1
|
Tian B, Graber JH. Signals for pre-mRNA cleavage and polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:385-96. [PMID: 22012871 DOI: 10.1002/wrna.116] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pre-mRNA cleavage and polyadenylation is an essential step for 3' end formation of almost all protein-coding transcripts in eukaryotes. The reaction, involving cleavage of nascent mRNA followed by addition of a polyadenylate or poly(A) tail, is controlled by cis-acting elements in the pre-mRNA surrounding the cleavage site. Experimental and bioinformatic studies in the past three decades have elucidated conserved and divergent elements across eukaryotes, from yeast to human. Here we review histories and current models of these elements in a broad range of species.
Collapse
Affiliation(s)
- Bin Tian
- UMDNJ-New Jersey Medical School, Newark, NJ, USA.
| | | |
Collapse
|
2
|
Shababi M, Bourque J, Palanichelvam K, Cole A, Xu D, Wan XF, Schoelz J. The ribosomal shunt translation strategy of cauliflower mosaic virus has evolved from ancient long terminal repeats. J Virol 2006; 80:3811-22. [PMID: 16571798 PMCID: PMC1440423 DOI: 10.1128/jvi.80.8.3811-3822.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 01/25/2006] [Indexed: 12/17/2022] Open
Abstract
We have screened portions of the large intergenic region of the Cauliflower mosaic virus (CaMV) genome for promoter activity in baker's yeast (Saccharomyces cerevisiae) and have identified an element that contributes to promoter activity in yeast but has negligible activity in plant cells when expressed in an agroinfiltration assay. A search of the yeast genome sequence revealed that the CaMV element had sequence similarity with the R region of the long terminal repeat (LTR) of the yeast Ty1 retrotransposon, with significant statistical confidence. In plants, the same CaMV sequence has been shown to have an essential role in the ribosomal shunt mechanism of translation, as it forms the base of the right arm of the stem-loop structure that is required for the ribosomal shunt. Since the left arm of the stem-loop structure must represent an imperfect reverse copy of the right arm, we propose that the ribosomal shunt has evolved from a pair of LTRs that have become incorporated end to end into the CaMV genome.
Collapse
Affiliation(s)
- Monir Shababi
- Division of Plant Sciences, 108 Waters Hall, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999; 63:405-45. [PMID: 10357856 PMCID: PMC98971 DOI: 10.1128/mmbr.63.2.405-445.1999] [Citation(s) in RCA: 819] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
4
|
Egli CM, Düvel K, Trabesinger-Rüf N, Irniger S, Braus GH. Sequence requirements of the bidirectional yeast TRP4 mRNA 3'-end formation signal. Nucleic Acids Res 1997; 25:417-22. [PMID: 9016573 PMCID: PMC146438 DOI: 10.1093/nar/25.2.417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The yeast TRP4 3'-end formation signal functions in both orientations in an in vivo test system. We show here that the TRP4 3'-end formation element consists of two functionally different sequence regions. One region of approximately 70 nucleotides is located in the untranslated region between the translational stop codon and the major poly(A) site. The major poly(A) site is not part of this region and can be deleted without a decrease in TRP4 3'-end formation. 5'and 3'deletions and point mutations within this region affected 3'-end formation similarly in both orientations. In the center of this region the motif TAGT is located on the antisense strand. Point mutations within this motif resulted in a drastic reduce of 3'-end formation activity in both orientations. A second region consists of the 3'-end of the TRP4 open reading frame and is required for 3'-end formation in forward orientation. A single point mutation in a TAGT motif of the TRP4 open reading frame abolished TRP4 mRNA 3'-end formation in forward orientation and had no effect on the reverse orientation.
Collapse
Affiliation(s)
- C M Egli
- Institute of Microbiology, Georg-August University, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
5
|
Chen S, Reger R, Miller C, Hyman LE. Transcriptional terminators of RNA polymerase II are associated with yeast replication origins. Nucleic Acids Res 1996; 24:2885-93. [PMID: 8760869 PMCID: PMC146059 DOI: 10.1093/nar/24.15.2885] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The compact organization of the Saccharomyces cerevisiae genome necessitates that non-coding regulatory sequences reside in close proximity to one another. Here we show there is an intimate association between transcription terminators and DNA replication origins. Four replication origins were analyzed in a reporter gene assay that detects sequences that direct 3' end formation of mRNA transcripts. All four replication origins function as orientation-independent transcription terminators in this system, producing truncated polyadenylated mRNAs. Despite this close association, the cis-acting elements that confer replication origin function are genetically separable from those required for transcription termination. Several models are explored in an attempt to address how and why the signals specifying transcription termination and replication initiation overlap.
Collapse
Affiliation(s)
- S Chen
- Department of Biochemistry, SL-43, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
6
|
Hennigan AN, Jacobson A. Functional mapping of the translation-dependent instability element of yeast MATalpha1 mRNA. Mol Cell Biol 1996; 16:3833-43. [PMID: 8668201 PMCID: PMC231380 DOI: 10.1128/mcb.16.7.3833] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The determinants of mRNA stability include specific cis-acting destabilizing sequences located within mRNA coding and noncoding regions. We have developed an approach for mapping coding-region instability sequences in unstable yeast mRNAs that exploits the link between mRNA translation and turnover and the dependence of nonsense-mediated mRNA decay on the activity of the UPF1 gene product. This approach, which involves the systematic insertion of in-frame translational termination codons into the coding sequence of a gene of interest in a upf1delta strain, differs significantly from conventional methods for mapping cis-acting elements in that it causes minimal perturbations to overall mRNA structure. Using the previously characterized MATalpha1 mRNA as a model, we have accurately localized its 65-nucleotide instability element (IE) within the protein coding region. Termination of translation 5' to this element stabilized the MATalpha1 mRNA two- to threefold relative to wild-type transcripts. Translation through the element was sufficient to restore an unstable decay phenotype, while internal termination resulted in different extents of mRNA stabilization dependent on the precise location of ribosome stalling. Detailed mutagenesis of the element's rare-codon/AU-rich sequence boundary revealed that the destabilizing activity of the MATalpha1 IE is observed when the terminal codon of the element's rare-codon interval is translated. This region of stability transition corresponds precisely to a MATalpha1 IE sequence previously shown to be complementary to 18S rRNA. Deletion of three nucleotides 3' to this sequence shifted the stability boundary one codon 5' to its wild-type location. Conversely, constructs containing an additional three nucleotides at this same location shifted the transition downstream by an equivalent sequence distance. Our results suggest a model in which the triggering of MATalpha1 mRNA destabilization results from establishment of an interaction between translating ribosomes and a downstream sequence element. Furthermore, our data provide direct molecular evidence for a relationship between mRNA turnover and mRNA translation.
Collapse
Affiliation(s)
- A N Hennigan
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, 01655-0122, USA
| | | |
Collapse
|
7
|
Stumpf G, Goppelt A, Domdey H. Pre-mRNA topology is important for 3'-end formation in Saccharomyces cerevisiae and mammals. Mol Cell Biol 1996; 16:2204-13. [PMID: 8628287 PMCID: PMC231208 DOI: 10.1128/mcb.16.5.2204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Various signal motifs that are required for efficient pre-mRNA 3'-end formation in the yeast Saccharomyces cerevisiae have been reported. None of these known signal sequences appears to be of the same general importance as is the mammalian AAUAAA motif. To establish the importance of yeast pre-mRNA termini in 3'-end formation, the ends of a pre-mRNA transcript synthesized in vitro were ligated before incubation in a yeast whole-cell extract. Such covalently closed circular RNAs were not cleaved at their poly(A) sites. Interestingly, pseudocircular RNAs with complementary 3'- and 5'-terminal sequences allowing the formation of panhandle structures were also resistant to cleavage. However, 3'-end processing was impeded neither by terminal hairpins at either or at both ends nor by RNA oligonucleotides complementary to either or both ends of a linear pre-mRNA. Intriguingly mammalian pseudocircular pre-mRNAs also were not cleaved at their poly(A) sites when incubated in a HeLa cell nuclear extract. These results provide evidence for the general importance of RNA topology in the formation of an active 3'-end processing complex in S. cerevisiae and higher eukaryotes. The possibility of a torus-shaped factor involved in 3'-end formation is discussed.
Collapse
Affiliation(s)
- G Stumpf
- Institut für Biochemie, Genzentrum der Ludwig-Maximilians-Universität, München, Germany
| | | | | |
Collapse
|
8
|
Abstract
It was previously shown that three distinct but interdependent elements are required for 3' end formation of mRNA in the yeast Saccharomyces cerevisiae: (i) the efficiency element TATATA and related sequences, which function by enhancing the efficiency of positioning elements; (ii) positioning elements, such as TTAAGAAC and AAGAA, which position the poly(A) site; and (iii) the actual site of polyadenylation. In this study, we have shown that several A-rich sequences, including the vertebrate poly(A) signal AATAAA, are also positioning elements. Saturated mutagenesis revealed that optimum sequences of the positioning element were AATAAA and AAAAAA and that this element can tolerate various extents of replacements. However, the GATAAA sequence was completely ineffective. The major cleavage sites determined in vitro corresponded to the major poly(A) sites observed in vivo. Our findings support the assumption that some components of the basic polyadenylation machinery could have been conserved among yeasts, plants, and mammals, although 3' end formation in yeasts is clearly distinct from that of higher eukaryotes.
Collapse
Affiliation(s)
- Z Guo
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | |
Collapse
|
9
|
Guo Z, Russo P, Yun DF, Butler JS, Sherman F. Redundant 3' end-forming signals for the yeast CYC1 mRNA. Proc Natl Acad Sci U S A 1995; 92:4211-4. [PMID: 7753784 PMCID: PMC41913 DOI: 10.1073/pnas.92.10.4211] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cyc1-512 mutation is a 38-bp deletion in the 3' untranslated region of the CYC1 gene, which encodes iso-1-cytochrome c in Saccharomyces cerevisiae. This deletion caused a 90% reduction in the levels of the CYC1 mRNA and protein because of the absence of the normal 3' end-forming signal. Although the 3' end-forming signal was not defined by previous analyses, we report that concomitant alteration by base-pair substitution of three 3' end-forming signals within and adjacent to the 38-bp region produced the same phenotype as the cyc1-512 mutation. Furthermore, these signals appear to be related to the previously identified 3' end-forming signal TATATA. A computer analysis revealed that TATATA and related sequences were present in the majority of 3' untranslated regions of yeast genes. Although TATATA may be the strongest and most frequently used signal in yeast genes, the CYC1+ gene concomitantly employed the weaker signals TT-TATA, TATGTT, and TATTTA, resulting in a strong signal.
Collapse
Affiliation(s)
- Z Guo
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | | | | | |
Collapse
|
10
|
Egli CM, Springer C, Braus GH. A complex unidirectional signal element mediates GCN4 mRNA 3' end formation in Saccharomyces cerevisiae. Mol Cell Biol 1995; 15:2466-73. [PMID: 7739531 PMCID: PMC230476 DOI: 10.1128/mcb.15.5.2466] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The yeast GCN4 3' element represents a class of polyadenylation sites which function unidirectionally and efficiently in test systems in vivo as well as in vitro. A complex signal element is required for polyadenylation activity with a minimal size of 116 nucleotides for the functional element. We subdivided this element into five regions (EL1 to EL5) of 16 to 26 nucleotides each. Each region was characterized by deletion analysis in an in vivo test system. Two TTTTTAT motifs are located in different regions (EL1 and EL4) upstream of the poly(A) site. The 3' end processing activity was significantly reduced when both motifs were mutated by site-directed mutagenesis and abolished when EL1 and EL4 were deleted. The major poly(A) site is located in EL5, 3 nucleotides downstream of the second TTTTTAT motif. Additional minor poly(A) sites are used in less than 10% of the mRNA 3' ends. Deletion of EL3 resulted in a changed pattern of mRNA 3' ends by increased usage of the minor poly(A) addition sites. The major poly(A) site in EL5 can be removed without loss of function when sequences upstream of EL1 are present. The tripartite TAG...TATGT...TTT sequence located downstream of EL5 is not required for function.
Collapse
Affiliation(s)
- C M Egli
- Institute of Microbiology, Biochemistry & Genetics, Friedrich Alexander University, Erlangen, Germany
| | | | | |
Collapse
|
11
|
Mulder W, Scholten IH, de Boer RW, Grivell LA. Sequence of the HAP3 transcription factor of Kluyveromyces lactis predicts the presence of a novel 4-cysteine zinc-finger motif. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:96-106. [PMID: 7845362 DOI: 10.1007/bf00279755] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Kluyveromyces lactis homologue of the Saccharomyces cerevisiae HAP3 gene was isolated by functional complementation of the respiratory-deficient phenotype of the S. cerevisiae hap3::HIS4 strain SHY40. The KlHAP3 gene encodes a protein of 205 amino acids, of which the central B-domain of 90 residues is highly homologous to HAP3 counterparts of S. cerevisiae and higher eukaryotes. The protein contains a novel 4-cysteine zinc-finger motif and we propose by analogy that all other homologous HAP3 proteins contain the same motif, with the position containing the third cysteine being occupied by a serine residue. In contrast to the situation in S. cerevisiae, disruption of the KlHAP3 gene in K. lactis does not result in a respiratory-deficient phenotype and the growth of the null strain is indistinguishable from wild type. There is also no effect on the expression of the carbon source-regulated KlCYC1 gene, suggesting either a different role for the HAP2/3/4 complex, or the existence of a different mechanism of carbon source regulation. Sequence verification of the S. cerevisiae HAP3 locus reveals that, just as in K. lactis, a long open reading frame (ORF) is present upstream of the HAP3 gene. These highly homologous ORFs are predicted to have at least eight membrane-spanning fragments, but do not show significant homology to any known sequence present in databases. The ScORFX gene is transcribed in the opposite direction to ScHAP3, but, in contrast to an earlier report by Hahn et al. (1988), the transcripts of the two genes do not overlap. The model proposed by these authors, in which the ScHAP3 gene is regulated by an anti-sense non-coding mRNA, is therefore not correct.
Collapse
Affiliation(s)
- W Mulder
- Section for Molecular Biology, Institute for Molecular Cell Biology, Biocentrum Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
12
|
Flexibility and interchangeability of polyadenylation signals in Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 7911972 DOI: 10.1128/mcb.14.7.4633] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various signal motifs have been reported to be essential for proper mRNA 3'-end formation in the yeast Saccharomyces cerevisiae. However, none of these motifs has been shown to be sufficient to direct 3'-end processing and/or transcription termination. Therefore, several structural motifs have to act in concert for efficient 3'-end formation. In the region upstream of the three polyadenylation sites of the yeast gene for alcohol dehydrogenase I (ADH1), we have identified a hitherto unknown signal sequence contained within the octamer AAAAAAAA. This motif, located 11 nucleotides upstream of the first ADH1 polyadenylation site, is responsible for the utilization of this site in vitro and in vivo, since mutational alteration drastically reduced 3'-end formation at this position. Insertion of 38 ADH1-derived nucleotides encompassing the (A)8 motif into the 3'-end formation-deficient cyc1-512 deletion mutant restored full processing capacity in vitro. Insertion of the octamer alone did not restore 3'-end formation, although mutation of the (A)8 motif in the functional construct had abolished 3'-end processing activity almost completely. This demonstrates that the sequence AAAAAAAA is a necessary, although not sufficient, signal for efficient mRNA 3'-end formation in S. cerevisiae.
Collapse
|
13
|
Heidmann S, Schindewolf C, Stumpf G, Domdey H. Flexibility and interchangeability of polyadenylation signals in Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:4633-42. [PMID: 7911972 PMCID: PMC358836 DOI: 10.1128/mcb.14.7.4633-4642.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Various signal motifs have been reported to be essential for proper mRNA 3'-end formation in the yeast Saccharomyces cerevisiae. However, none of these motifs has been shown to be sufficient to direct 3'-end processing and/or transcription termination. Therefore, several structural motifs have to act in concert for efficient 3'-end formation. In the region upstream of the three polyadenylation sites of the yeast gene for alcohol dehydrogenase I (ADH1), we have identified a hitherto unknown signal sequence contained within the octamer AAAAAAAA. This motif, located 11 nucleotides upstream of the first ADH1 polyadenylation site, is responsible for the utilization of this site in vitro and in vivo, since mutational alteration drastically reduced 3'-end formation at this position. Insertion of 38 ADH1-derived nucleotides encompassing the (A)8 motif into the 3'-end formation-deficient cyc1-512 deletion mutant restored full processing capacity in vitro. Insertion of the octamer alone did not restore 3'-end formation, although mutation of the (A)8 motif in the functional construct had abolished 3'-end processing activity almost completely. This demonstrates that the sequence AAAAAAAA is a necessary, although not sufficient, signal for efficient mRNA 3'-end formation in S. cerevisiae.
Collapse
Affiliation(s)
- S Heidmann
- Laboratorium für molekulare Biologie-Genzentrum der Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | | | | |
Collapse
|
14
|
Irniger S, Braus GH. Saturation mutagenesis of a polyadenylation signal reveals a hexanucleotide element essential for mRNA 3' end formation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1994; 91:257-61. [PMID: 8278376 PMCID: PMC42926 DOI: 10.1073/pnas.91.1.257] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cis-acting signal sequences required for mRNA 3' end formation are highly conserved and well characterized in higher eukaryotes. However, the situation in the yeast Saccharomyces cerevisiae is still unclear. Several sequences have been proposed which share only limited similarities. One difficulty in identifying yeast polyadenylylation signals might be the presence of redundant signal sequences in the 3' region of yeast genes. To circumvent this problem we have analyzed the heterologous 3' region from cauliflower mosaic virus which contains a yeast polyadenylylation signal. We have performed a saturation mutagenesis of the key element TAG-TATGTA, which is a condensed version of the polyadenylylation signal TAG ... TATGTA ... (TTT) which had previously been proposed. Each of the nine nucleotides was replaced by the three other possible nucleotides and all resulting 1-bp mutants were tested for their capacity to specify mRNA 3' end formation in yeast cells. The first three nucleotides of this condensed sequence are not required, but mutagenesis of the other six nucleotides had distinct effects on mRNA 3' end formation. All mutants that were significantly functional had the sequence TAYRTA, and the sequence TATATA had the best capacity for mRNA 3' end formation. The two thymidine residues at the first and fifth positions are the most essential nucleotides in this sequence. Our results suggest that a degenerate hexanucleotide is essential for mRNA 3' end formation in yeast. This is reminiscent of the conserved polyadenylylation signal in higher eukaryotes, AATAAA.
Collapse
Affiliation(s)
- S Irniger
- Institute of Microbiology, Swiss Federal Institute of Technology, Zürich
| | | |
Collapse
|
15
|
Abstract
The cyc1-512 mutant was previously shown to contain a 38-bp deletion, 8 nucleotides upstream from the major wild-type poly(A) site, in the CYC1 gene, which encodes iso-1-cytochrome c of the yeast Saccharomyces cerevisiae. This 38-bp deletion caused a 90% reduction in the CYC1 transcripts, which were heterogeneous in size, aberrantly long, and presumably labile (K. S. Zaret and F. Sherman, Cell 28:563-573, 1982). Site-directed mutagenesis in and adjacent to the 38-bp region was used to identify signals involved in the formation and positioning of CYC1 mRNA 3' ends. In addition, combinations of various putative 3' end-forming signals were introduced by in vitro mutagenesis into the 3' region of the cyc1-512 mutant. The combined results from both studies suggest that 3' end formation in yeast cells involves signals having the following three distinct but integrated elements acting in concert: (i) the upstream element, including sequences TATATA, TAG ... TATGTA, and TTTTTATA, which function by enhancing the efficiency of downstream elements; (ii) downstream elements, such as TTAAGAAC and AAGAA, which position the poly(A) site; and (iii) the actual site of polyadenylation, which often occurs after cytidine residues that are 3' to the so-called downstream element. While the upstream element is required for efficient 3' end formation, alterations of the downstream element and poly(A) sites generally do not affect the efficiency of 3' end formation but appear to alter the positions of poly(A) sites. In addition, we have better defined the upstream elements by examining various derivatives of TATATA and TAG ... TATGTA, and we have examined the spatial requirements of the three elements by systematically introducing or deleting upstream and downstream elements and cytidine poly(A) sites.
Collapse
|
16
|
Russo P, Li WZ, Guo Z, Sherman F. Signals that produce 3' termini in CYC1 mRNA of the yeast Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:7836-49. [PMID: 8246998 PMCID: PMC364855 DOI: 10.1128/mcb.13.12.7836-7849.1993] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cyc1-512 mutant was previously shown to contain a 38-bp deletion, 8 nucleotides upstream from the major wild-type poly(A) site, in the CYC1 gene, which encodes iso-1-cytochrome c of the yeast Saccharomyces cerevisiae. This 38-bp deletion caused a 90% reduction in the CYC1 transcripts, which were heterogeneous in size, aberrantly long, and presumably labile (K. S. Zaret and F. Sherman, Cell 28:563-573, 1982). Site-directed mutagenesis in and adjacent to the 38-bp region was used to identify signals involved in the formation and positioning of CYC1 mRNA 3' ends. In addition, combinations of various putative 3' end-forming signals were introduced by in vitro mutagenesis into the 3' region of the cyc1-512 mutant. The combined results from both studies suggest that 3' end formation in yeast cells involves signals having the following three distinct but integrated elements acting in concert: (i) the upstream element, including sequences TATATA, TAG ... TATGTA, and TTTTTATA, which function by enhancing the efficiency of downstream elements; (ii) downstream elements, such as TTAAGAAC and AAGAA, which position the poly(A) site; and (iii) the actual site of polyadenylation, which often occurs after cytidine residues that are 3' to the so-called downstream element. While the upstream element is required for efficient 3' end formation, alterations of the downstream element and poly(A) sites generally do not affect the efficiency of 3' end formation but appear to alter the positions of poly(A) sites. In addition, we have better defined the upstream elements by examining various derivatives of TATATA and TAG ... TATGTA, and we have examined the spatial requirements of the three elements by systematically introducing or deleting upstream and downstream elements and cytidine poly(A) sites.
Collapse
Affiliation(s)
- P Russo
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, New York 14642
| | | | | | | |
Collapse
|
17
|
Irniger S, Egli CM, Braus GH. Messenger RNA 3'-end formation of a DNA fragment from the human c-myc 3'-end region in Saccharomyces cerevisiae. Curr Genet 1993; 23:201-4. [PMID: 7916669 DOI: 10.1007/bf00351496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have tested the functioning of the human c-myc polyadenylation signal in Saccharomyces cerevisiae. A DNA fragment containing the two AATAAA polyadenylation signals of the c-myc gene was inserted into a plasmid designed for the in-vivo testing of polyadenylation signals in yeast. The c-myc fragment had a partial capacity for directing mRNA 3'-end formation in yeast. The 3'-endpoints were 50-100 bp distant from the mRNA 3'-ends mapped in humans. This human DNA fragment is therefore unspecifically functional in yeast, indicating that other sequence elements than the human polyadenylation signal, AATAAA, are necessary for 3'-end formation.
Collapse
Affiliation(s)
- S Irniger
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH), Zürich
| | | | | |
Collapse
|
18
|
Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses. Mol Cell Biol 1992. [PMID: 1333042 DOI: 10.1128/mcb.12.12.5386] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polyadenylation signal for the late mRNAs of simian virus 40 is known to have sequence elements located both upstream and downstream of the AAUAAA which affect efficiency of utilization of the signal. The upstream efficiency element has been previously characterized by using deletion mutations and transfection analyses. Those studies suggested that the upstream element lies between 13 and 48 nucleotides upstream of the AAUAAA. We have utilized in vitro cleavage and polyadenylation reactions to further define the upstream element. 32P-labeled substrate RNAs were prepared by in vitro transcription from wild-type templates as well as from mutant templates having deletions and linker substitutions in the upstream region. Analysis of these substrates defined the upstream region as sequences between 13 and 51 nucleotides upstream of the AAUAAA, in good agreement with the in vivo results. Within this region, three core elements with the consensus sequence AUUUGURA were identified and were specifically mutated by linker substitution. These core elements were found to contain the active components of the upstream efficiency element. Using substrates with both single and double linker substitution mutations of core elements, we observed that the core elements function in a distance-dependent manner. In mutants containing only one core element, the effect on efficiency increases as the distance between the element and the AAUAAA decreases. In addition, when core elements are present in multiple copies, the effect is additive. The core element consensus sequence, which bears homology to the Sm protein complex-binding site in human U1 RNA, is also found within the upstream elements of the ground squirrel hepatitis B and cauliflower mosaic virus polyadenylation signals (R. Russnak, Nucleic Acids Res. 19:6449-6456, 1991; H. Sanfacon, P. Brodmann, and T. Hohn, Genes Dev. 5:141-149, 1991), suggesting functional conservation of this element between mammals and plants.
Collapse
|
19
|
Schek N, Cooke C, Alwine JC. Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses. Mol Cell Biol 1992; 12:5386-93. [PMID: 1333042 PMCID: PMC360476 DOI: 10.1128/mcb.12.12.5386-5393.1992] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The polyadenylation signal for the late mRNAs of simian virus 40 is known to have sequence elements located both upstream and downstream of the AAUAAA which affect efficiency of utilization of the signal. The upstream efficiency element has been previously characterized by using deletion mutations and transfection analyses. Those studies suggested that the upstream element lies between 13 and 48 nucleotides upstream of the AAUAAA. We have utilized in vitro cleavage and polyadenylation reactions to further define the upstream element. 32P-labeled substrate RNAs were prepared by in vitro transcription from wild-type templates as well as from mutant templates having deletions and linker substitutions in the upstream region. Analysis of these substrates defined the upstream region as sequences between 13 and 51 nucleotides upstream of the AAUAAA, in good agreement with the in vivo results. Within this region, three core elements with the consensus sequence AUUUGURA were identified and were specifically mutated by linker substitution. These core elements were found to contain the active components of the upstream efficiency element. Using substrates with both single and double linker substitution mutations of core elements, we observed that the core elements function in a distance-dependent manner. In mutants containing only one core element, the effect on efficiency increases as the distance between the element and the AAUAAA decreases. In addition, when core elements are present in multiple copies, the effect is additive. The core element consensus sequence, which bears homology to the Sm protein complex-binding site in human U1 RNA, is also found within the upstream elements of the ground squirrel hepatitis B and cauliflower mosaic virus polyadenylation signals (R. Russnak, Nucleic Acids Res. 19:6449-6456, 1991; H. Sanfacon, P. Brodmann, and T. Hohn, Genes Dev. 5:141-149, 1991), suggesting functional conservation of this element between mammals and plants.
Collapse
Affiliation(s)
- N Schek
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia 19104-6142
| | | | | |
Collapse
|
20
|
Unusual aspects of in vitro RNA processing in the 3' regions of the GAL1, GAL7, and GAL10 genes in Saccharomyces cerevisiae. Mol Cell Biol 1992. [PMID: 1406619 DOI: 10.1128/mcb.12.10.4262] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A striking feature of the 3'-end regions in polymerase II transcripts of Saccharomyces cerevisiae adjacent to their processing and polyadenylation sites is the lack of well-defined signal elements. Nonetheless, essential signals have seemed to be confined to compact regions in vivo, and we find that a short RNA with only 70 bases of GAL7 sequence upstream and 8 to 10 bases downstream of the poly(A) addition site is processed in vitro, as is an analogous CYC1 pre-RNA. Specific polyadenylation of a precleaved species further delimits the poly(A) signal and rules out obligatory coupling between cleavage and poly(A) addition. Although little proximal and even less distal sequence is required for accurate cleavage with CYC1 and GAL7, we have been unable to identify common features to which processing could be ascribed. We therefore turned to the coregulated set of genes in the galactose cluster (GAL1, GAL7, and GAL10) to assay their corresponding pre-mRNAs in vitro, in hopes of finding a common theme. By contrast to GAL7, short pre-mRNAs corresponding to GAL1 and GAL10 fail to be cleaved detectably, and only much longer transcripts are susceptible to processing. This indicates that signals, even if preserved, are more widely dispersed than the poly(A) addition site, and these results are unchanged whether extracts are from cells grown on glucose or galactose. As a further surprise, RNAs corresponding to the antisense orientation of the 3'-end regions of all three GAL genes are also effective substrates for the processing machinery in vitro. Computer analysis reveals the presence of polydisperse dyad symmetries that might account for these observations.
Collapse
|
21
|
Sadhale PP, Platt T. Unusual aspects of in vitro RNA processing in the 3' regions of the GAL1, GAL7, and GAL10 genes in Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:4262-70. [PMID: 1406619 PMCID: PMC360349 DOI: 10.1128/mcb.12.10.4262-4270.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A striking feature of the 3'-end regions in polymerase II transcripts of Saccharomyces cerevisiae adjacent to their processing and polyadenylation sites is the lack of well-defined signal elements. Nonetheless, essential signals have seemed to be confined to compact regions in vivo, and we find that a short RNA with only 70 bases of GAL7 sequence upstream and 8 to 10 bases downstream of the poly(A) addition site is processed in vitro, as is an analogous CYC1 pre-RNA. Specific polyadenylation of a precleaved species further delimits the poly(A) signal and rules out obligatory coupling between cleavage and poly(A) addition. Although little proximal and even less distal sequence is required for accurate cleavage with CYC1 and GAL7, we have been unable to identify common features to which processing could be ascribed. We therefore turned to the coregulated set of genes in the galactose cluster (GAL1, GAL7, and GAL10) to assay their corresponding pre-mRNAs in vitro, in hopes of finding a common theme. By contrast to GAL7, short pre-mRNAs corresponding to GAL1 and GAL10 fail to be cleaved detectably, and only much longer transcripts are susceptible to processing. This indicates that signals, even if preserved, are more widely dispersed than the poly(A) addition site, and these results are unchanged whether extracts are from cells grown on glucose or galactose. As a further surprise, RNAs corresponding to the antisense orientation of the 3'-end regions of all three GAL genes are also effective substrates for the processing machinery in vitro. Computer analysis reveals the presence of polydisperse dyad symmetries that might account for these observations.
Collapse
Affiliation(s)
- P P Sadhale
- Department of Biochemistry, University of Rochester Medical Center, University of Rochester, New York 14642
| | | |
Collapse
|