a differential effect of any rad mutation on Ty elements as compared to artificially constructed repeats.
Collapse
Affiliation(s)
- B Liefshitz
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
14
|
Parket A, Inbar O, Kupiec M. Recombination of Ty elements in yeast can be induced by a double-strand break. Genetics 1995; 140:67-77. [PMID: 7635309 PMCID: PMC1206572 DOI: 10.1093/genetics/140.1.67] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Ty retrotransposons are the main family of dispersed repeated sequences in the yeast Saccharomyces cerevisiae. These elements are flanked by a pair of long terminal direct repeats (LTRs). Previous experiments have shown that Ty elements recombine at low frequencies, despite the fact that they are present in 30 copies per genome. This frequency is not highly increased by treatments that cause DNA damage, such as UV irradiation. In this study, we show that it is possible to increase the recombination level of a genetically marked Ty by creating a double-strand break in it. This break is repaired by two competing mechanisms: one of them leaves a single LTR in place of the Ty, and the other is a gene conversion event in which the marked Ty is replaced by an ectopically located one. In a strain in which the marked Ty has only one LTR, the double-strand break is repaired by conversion. We have also measured the efficiency of repair and monitored the progression of the cells through the cell-cycle. We found that in the presence of a double-strand break in the marked Ty, a proportion of the cells is unable to resume growth.
Collapse
Affiliation(s)
- A Parket
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|
15
|
Ninković M, Alacević M, Fabre F, Zgaga Z. Efficient UV stimulation of yeast integrative transformation requires damage on both plasmid strands. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:308-14. [PMID: 8190084 DOI: 10.1007/bf00301066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nature of UV-induced pre-recombinational structures was studied using transformation of Saccharomyces cerevisiae cells with non-replicative plasmids. Transformation by double-stranded plasmids irradiated with UV was stimulated up to 50-fold, and both plasmid integration and conversion of the mutated chromosomal selective gene were found to be equally increased. The stimulation observed with such 'totally' irradiated plasmids was not found with plasmids bearing lesions in only one strand. This effect is attributed to the formation by excision repair of recombinogenic structures consisting of a pyrimidine dimer opposite a gap. When single-stranded integrative plasmids were irradiated, their transforming potential was decreased but the proportion of transformants that arose by gene conversion, rather than by plasmid integration, was increased from 8% to 49% as a function of the UV dose. Possible reasons why single-strand UV lesions favour gene conversion are discussed.
Collapse
Affiliation(s)
- M Ninković
- Faculty of Food and Biotechnology, University of Zagreb, Croatia
| | | | | | | |
Collapse
|
16
|
Fasullo M, Dave P. Mating type regulates the radiation-associated stimulation of reciprocal translocation events in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:63-70. [PMID: 8190072 DOI: 10.1007/bf00283877] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Both ultraviolet (UV) and ionizing radiation were observed to stimulate mitotic, ectopic recombination between his3 recombinational substrates, generating reciprocal translocations in Saccharomyces cerevisiae (yeast). The stimulation was greatest in diploid strains competent for sporulation and depends upon both the ploidy of the strain and heterozygosity at the MATlocus. The difference in levels of stimulation between MATa/MAT alpha diploid and MAT alpha haploid strains increases when cells are exposed to higher levels of UV radiation (sevenfold at 150 J/m2), whereas when cells are exposed to higher levels of ionizing radiation (23.4 krad), only a twofold difference is observed. When the MAT alpha gene was introduced by DNA transformation into a MATa/mat alpha::LEU2+ diploid, the levels of radiation-induced ectopic recombination approach those obtained in a strain that is heterozygous at MAT. Conversely, when the MATa gene was introduced by DNA transformation into a MAT alpha haploid, no enhanced stimulation of ectopic recombination was observed when cells were irradiated with ionizing radiation but a threefold enhancement was observed when cells were irradiated with UV. The increase in radiation-stimulated ectopic recombination resulting from heterozygosity at MAT correlated with greater spontaneous ectopic recombination and higher levels of viability after irradiation. We suggest that MAT functions that have been previously shown to control the level of mitotic, allelic recombination (homolog recombination) also control the level of mitotic, radiation-stimulated ectopic recombination between short dispersed repetitive sequences on non-homologous chromosomes.
Collapse
Affiliation(s)
- M Fasullo
- Department of Radiotherapy, Loyola University Medical Center, Maywood, IL 60153
| | | |
Collapse
|
17
|
Fasullo M, Dave P, Rothstein R. DNA-damaging agents stimulate the formation of directed reciprocal translocations in Saccharomyces cerevisiae. Mutat Res 1994; 314:121-33. [PMID: 7510362 DOI: 10.1016/0921-8777(94)90076-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
DNA-damaging agents can stimulate the formation of directed reciprocal translocations in strains of Saccharomyces cerevisiae containing his3 recombinational substrates to generate chromosomal rearrangements. Such agents were compared with those that can stimulate sister-chromatid recombination. We show that chemicals and environmental agents that produce a variety of DNA lesions, including bulky adduct, thymidine dimers, interstrand cross-links, double-strand breaks alkylated bases, can stimulate recombination to yield reciprocal translocations. Of the agents tested, only the alkylating agents methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and a bifunctional agent that causes bulky DNA adducts, 4-nitroquinoline-N-oxide (4-NQO), significantly stimulate sister-chromatid recombination in our assay. Factors that contribute to the stimulation of interchromosomal recombination include strain genetic background and ploidy.
Collapse
Affiliation(s)
- M Fasullo
- Department of Radiotherapy, Loyola University Chicago, Maywood, IL 60153
| | | | | |
Collapse
|