1
|
Ciftci-Yilmaz S, Au WC, Mishra PK, Eisenstatt JR, Chang J, Dawson AR, Zhu I, Rahman M, Bilke S, Costanzo M, Baryshnikova A, Myers CL, Meltzer PS, Landsman D, Baker RE, Boone C, Basrai MA. A Genome-Wide Screen Reveals a Role for the HIR Histone Chaperone Complex in Preventing Mislocalization of Budding Yeast CENP-A. Genetics 2018; 210:203-218. [PMID: 30012561 PMCID: PMC6116949 DOI: 10.1534/genetics.118.301305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/12/2018] [Indexed: 11/18/2022] Open
Abstract
Centromeric localization of the evolutionarily conserved centromere-specific histone H3 variant CENP-A (Cse4 in yeast) is essential for faithful chromosome segregation. Overexpression and mislocalization of CENP-A lead to chromosome segregation defects in yeast, flies, and human cells. Overexpression of CENP-A has been observed in human cancers; however, the molecular mechanisms preventing CENP-A mislocalization are not fully understood. Here, we used a genome-wide synthetic genetic array (SGA) to identify gene deletions that exhibit synthetic dosage lethality (SDL) when Cse4 is overexpressed. Deletion for genes encoding the replication-independent histone chaperone HIR complex (HIR1, HIR2, HIR3, HPC2) and a Cse4-specific E3 ubiquitin ligase, PSH1, showed highest SDL. We defined a role for Hir2 in proteolysis of Cse4 that prevents mislocalization of Cse4 to noncentromeric regions for genome stability. Hir2 interacts with Cse4 in vivo, and hir2∆ strains exhibit defects in Cse4 proteolysis and stabilization of chromatin-bound Cse4 Mislocalization of Cse4 to noncentromeric regions with a preferential enrichment at promoter regions was observed in hir2∆ strains. We determined that Hir2 facilitates the interaction of Cse4 with Psh1, and that defects in Psh1-mediated proteolysis contribute to increased Cse4 stability and mislocalization of Cse4 in the hir2∆ strain. In summary, our genome-wide screen provides insights into pathways that regulate proteolysis of Cse4 and defines a novel role for the HIR complex in preventing mislocalization of Cse4 by facilitating proteolysis of Cse4, thereby promoting genome stability.
Collapse
Affiliation(s)
- Sultan Ciftci-Yilmaz
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Prashant K Mishra
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jessica R Eisenstatt
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Joy Chang
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Anthony R Dawson
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Iris Zhu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Mahfuzur Rahman
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455
| | - Sven Bilke
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario M5S 3E1, Canada
| | | | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario M5S 3E1, Canada
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
2
|
Yuan H, Zhang R, Shao B, Wang X, Ouyang Q, Hao N, Luo C. Protein expression patterns of the yeast mating response. Integr Biol (Camb) 2016; 8:712-9. [PMID: 27177258 DOI: 10.1039/c6ib00014b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microfluidics, in combination with time-lapse microscopy, is a transformative technology that significantly enhances our ability to monitor and probe biological processes in living cells. However, high-throughput microfluidic devices mostly require sophisticated preparatory and setup work and are thus hard to adopt by non-experts. In this work, we designed an easy-to-use microfluidic chip, which enables tracking of 48 GFP-tagged yeast strains, with each strain under two different stimulus conditions, in a single experiment. We used this technology to investigate the dynamic pattern of protein expression during the yeast mating differentiation response. High doses of pheromone induce cell cycle arrest and the shmoo morphology, whereas low doses of pheromone lead to elongation and chemotrophic growth. By systematically analyzing the protein dynamics of 156 pheromone-regulated genes, we identified groups of genes that are preferentially induced in response to low-dose pheromone (elongation during growth) or high-dose pheromone (shmoo formation and cell cycle arrest). The protein dynamics of these genes may provide insights into the mechanisms underlying the differentiation switch induced by different doses of pheromone.
Collapse
Affiliation(s)
- Haiyu Yuan
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, China.
| | | | | | | | | | | | | |
Collapse
|
3
|
Ferrari P, Strubin M. Uncoupling histone turnover from transcription-associated histone H3 modifications. Nucleic Acids Res 2015; 43:3972-85. [PMID: 25845593 PMCID: PMC4417181 DOI: 10.1093/nar/gkv282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/21/2015] [Indexed: 11/14/2022] Open
Abstract
Transcription in eukaryotes is associated with two major changes in chromatin organization. Firstly, nucleosomal histones are continuously replaced by new histones, an event that in yeast occurs predominantly at transcriptionally active promoters. Secondly, histones become modified post-translationally at specific lysine residues. Some modifications, including histone H3 trimethylation at lysine 4 (H3K4me3) and acetylation at lysines 9 (H3K9ac) and 14 (H3K14ac), are specifically enriched at active promoters where histones exchange, suggesting a possible causal relationship. Other modifications accumulate within transcribed regions and one of them, H3K36me3, is thought to prevent histone exchange. Here we explored the relationship between these four H3 modifications and histone turnover at a few selected genes. Using lysine-to-arginine mutants and a histone exchange assay, we found that none of these modifications plays a major role in either promoting or preventing histone turnover. Unexpectedly, mutation of H3K56, whose acetylation occurs prior to chromatin incorporation, had an effect only when introduced into the nucleosomal histone. Furthermore, we used various genetic approaches to show that histone turnover can be experimentally altered with no major consequence on the H3 modifications tested. Together, these results suggest that transcription-associated histone turnover and H3 modification are two correlating but largely independent events.
Collapse
Affiliation(s)
- Paolo Ferrari
- Department of Microbiology and Molecular Medicine, University Medical Centre (C.M.U.), Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Michel Strubin
- Department of Microbiology and Molecular Medicine, University Medical Centre (C.M.U.), Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
4
|
Gurard-Levin ZA, Quivy JP, Almouzni G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu Rev Biochem 2015; 83:487-517. [PMID: 24905786 DOI: 10.1146/annurev-biochem-060713-035536] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.
Collapse
Affiliation(s)
- Zachary A Gurard-Levin
- Institut Curie, Centre de Recherche; CNRS UMR 3664; Equipe Labellisée, Ligue contre le Cancer; and Université Pierre et Marie Curie, Paris F-75248, France;
| | | | | |
Collapse
|
5
|
Amin AD, Vishnoi N, Prochasson P. A global requirement for the HIR complex in the assembly of chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:264-276. [PMID: 24459729 DOI: 10.1016/j.bbagrm.2011.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Due to its extensive length, DNA is packaged into a protective chromatin structure known as the nucleosome. In order to carry out various cellular functions, nucleosomes must be disassembled, allowing access to the underlying DNA, and subsequently reassembled on completion of these processes. The assembly and disassembly of nucleosomes is dependent on the function of histone modifiers, chromatin remodelers and histone chaperones. In this review, we discuss the roles of an evolutionarily conserved histone chaperone known as the HIR/HIRA complex. In S. cerevisiae, the HIR complex is made up of the proteins Hir1, Hir2, Hir3 and Hpc2, which collectively act in transcriptional regulation, elongation, gene silencing, cellular senescence and even aging. This review presents an overview of the role of the HIR complex, in yeast as well as other organisms, in each of these processes, in order to give a better understanding of how nucleosome assembly is imperative for cellular homeostasis and genomic integrity. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
6
|
Kurat CF, Recht J, Radovani E, Durbic T, Andrews B, Fillingham J. Regulation of histone gene transcription in yeast. Cell Mol Life Sci 2014; 71:599-613. [PMID: 23974242 PMCID: PMC11113579 DOI: 10.1007/s00018-013-1443-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/10/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
Abstract
Histones are the primary protein component of chromatin, the mixture of DNA and proteins that packages the genetic material in eukaryotes. Large amounts of histones are required during the S phase of the cell cycle when genome replication occurs. However, ectopic expression of histones during other cell cycle phases is toxic; thus, histone expression is restricted to the S phase and is tightly regulated at multiple levels, including transcriptional, post-transcriptional, translational, and post-translational. In this review, we discuss mechanisms of regulation of histone gene expression with emphasis on the transcriptional regulation of the replication-dependent histone genes in the model yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Christoph F. Kurat
- The Donnelly Center, University of Toronto, Toronto, ON M5S 3E1 Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1 Canada
| | | | - Ernest Radovani
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3 Canada
| | - Tanja Durbic
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3 Canada
| | - Brenda Andrews
- The Donnelly Center, University of Toronto, Toronto, ON M5S 3E1 Canada
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3 Canada
| |
Collapse
|
7
|
Mahajan K, Mahajan NP. WEE1 tyrosine kinase, a novel epigenetic modifier. Trends Genet 2013; 29:394-402. [PMID: 23537585 DOI: 10.1016/j.tig.2013.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/26/2012] [Accepted: 02/25/2013] [Indexed: 11/30/2022]
Abstract
The cell cycle requires cells to duplicate their chromatin, DNA, and histones, while retaining a subset of epigenetic marks, in a highly coordinated manner. The WEE1 kinase was identified as an important regulator during S phase, preventing entry into mitosis until DNA replication has been completed. Interestingly, WEE1 has also emerged as a key player in regulating histone synthesis. It phosphorylates histone H2B at tyrosine 37 in the nucleosomes found upstream of the histone gene cluster, and this suppresses histone transcription in late S phase. These observations highlight a dual role for WEE1 as both a mitotic gatekeeper and a surveyor of chromatin synthesis, providing a direct link between epigenetics and cell-cycle progression. Importantly, this link has implications for the design of novel epigenetic inhibitors targeting cancers that display elevated expression of this kinase.
Collapse
Affiliation(s)
- Kiran Mahajan
- Drug Discovery Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| | | |
Collapse
|
8
|
Cell-cycle perturbations suppress the slow-growth defect of spt10Δ mutants in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2013; 3:573-83. [PMID: 23450643 PMCID: PMC3583463 DOI: 10.1534/g3.112.005389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/17/2013] [Indexed: 01/05/2023]
Abstract
Spt10 is a putative acetyltransferase of Saccharomyces cerevisiae that directly activates the transcription of histone genes. Deletion of SPT10 causes a severe slow growth phenotype, showing that Spt10 is critical for normal cell division. To gain insight into the function of Spt10, we identified mutations that impair or improve the growth of spt10 null (spt10Δ) mutants. Mutations that cause lethality in combination with spt10Δ include particular components of the SAGA complex as well as asf1Δ and hir1Δ. Partial suppressors of the spt10Δ growth defect include mutations that perturb cell-cycle progression through the G1/S transition, S phase, and G2/M. Consistent with these results, slowing of cell-cycle progression by treatment with hydroxyurea or growth on medium containing glycerol as the carbon source also partially suppresses the spt10Δ slow-growth defect. In addition, mutations that impair the Lsm1-7-Pat1 complex, which regulates decapping of polyadenylated mRNAs, also partially suppress the spt10Δ growth defect. Interestingly, suppression of the spt10Δ growth defect is not accompanied by a restoration of normal histone mRNA levels. These findings suggest that Spt10 has multiple roles during cell division.
Collapse
|
9
|
O'Sullivan RJ, Karlseder J. The great unravelling: chromatin as a modulator of the aging process. Trends Biochem Sci 2012; 37:466-76. [PMID: 22959736 DOI: 10.1016/j.tibs.2012.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 02/01/2023]
Abstract
During embryogenesis, the establishment of chromatin states permits the implementation of genetic programs that allow the faithful development of the organism. However, these states are not fixed and there is much evidence that stochastic or chronic deterioration of chromatin organization, as correlated by transcriptional alterations and the accumulation of DNA damage in cells, occurs during the lifespan of the individual. Whether causal or simply a byproduct of macromolecular decay, these changes in chromatin states have emerged as potentially central conduits of mammalian aging. This review explores the current state of our understanding of the links between chromatin organization and aging.
Collapse
Affiliation(s)
- Roderick J O'Sullivan
- The Salk Institute for Biological Studies, Molecular and Cellular Biology Department, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
10
|
H2B Tyr37 phosphorylation suppresses expression of replication-dependent core histone genes. Nat Struct Mol Biol 2012; 19:930-7. [PMID: 22885324 DOI: 10.1038/nsmb.2356] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/09/2012] [Indexed: 01/12/2023]
Abstract
Histone gene transcription is actively downregulated after completion of DNA synthesis to avoid overproduction. However, the precise mechanistic details of the cessation of histone mRNA synthesis are not clear. We found that histone H2B phosphorylation at Tyr37 occurs upstream of histone cluster 1, Hist1, during the late S phase. We identified WEE1 as the kinase that phosphorylates H2B at Tyr37. Loss of expression or inhibition of WEE1 kinase abrogated H2B Tyr37 phosphorylation with a concomitant increase in histone transcription in yeast and mammalian cells. H2B Tyr37 phosphorylation excluded binding of the transcriptional coactivator NPAT and RNA polymerase II and recruited the histone chaperone HIRA upstream of the Hist1 cluster. Taken together, our data show a previously unknown and evolutionarily conserved function for WEE1 kinase as an epigenetic modulator that marks chromatin with H2B Tyr37 phosphorylation, thereby inhibiting the transcription of multiple histone genes to lower the burden on the histone mRNA turnover machinery.
Collapse
|
11
|
The mitotic Clb cyclins are required to alleviate HIR-mediated repression of the yeast histone genes at the G1/S transition. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:16-27. [PMID: 21978826 DOI: 10.1016/j.bbagrm.2011.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 09/17/2011] [Accepted: 09/19/2011] [Indexed: 11/22/2022]
Abstract
The histone genes are an important group of cell cycle regulated genes whose transcription is activated during the G1/S transition and repressed in early G1, late S, and G2/M. The HIR complex, comprised of Hir1, Hir2, Hir3 and Hpc2, regulates three of the four histone gene loci. While relief of repression at the G1/S boundary involves the HIR complex, as well as other cofactors, the mechanism by which this derepression occurs remains unknown. To better understand how transcriptional repression contributes to periodic expression in the cell cycle, we sought to identify the cell cycle signals required to alleviate HIR-mediated repression of the histone genes. By measuring histone gene transcription in strains with various combinations of clb mutations, we found that the mitotic Clb1/Clb2 cyclins are required to alleviate Hir-mediated repression during the G1/S transition and that Clb2 physically interacts with the HIR complex. While the HIR complex regulates histone gene transcription in combination with two other histone H3/H4 chaperones, Asf1 and Rtt106, our data demonstrate that the mitotic Clb cyclins are necessary to specifically alleviate the repressive action of the HIR complex itself in order to allow proper expression of the histone genes in late G1/early S phase.
Collapse
|
12
|
Vishnoi N, Flaherty K, Hancock LC, Ferreira ME, Amin AD, Prochasson P. Separation-of-function mutation in HPC2, a member of the HIR complex in S. cerevisiae, results in derepression of the histone genes but does not confer cryptic TATA phenotypes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:557-66. [PMID: 21782987 DOI: 10.1016/j.bbagrm.2011.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/02/2011] [Accepted: 07/06/2011] [Indexed: 12/29/2022]
Abstract
The HIR complex, which is comprised of the four proteins Hir1, Hir2, Hir3 and Hpc2, was first characterized as a repressor of three of the four histone gene loci in Saccharomyces cerevisiae. Using a bioinformatical approach, previous studies have identified a region of Hpc2 that is conserved in Schizosaccharomyces pombe and humans. Using a similar approach, we identified two additional domains, CDI and CDII, of the Hpc2 protein that are conserved among yeast species related to S. cerevisiae. We showed that the N terminal CDI domain (spanning amino acids 63-79) is dispensable for HIR complex assembly, but plays an essential role in the repression of the histone genes by recruiting the HIR complex to the HIR-dependent histone gene loci. The second conserved domain, CDII (spanning amino acids 452-480), is required for the stability of the Hpc2 protein itself as well as for the assembly of the HIR complex. In addition, we report a novel separation-of-function mutation within CDI of Hpc2, which causes derepression of the histone genes but does not confer other reported hir/hpc- phenotypes (such as Spt phenotypes, heterochromatin silencing defects and repression of cryptic promoters). This is the first direct demonstration that a separation-of-function mutation exists within the HIR complex.
Collapse
Affiliation(s)
- Nidhi Vishnoi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
13
|
Ferreira ME, Flaherty K, Prochasson P. The Saccharomyces cerevisiae histone chaperone Rtt106 mediates the cell cycle recruitment of SWI/SNF and RSC to the HIR-dependent histone genes. PLoS One 2011; 6:e21113. [PMID: 21698254 PMCID: PMC3115976 DOI: 10.1371/journal.pone.0021113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/19/2011] [Indexed: 11/18/2022] Open
Abstract
Background In Saccharomyces cerevisiae, three out of the four histone gene pairs (HTA1-HTB1, HHT1-HHF1, and HHT2-HHF2) are regulated by the HIR co-repressor complex. The histone chaperone Rtt106 has recently been shown to be present at these histone gene loci throughout the cell cycle in a HIR- and Asf1-dependent manner and involved in their transcriptional repression. The SWI/SNF and RSC chromatin remodeling complexes are both recruited to the HIR-dependent histone genes; SWI/SNF is required for their activation in S phase, whereas RSC is implicated in their repression outside of S phase. Even though their presence at the histone genes is dependent on the HIR complex, their specific recruitment has not been well characterized. In this study we focused on characterizing the role played by the histone chaperone Rtt106 in the cell cycle-dependent recruitment of SWI/SNF and RSC complexes to the histone genes. Methodology/Principal Findings Using GST pull-down and co-immunoprecipitation assays, we showed that Rtt106 physically interacts with both the SWI/SNF and RSC complexes in vitro and in vivo. We then investigated the function of this interaction with respect to the recruitment of these complexes to HIR-dependent histone genes. Using chromatin immunoprecipitation assays (ChIP), we found that Rtt106 is important for the recruitment of both SWI/SNF and RSC complexes to the HIR-dependent histone genes. Furthermore, using synchronized cell cultures, we showed by ChIP assays that the Rtt106-dependent SWI/SNF recruitment to these histone gene loci is cell cycle regulated and restricted to late G1 phase just before the peak of histone gene expression in S phase. Conclusions/Significance Overall, these data strongly suggest that the interaction between the histone chaperone Rtt106 and both the SWI/SNF and RSC chromatin remodeling complexes is important for the cell cycle regulated recruitment of these two complexes to the HIR-dependent histone genes.
Collapse
Affiliation(s)
- Monica E. Ferreira
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Kacie Flaherty
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Philippe Prochasson
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Takayama Y, Mamnun YM, Trickey M, Dhut S, Masuda F, Yamano H, Toda T, Saitoh S. Hsk1- and SCF(Pof3)-dependent proteolysis of S. pombe Ams2 ensures histone homeostasis and centromere function. Dev Cell 2010; 18:385-96. [PMID: 20230746 PMCID: PMC2880248 DOI: 10.1016/j.devcel.2009.12.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/03/2009] [Accepted: 12/22/2009] [Indexed: 12/18/2022]
Abstract
Schizosaccharomyces pombe GATA factor Ams2 is responsible for cell cycle-dependent transcriptional activation of all the core histone genes peaking at G1/S phase. Intriguingly, its own protein level also fluctuates concurrently. Here, we show that Ams2 is ubiquitylated and degraded through the SCF (Skp1-Cdc53/Cullin-1-F-box) ubiquitin ligase, in which F box protein Pof3 binds this protein. Ams2 is phosphorylated at multiple sites, which is required for SCF(Pof3)-dependent proteolysis. Hsk1/Cdc7 kinase physically associates with and phosphorylates Ams2. Even mild overexpression of Ams2 induces constitutive histone expression and chromosome instability, and its toxicity is exaggerated when Hsk1 function is compromised. This is partly attributable to abnormal incorporation of canonical H3 into the central CENP-A/Cnp1-rich centromere, thereby reversing specific chromatin structures to apparently normal nucleosomes. We propose that Hsk1 plays a vital role during post S phase in genome stability via SCF(Pof3)-mediated degradation of Ams2, thereby maintaining centromere integrity.
Collapse
Affiliation(s)
- Yuko Takayama
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Yasmine M. Mamnun
- Laboratory of Cell Regulation, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Michelle Trickey
- Cell Cycle Control Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK
| | - Susheela Dhut
- Laboratory of Cell Regulation, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Fumie Masuda
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| | - Hiroyuki Yamano
- Cell Cycle Control Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 0TL, UK
| | - Takashi Toda
- Laboratory of Cell Regulation, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Shigeaki Saitoh
- Division of Cell Biology, Institute of Life Science, Kurume University, Fukuoka 839-0864, Japan
| |
Collapse
|
15
|
Kainth P, Andrews B. Quantitative cell array screening to identify regulators of gene expression. Brief Funct Genomics 2009; 9:13-23. [PMID: 19952074 DOI: 10.1093/bfgp/elp047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the last decade or so, advances in genome-scale technologies have allowed systematic and detailed analysis of gene function. The experimental accessibility of budding yeast makes it a test-bed for technology development and application of new functional genomic tools and resources that pave the way for comparable efforts in higher eukaryotes. In this article, we review advances in reporter screening technology to discover trans-acting regulators of promoters (or cis-elements) of interest in the context of a novel functional genomics approach called Reporter Synthetic Genetic Array (R-SGA) analysis. We anticipate that this methodology will enable researchers to collect quantitative data on hundreds of gene expression pathways in an effort to better understand transcriptional regulatory networks.
Collapse
Affiliation(s)
- Pinay Kainth
- Banting and Best Department of Medical Research, Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario, Canada
| | | |
Collapse
|
16
|
Fillingham J, Kainth P, Lambert JP, van Bakel H, Tsui K, Peña-Castillo L, Nislow C, Figeys D, Hughes TR, Greenblatt J, Andrews BJ. Two-Color Cell Array Screen Reveals Interdependent Roles for Histone Chaperones and a Chromatin Boundary Regulator in Histone Gene Repression. Mol Cell 2009; 35:340-51. [DOI: 10.1016/j.molcel.2009.06.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 05/12/2009] [Accepted: 06/08/2009] [Indexed: 01/01/2023]
|
17
|
Abanades DR, Ramírez L, Iborra S, Soteriadou K, González VM, Bonay P, Alonso C, Soto M. Key role of the 3' untranslated region in the cell cycle regulated expression of the Leishmania infantum histone H2A genes: minor synergistic effect of the 5' untranslated region. BMC Mol Biol 2009; 10:48. [PMID: 19460148 PMCID: PMC2691400 DOI: 10.1186/1471-2199-10-48] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 05/21/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Histone synthesis in Leishmania is tightly coupled to DNA replication by a post-transcriptional mechanism operating at the level of translation. RESULTS In this work we have analyzed the implication of the 5' and 3' untranslated regions (UTR) in the cell cycle regulated expression of the histone H2A in Leishmania infantum. For that purpose, L. infantum promastigotes were stably transfected with different plasmid constructs in which the CAT coding region used as a reporter was flanked by the 5' and 3' UTR regions of the different H2A genes. We report that in spite of their sequence differences, histone H2A 5' and 3' UTRs conferred a cell cycle dependent pattern of expression on the CAT reporter since de novo synthesis of CAT increased when parasites enter the S phase. Using one established L. infantum cell line we showed that CAT expression is controlled by the same regulatory events that control the endogenous histone gene expression. Thus, although we did not detect changes in the level of CAT mRNAs during cell cycle progression, a drastic change in the polysome profiles of CAT mRNAs was observed during the progression from G1 to S phase. In the S phase CAT mRNAs were on polyribosomal fractions, but in the G1 phase the association of CAT transcripts with ribosomes was impaired. Furthermore, it was determined that the addition of just the H2A 3' UTR to the CAT reporter gene is sufficient to achieve a similar pattern of post-transcriptional regulation indicating that this region contains the major regulatory sequences involved in the cell cycle dependent expression of the H2A genes. On the other hand, although CAT transcripts bearing the H2A 5' alone were translated both in the G1 and S phase, higher percentages of transcripts were detected on polyribosomes in the S phase correlating with an increase in the de novo synthesis of CAT. Thus, it can be concluded that this region also contributes, although to a minor extent than the 3' UTR, in the enhancement of translation in the S phase relative to the G1 phase. CONCLUSION Our findings indicate that both, the 5' and the 3' UTRs contain sequence elements that contribute to the cell cycle expression of L. infantum H2A. The 3' UTR region is essential for cell cycle dependent translation of the L. infantum H2A transcripts whereas the 5' UTR has a minor contribution in their S phase dependent translation.
Collapse
Affiliation(s)
- Daniel R Abanades
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Laura Ramírez
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Salvador Iborra
- Unidad de Inmunología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Crta. Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain
| | - Ketty Soteriadou
- Laboratory of Molecular Parasitology, Hellenic Pasteur Institute, 127 Vas. Sophias, 115 21 Athens, Greece
| | - Victor M González
- Departamento de Bioquímica-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Pedro Bonay
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Carlos Alonso
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
18
|
Abstract
FACT is an essential component of the machinery used by eukaryotic cells both to establish and to overcome the nucleosomal barrier to DNA accessibility, and it does so without hydrolyzing ATP. FACT is a transcription elongation factor, but this review stresses additional roles in DNA replication and initiation of transcription. The widely-held model that FACT functions by displacing an H2A-H2B dimer from a nucleosome is examined, and an alternative proposal is presented in which dimer loss can occur but is a secondary effect of a primary structural change induced by FACT binding which we have called "nucleosome reorganization." The structures of two domains of FACT have been determined and they reveal multiple potential interaction sites. Roles for these binding sites in FACT function and regulation are discussed.
Collapse
Affiliation(s)
- Tim Formosa
- University of Utah School of Medicine, Department of Biochemistry, 15 N Medical Drive East RM 4100, Salt Lake City, UT 84112-5650, USA.
| |
Collapse
|
19
|
Takayama Y, Takahashi K. Differential regulation of repeated histone genes during the fission yeast cell cycle. Nucleic Acids Res 2007; 35:3223-37. [PMID: 17452352 PMCID: PMC1904272 DOI: 10.1093/nar/gkm213] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The histone genes are highly reiterated in a wide range of eukaryotic genomes. The fission yeast, Schizosaccharomyces pombe, has three pairs of histone H3-H4 genes: hht1+-hhf1+, hht2+-hhf2+ and hht3+-hhf3+. While the deduced amino acid sequences are identical, it remains unknown whether transcriptional regulation differs among the three pairs. Here, we report the transcriptional properties of each H3-H4 gene pair during the cell cycle. The levels of transcripts of hht1+-hhf1+ and hht3+-hhf3+ pairs and hhf2+ are increased at S-phase, while that of hht2+ remains constant throughout the cell cycle. We showed that the GATA-type transcription factor, Ams2, binds to the promoter regions of core histone genes in an AACCCT-box-dependent manner and is required for activation of S-phase-specific transcription. Furthermore, we found that Ams2-depletion stimulates feedback regulation of histone transcripts, mainly up-regulating the basal levels of hht2+-hhf2+ transcription, which are normally down-regulated by Hip1 and Slm9, homologs of the human histone chaperone, HIRA. These observations provide insight into the molecular mechanisms of differential regulation of transcripts from repeated histone genes in the fission yeast.
Collapse
Affiliation(s)
| | - Kohta Takahashi
- *To whom correspondence should be addressed. Tel: +81 942 37 6317; Fax: +81 942 31 3320;
| |
Collapse
|
20
|
Abad PC, Lewis J, Mian IS, Knowles DW, Sturgis J, Badve S, Xie J, Lelièvre SA. NuMA influences higher order chromatin organization in human mammary epithelium. Mol Biol Cell 2006; 18:348-61. [PMID: 17108325 PMCID: PMC1783787 DOI: 10.1091/mbc.e06-06-0551] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The coiled-coil protein NuMA is an important contributor to mitotic spindle formation and stabilization. A potential role for NuMA in nuclear organization or gene regulation is suggested by the observations that its pattern of nuclear distribution depends upon cell phenotype and that it interacts and/or colocalizes with transcription factors. To date, the precise contribution of NuMA to nuclear function remains unclear. Previously, we observed that antibody-induced alteration of NuMA distribution in growth-arrested and differentiated mammary epithelial structures (acini) in three-dimensional culture triggers the loss of acinar differentiation. Here, we show that in mammary epithelial cells, NuMA is present in both the nuclear matrix and chromatin compartments. Expression of a portion of the C terminus of NuMA that shares sequence similarity with the chromatin regulator HPC2 is sufficient to inhibit acinar differentiation and results in the redistribution of NuMA, chromatin markers acetyl-H4 and H4K20m, and regions of deoxyribonuclease I-sensitive chromatin compared with control cells. Short-term alteration of NuMA distribution with anti-NuMA C-terminus antibodies in live acinar cells indicates that changes in NuMA and chromatin organization precede loss of acinar differentiation. These findings suggest that NuMA has a role in mammary epithelial differentiation by influencing the organization of chromatin.
Collapse
Affiliation(s)
- Patricia C. Abad
- *Department of Basic Medical Sciences and Cancer Center, Purdue University, West Lafayette, IN 47907-2026
| | - Jason Lewis
- *Department of Basic Medical Sciences and Cancer Center, Purdue University, West Lafayette, IN 47907-2026
| | - I. Saira Mian
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8268
| | - David W. Knowles
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8268
| | - Jennifer Sturgis
- *Department of Basic Medical Sciences and Cancer Center, Purdue University, West Lafayette, IN 47907-2026
| | - Sunil Badve
- Indiana University School of Medicine, Indianapolis, IN 46202-5280; and
| | - Jun Xie
- Department of Statistics, Purdue University, West Lafayette, IN 47907-2067
| | - Sophie A. Lelièvre
- *Department of Basic Medical Sciences and Cancer Center, Purdue University, West Lafayette, IN 47907-2026
| |
Collapse
|
21
|
Zhou H, Madden BJ, Muddiman DC, Zhang Z. Chromatin assembly factor 1 interacts with histone H3 methylated at lysine 79 in the processes of epigenetic silencing and DNA repair. Biochemistry 2006; 45:2852-61. [PMID: 16503640 DOI: 10.1021/bi0521083] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In eukaryotic cells, chromatin is classified into euchromatin, which is active in transcription, and heterochromatin that silences transcription. Histones in these two domains contain distinct modifications. Chromatin assembly factor 1 (CAF-1) is a highly conserved protein that functions in DNA replication, DNA repair, and heterochromatin silencing. CAF-1 binds histones H3 and H4 and deposits histones onto DNA to form nucleosomes. However, modifications on H3 and H4 associated with CAF-1 are not known. Here, we have purified a complex containing CAF-1 and H3 and H4 from yeast cells and determined the modifications present on these histones using linear ion trap FT-ICR mass spectrometry. H4 that copurified with CAF-1 was a mixture of isoforms acetylated at lysines 5, 8, 12, and 16, whereas an H3 peptide methylated at lysine 79 and an H3 peptide acetylated at lysine 56 were detected. In yeast cell extracts, these two H3 modifications peaked in the late S phase with different kinetics. Moreover, the association of CAF-1 with H3 methylated at lysine 79 appeared to occur in the late S phase. Finally, cells lacking both Dot1p, the methyltransferase that methylates H3 lysine 79, and Cac1p, the large subunit of CAF-1, exhibited a dramatic loss of telomeric silencing and increased sensitivity to DNA damaging agents. Together, these data indicate that CAF-1 interacts with H3 methylated at lysine 79 during the processes of epigenetic silencing and DNA repair.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
22
|
Mazzoni C, Palermo V, Torella M, Falcone C. , the co-repressor of histone gene transcription of , acts as a multicopy suppressor of the apoptotic phenotypes of the mRNA degradation mutant. FEMS Yeast Res 2005; 5:1229-35. [PMID: 16169287 DOI: 10.1016/j.femsyr.2005.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/22/2005] [Accepted: 07/28/2005] [Indexed: 11/16/2022] Open
Abstract
We previously have reported that Saccharomyces cerevisiae mutants expressing Kllsm4Delta1, a truncated form of the KlLSM4 gene, as well as mutants in genes of the mRNA-decapping pathway, show phenotypic markers of apoptosis, increased temperature sensitivity and reduced growth in the presence of different drugs and oxidative stressing agents, such as acetic acid and H(2)O(2). To isolate multicopy extra-genic suppressors of these defects, we transformed the Kllsm4Delta1 mutant with a yeast DNA library and we selected a series of clones showing resistance to acetic acid. One of these clones carried a DNA fragment containing the HIR1 gene that encodes a transcriptional co-repressor of histone genes. The over-expression of HIR1 in the Kllsm4Delta1 mutant prevented rapid cell death during chronological aging, reduced nuclei fragmentation and increased resistance to H(2)O(2). Transcription analysis revealed that the expression of histone genes was lowered in the mutant over-expressing HIR1, indicating a relationship between the latter gene and apoptosis.
Collapse
Affiliation(s)
- Cristina Mazzoni
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Cell and Developmental Biology, University of Rome La Sapienza, Piazzale Aldo Moro 5, Italy.
| | | | | | | |
Collapse
|
23
|
Green EM, Antczak AJ, Bailey AO, Franco AA, Wu KJ, Yates JR, Kaufman PD. Replication-independent histone deposition by the HIR complex and Asf1. Curr Biol 2005; 15:2044-9. [PMID: 16303565 PMCID: PMC2819815 DOI: 10.1016/j.cub.2005.10.053] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 10/05/2005] [Accepted: 10/07/2005] [Indexed: 01/08/2023]
Abstract
The orderly deposition of histones onto DNA is mediated by conserved assembly complexes, including chromatin assembly factor-1 (CAF-1) and the Hir proteins . CAF-1 and the Hir proteins operate in distinct but functionally overlapping histone deposition pathways in vivo . The Hir proteins and CAF-1 share a common partner, the highly conserved histone H3/H4 binding protein Asf1, which binds the middle subunit of CAF-1 as well as to Hir proteins . Asf1 binds to newly synthesized histones H3/H4 , and this complex stimulates histone deposition by CAF-1 . In yeast, Asf1 is required for the contribution of the Hir proteins to gene silencing . Here, we demonstrate that Hir1, Hir2, Hir3, and Hpc2 comprise the HIR complex, which copurifies with the histone deposition protein Asf1. Together, the HIR complex and Asf1 deposit histones onto DNA in a replication-independent manner. Histone deposition by the HIR complex and Asf1 is impaired by a mutation in Asf1 that inhibits HIR binding. These data indicate that the HIR complex and Asf1 proteins function together as a conserved eukaryotic pathway for histone replacement throughout the cell cycle.
Collapse
Affiliation(s)
- Erin M. Green
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA 94720
| | - Andrew J. Antczak
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA 94720
| | - Aaron O. Bailey
- Department of Cell Biology The Scripps Research Institute La Jolla, CA 92037
| | - Alexa A. Franco
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA 94720
| | - Kevin J. Wu
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA 94720
| | - John R. Yates
- Department of Cell Biology The Scripps Research Institute La Jolla, CA 92037
| | - Paul D. Kaufman
- Program in Gene Function and Expression University of Massachusetts Medical School Worcester, MA 01605-2324
| |
Collapse
|
24
|
Gunjan A, Paik J, Verreault A. Regulation of histone synthesis and nucleosome assembly. Biochimie 2005; 87:625-35. [PMID: 15989979 DOI: 10.1016/j.biochi.2005.02.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 02/10/2005] [Indexed: 11/25/2022]
Abstract
Histone deposition onto nascent DNA is the first step in the process of chromatin assembly during DNA replication. The process of nucleosome assembly represents a daunting task for S-phase cells, partly because cells need to rapidly package nascent DNA into nucleosomes while avoiding the generation of excess histones. Consequently, cells have evolved a number of nucleosome assembly factors and regulatory mechanisms that collectively function to coordinate the rates of histone and DNA synthesis during both normal cell cycle progression and in response to conditions that interfere with DNA replication.
Collapse
Affiliation(s)
- Akash Gunjan
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | |
Collapse
|
25
|
Franco AA, Kaufman PD. Histone deposition proteins: links between the DNA replication machinery and epigenetic gene silencing. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:201-8. [PMID: 16117650 DOI: 10.1101/sqb.2004.69.201] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- A A Franco
- Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
26
|
Abstract
Chromatin assembly is required for the duplication of eukaryotic chromosomes and functions at the interface between cell-cycle progression and gene expression. The central machinery that mediates chromatin assembly consists of histone chaperones, which deliver histones to the DNA, and ATP-utilizing motor proteins, which are DNA-translocating factors that act in conjunction with the histone chaperones to mediate the deposition of histones into periodic nucleosome arrays. Here, we describe these factors and propose possible mechanisms by which DNA-translocating motors might catalyse chromatin assembly.
Collapse
Affiliation(s)
- Karl A Haushalter
- Section of Molecular Biology, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093-0347, USA
| | | |
Collapse
|
27
|
Abstract
Recent advances in the identification of molecular components of centromeres have demonstrated a crucial role for chromatin proteins in determining both centromere identity and the stability of kinetochore-microtubule attachments. Although we are far from a complete understanding of the establishment and propagation of centromeres, this review seeks to highlight the contribution of histones, histone deposition factors, histone modifying enzymes, and heterochromatin proteins to the assembly of this sophisticated, highly specialized chromatin structure. First, an overview of DNA sequence elements at centromeric regions will be presented. We will then discuss the contribution of chromatin to kinetochore function in budding yeast, and pericentric heterochromatin domains in other eukaryotic systems. We will conclude with discussion of specialized nucleosomes that direct kinetochore assembly and propagation of centromere-defining chromatin domains.
Collapse
Affiliation(s)
- J A Sharp
- University of California, Berkeley, Stanley Hall, Mail Code 3206, Berkeley, CA 94720, USA.
| | | |
Collapse
|
28
|
Formosa T, Ruone S, Adams MD, Olsen AE, Eriksson P, Yu Y, Rhoades AR, Kaufman PD, Stillman DJ. Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure. Genetics 2002; 162:1557-71. [PMID: 12524332 PMCID: PMC1462388 DOI: 10.1093/genetics/162.4.1557] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spt16/Cdc68, Pob3, and Nhp6 collaborate in vitro and in vivo as the yeast factor SPN, which is homologous to human FACT. SPN/FACT complexes mediate passage of polymerases through nucleosomes and are important for both transcription and replication. An spt16 mutation was found to be intolerable when combined with a mutation in any member of the set of functionally related genes HIR1, HIR2/SPT1, HIR3/HPC1, or HPC2. Mutations in POB3, but not in NHP6A/B, also display strong synthetic defects with hir/hpc mutations. A screen for other mutations that cause dependence on HIR/HPC genes revealed genes encoding members of the Paf1 complex, which also promotes transcriptional elongation. The Hir/Hpc proteins affect the expression of histone genes and also promote normal deposition of nucleosomes; either role could explain an interaction with elongation factors. We show that both spt16 and pob3 mutants respond to changes in histone gene numbers, but in opposite ways, suggesting that Spt16 and Pob3 each interact with histones but perhaps with different subsets of these proteins. Supporting this, spt16 and pob3 mutants also display different sensitivities to mutations in the N-terminal tails of histones H3 and H4 and to mutations in enzymes that modulate acetylation of these tails. Our results support a model in which SPN/FACT has two functions: it disrupts nucleosomes to allow polymerases to access DNA, and it reassembles the nucleosomes afterward. Mutations that impair the reassembly activity cause chromatin to accumulate in an abnormally disrupted state, imposing a requirement for a nucleosome reassembly function that we propose is provided by Hir/Hpc proteins.
Collapse
Affiliation(s)
- Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sharp JA, Fouts ET, Krawitz DC, Kaufman PD. Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Curr Biol 2001; 11:463-73. [PMID: 11412995 DOI: 10.1016/s0960-9822(01)00140-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Position-dependent gene silencing in yeast involves many factors, including the four HIR genes and nucleosome assembly proteins Asf1p and chromatin assembly factor I (CAF-I, encoded by the CAC1-3 genes). Both cac Delta asfl Delta and cac Delta hir Delta double mutants display synergistic reductions in heterochromatic gene silencing. However, the relationship between the contributions of HIR genes and ASF1 to silencing has not previously been explored. RESULTS Our biochemical and genetic studies of yeast Asf1p revealed links to Hir protein function. In vitro, an active histone deposition complex was formed from recombinant yeast Asf1p and histones H3 and H4 that lack a newly synthesized acetylation pattern. This Asf1p/H3/H4 complex generated micrococcal nuclease--resistant DNA in the absence of DNA replication and stimulated nucleosome assembly activity by recombinant yeast CAF-I during DNA synthesis. Also, Asf1p bound to the Hir1p and Hir2p proteins in vitro and in cell extracts. In vivo, the HIR1 and ASF1 genes contributed to silencing the heterochromatic HML locus via the same genetic pathway. Deletion of either HIR1 or ASF1 eliminated telomeric gene silencing in combination with pol30--8, encoding an altered form of the DNA polymerase processivity factor PCNA that prevents CAF-I from contributing to silencing. Conversely, other pol30 alleles prevented Asf1/Hir proteins from contributing to silencing. CONCLUSIONS Yeast CAF-I and Asf1p cooperate to form nucleosomes in vitro. In vivo, Asf1p and Hir proteins physically interact and together promote heterochromatic gene silencing in a manner requiring PCNA. This Asf1/Hir silencing pathway functionally overlaps with CAF-I activity.
Collapse
Affiliation(s)
- J A Sharp
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
30
|
Haase SB, Reed SI. Evidence that a free-running oscillator drives G1 events in the budding yeast cell cycle. Nature 1999; 401:394-7. [PMID: 10517640 DOI: 10.1038/43927] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In yeast and somatic cells, mechanisms ensure cell-cycle events are initiated only when preceding events have been completed. In contrast, interruption of specific cell-cycle processes in early embryonic cells of many organisms does not affect the timing of subsequent events, indicating that cell-cycle events are triggered by a free-running cell-cycle oscillator. Here we present evidence for an independent cell-cycle oscillator in the budding yeast Saccharomyces cerevisiae. We observed periodic activation of events normally restricted to the G1 phase of the cell cycle, in cells lacking mitotic cyclin-dependent kinase activities that are essential for cell-cycle progression. As in embryonic cells, G1 events cycled on schedule, in the absence of S phase or mitosis, with a period similar to the cell-cycle time of wild-type cells. Oscillations of similar periodicity were observed in cells responding to mating pheromone in the absence of G1 cyclin (Cln)- and mitotic cyclin (Clb)-associated kinase activity, indicating that the oscillator may function independently of cyclin-dependent kinase dynamics. We also show that Clb-associated kinase activity is essential for ensuring dependencies by preventing the initiation of new G1 events when cell-cycle progression is delayed.
Collapse
Affiliation(s)
- S B Haase
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 94303, USA
| | | |
Collapse
|
31
|
Dudley AM, Gansheroff LJ, Winston F. Specific components of the SAGA complex are required for Gcn4- and Gcr1-mediated activation of the his4-912delta promoter in Saccharomyces cerevisiae. Genetics 1999; 151:1365-78. [PMID: 10101163 PMCID: PMC1460567 DOI: 10.1093/genetics/151.4.1365] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations selected as suppressors of Ty or solo delta insertion mutations in Saccharomyces cerevisiae have identified several genes, SPT3, SPT7, SPT8, and SPT20, that encode components of the SAGA complex. However, the mechanism by which SAGA activates transcription of specific RNA polymerase II-dependent genes is unknown. We have conducted a fine-structure mutagenesis of one widely used SAGA-dependent promoter, the delta element of his4-912delta, to identify sequence elements important for its promoter activity. Our analysis has characterized three delta regions necessary for full promoter activity and accurate start site selection: an upstream activating sequence, a TATA region, and an initiator region. In addition, we have shown that factors present at the adjacent UASHIS4 (Gcn4, Bas1, and Pho2) also activate the delta promoter in his4-912delta. Our results suggest a model in which the delta promoter in his4-912delta is primarily activated by two factors: Gcr1 acting at the UASdelta and Gcn4 acting at the UASHIS4. Finally, we tested whether activation by either of these factors is dependent on components of the SAGA complex. Our results demonstrate that Spt3 and Spt20 are required for full delta promoter activity, but that Gcn5, another member of SAGA, is not required. Spt3 appears to be partially required for activation of his4-912delta by both Gcr1 and Gcn4. Thus, our work suggests that SAGA exerts a large effect on delta promoter activity through a combination of smaller effects on multiple factors.
Collapse
Affiliation(s)
- A M Dudley
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
32
|
Compagnone-Post PA, Osley MA. Mutations in the SPT4, SPT5, and SPT6 genes alter transcription of a subset of histone genes in Saccharomyces cerevisiae. Genetics 1996; 143:1543-54. [PMID: 8844144 PMCID: PMC1207419 DOI: 10.1093/genetics/143.4.1543] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The SPT4, SPT5, and SPT6 gene products define a class of transcriptional repressors in Saccharomyces cerevisiae that are thought to function through their effects on chromatin assembly or stability. Mutations in these genes confer a similar range of phenotypes to mutations in HIR genes, which encode transcriptional repressors that regulate expression of many of the core histone genes. Here we show that mutations in the three SPT genes also affect transcription of the histone genes that reside at the HTA1-HTB1 locus. HTA1-lacZ transcription was reduced in each spt mutant background, an effect that required a negative site in the HTA1 promoter. The transcriptional effect could be reversed by the overproduction of histones H2A and H2B in an spt4 mutant and histones H3 and H4 in all three spt mutants. Suppression of the spt4 transcriptional defect was dependent on the overproduction of both histones H2A and H2B, and required the presence of N-terminal amino acids in both histones. The results are consistent with the idea that the effects of the spt mutations on nucleosome assembly and/or stability activate repressors of HTA1 transcription.
Collapse
Affiliation(s)
- P A Compagnone-Post
- Program in Molecular Biology, Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
33
|
Johnston LH, Johnson AL. Budding yeast mutants showing constitutive basal levels of expression of DNA synthesis genes. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:36-42. [PMID: 8341263 DOI: 10.1007/bf00276881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Two mutants have been isolated in Saccharomyces cerevisiae in which transcripts from at least CDC8, CDC9, CDC21 (TMP1) and POL1 genes are expressed constitutively in cells blocked at START by use of either alpha-pheromone or the cdc28 mutation. The transcripts from these genes also persist in mutant stationary phase cells; however, cell cycle regulation of these four DNA synthesis genes occurs normally in late G1. The mutation therefore does not appear to lie in the MCB-DSC1 (MBF) system that controls the periodic regulation of the genes, but must affect some control mechanism regulating basal levels of expression.
Collapse
Affiliation(s)
- L H Johnston
- Laboratory of Yeast Genetics, National Institute for Medical Research, Mill Hill, London, UK
| | | |
Collapse
|