1
|
Zhang Y, Huang X, Zou J, Liao X, Liu Y, Lian T, Nian H. Major contribution of transcription initiation to 5'-end formation of mitochondrial steady-state transcripts in maize. RNA Biol 2018; 16:104-117. [PMID: 30585757 DOI: 10.1080/15476286.2018.1561604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In plant mitochondria, some steady-state transcripts contain primary 5' ends derived from transcription initiation, while the others have processed 5' termini generated by post-transcriptional processing. Differentiation and mapping of the primary and processed transcripts are important for unraveling the molecular mechanism(s) underlying transcription and transcript end maturation. However, previous efforts to systematically differentiate these two types of transcripts in plant mitochondria failed. At present, it is considered that the majority of mature mRNAs may have processed 5' ends in Arabidopsis. Here, by combination of circular RT-PCR, quantitative RT-PCR, RNA 5'-polyphosphatase treatment and Northern blot, we successfully discriminated and mapped the primary and processed transcripts in maize mitochondria. Among the thirty-five mature and eight precursor RNAs analyzed in this study, about one half (21/43) were found to have multiple isoforms. In total, seventy-seven steady-state transcripts were determined, and forty-seven of them had primary 5' ends. Most transcription initiation sites (126/167) were downstream of a crTA-motif. These data suggested a major contribution of transcription initiation to 5'-end formation of steady-state transcripts in maize mitochondria. Moreover, the mapping results revealed that mature RNA termini had largely been formed before trans-splicing, and C→U RNA editing was accompanied with trans-splicing and transcript end formation in maize mitochondria.
Collapse
Affiliation(s)
- Yafeng Zhang
- a State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture , South China Agricultural University , Guangzhou , China
| | - Xiaoyu Huang
- b Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture , South China Agricultural University , Guangzhou , China
| | - Jingyun Zou
- b Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture , South China Agricultural University , Guangzhou , China
| | - Xun Liao
- b Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture , South China Agricultural University , Guangzhou , China
| | - Yujun Liu
- c Institute of Crop Science, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou , China
| | - Tengxiang Lian
- a State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture , South China Agricultural University , Guangzhou , China.,d Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture , South China Agricultural University , Guangzhou , China
| | - Hai Nian
- a State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources , South China Agricultural University , Guangzhou , China.,b Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture , South China Agricultural University , Guangzhou , China.,d Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture , South China Agricultural University , Guangzhou , China
| |
Collapse
|
2
|
Bohne AV, Teubner M, Liere K, Weihe A, Börner T. In vitro promoter recognition by the catalytic subunit of plant phage-type RNA polymerases. PLANT MOLECULAR BIOLOGY 2016; 92:357-369. [PMID: 27497992 PMCID: PMC5040748 DOI: 10.1007/s11103-016-0518-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
We identified sequence motifs, which enhance or reduce the ability of the Arabidopsis phage-type RNA polymerases RPOTm (mitochondrial RNAP), RPOTp (plastidial RNAP), and RPOTmp (active in both organelles) to recognize their promoters in vitro with help of a 'specificity loop'. The importance of this data for the evolution and function of the organellar RNA polymerases is discussed. The single-subunit RNA polymerase (RNAP) of bacteriophage T7 is able to perform all steps of transcription without additional transcription factors. Dicotyledonous plants possess three phage-type RNAPs, RPOTm-the mitochondrial RNAP, RPOTp-the plastidial RNAP, and RPOTmp-an RNAP active in both organelles. RPOTm and RPOTp, like the T7 polymerase, are able to recognize promoters, while RPOTmp displays no significant promoter specificity in vitro. To find out which promoter motifs are crucial for recognition by the polymerases we performed in vitro transcription assays with recombinant Arabidopsis RPOTm and RPOTp enzymes. By comparing different truncated and mutagenized promoter constructs, we observed the same minimal promoter sequence supposed to be needed in vivo for transcription initiation. Moreover, we identified elements of core and flanking sequences, which are of critical importance for promoter recognition and activity in vitro. We further intended to reveal why RPOTmp does not efficiently recognize promoters in vitro and if promoter recognition is based on a structurally defined specificity loop of the plant enzymes as described for the yeast and T7 RNAPs. Interestingly, the exchange of only three amino acids within the putative specificity loop of RPOTmp enabled the enzyme for specific promoter transcription in vitro. Thus, also in plant phage-type RNAPs the specificity loop is engaged in promoter recognition. The results are discussed with respect to their relevance for transcription in organello and to the evolution of RPOT enzymes including the divergence of their functions.
Collapse
Affiliation(s)
- Alexandra-Viola Bohne
- Institute of Biology, Humboldt University, Philippstr.13, Rhoda Erdmann Haus, 10115, Berlin, Germany
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Marlene Teubner
- Institute of Biology, Humboldt University, Philippstr.13, Rhoda Erdmann Haus, 10115, Berlin, Germany
| | - Karsten Liere
- Institute of Biology, Humboldt University, Philippstr.13, Rhoda Erdmann Haus, 10115, Berlin, Germany
- SMB Services in Molecular Biology GmbH, Rudolf-Breitscheidstr. 70, 15562, Rüdersdorf, Germany
| | - Andreas Weihe
- Institute of Biology, Humboldt University, Philippstr.13, Rhoda Erdmann Haus, 10115, Berlin, Germany
| | - Thomas Börner
- Institute of Biology, Humboldt University, Philippstr.13, Rhoda Erdmann Haus, 10115, Berlin, Germany.
| |
Collapse
|
3
|
Abstract
RNA synthesis and different posttranscriptional processes shape the transcriptome of plant mitochondria. It is believed that mitochondrial transcription in plants is not stringently controlled, and that RNA degradation has a major impact on mitochondrial steady-state transcript levels. Nevertheless, the presence of two RNA polymerases with different gene specificities in mitochondria of dicotyledonous species indicates that transcriptional mechanisms may provide a means to control mitochondrial steady-state RNA pools and gene expression. To experimentally assess transcriptional activities in mitochondria, run-on transcription assays have been developed. These assays measure elongation rates for endogenous transcripts in freshly prepared mitochondrial extracts. The mitochondrial run-on transcription protocol described here has been optimized for the model plant Arabidopsis (Arabidopsis thaliana). It uses mitochondria prepared from soil-grown Arabidopsis plants and employs nonradioactive labeling for the subsequent detection of run-on transcripts.
Collapse
|
4
|
Liere K, Weihe A, Börner T. The transcription machineries of plant mitochondria and chloroplasts: Composition, function, and regulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1345-60. [PMID: 21316793 DOI: 10.1016/j.jplph.2011.01.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 05/04/2023]
Abstract
Although genomes of mitochondria and plastids are very small compared to those of their bacterial ancestors, the transcription machineries of these organelles are of surprising complexity. With respect to the number of different RNA polymerases per organelle, the extremes are represented on one hand by chloroplasts of eudicots which use one bacterial-type RNA polymerase and two phage-type RNA polymerases to transcribe their genes, and on the other hand by Physcomitrella possessing three mitochondrial RNA polymerases of the phage type. Transcription of genes/operons is often driven by multiple promoters in both organelles. This review describes the principle components of the transcription machineries (RNA polymerases, transcription factors, promoters) and the division of labor between the different RNA polymerases. While regulation of transcription in mitochondria seems to be only of limited importance, the plastid genes of higher plants respond to exogenous and endogenous cues rather individually by altering their transcriptional activities.
Collapse
Affiliation(s)
- Karsten Liere
- Institut für Biologie/Genetik, Humboldt-Universität zu Berlin, Chausseestrasse 117, Berlin, Germany
| | | | | |
Collapse
|
5
|
Le P, Fisher PR, Barth C. Transcription of the Dictyostelium discoideum mitochondrial genome occurs from a single initiation site. RNA (NEW YORK, N.Y.) 2009; 15:2321-2330. [PMID: 19861424 PMCID: PMC2779680 DOI: 10.1261/rna.1710309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 09/18/2009] [Indexed: 05/28/2023]
Abstract
Transcription of the mitochondrial genome in Dictyostelium discoideum gives rise to eight major polycistronic RNA species that can be detected by Northern hybridization. In order to determine whether these transcripts could possibly derive from processing of even larger transcripts, reverse transcriptase polymerase chain reactions (RT-PCRs) were performed in an attempt to amplify the intervening regions between the eight major transcripts. All but one intervening region were successfully reverse transcribed and amplified, indicating that even larger transcripts existed and that the eight major transcripts detected previously may be the products of transcript processing. Southern hybridization analyses of DNA fragments representing the sequences between the eight major transcripts with in vitro capped mitochondrial RNA identified the 5' end of only one of the eight major transcripts as a genuine transcription start site. The ability to initiate transcription from DNA sequences upstream of the identified transcription initiation site was demonstrated in bacterial cells expressing the Dictyostelium mitochondrial RNA polymerase. We conclude that transcription of the Dictyostelium mitochondrial genome is initiated at a single site, generating a large polycistronic transcript that is very efficiently, probably cotranscriptionally processed into mature RNA species. This is the first report on a protist mitochondrial DNA that is, although much larger in size than its metazoan counterparts, transcribed from a single transcription initiation site.
Collapse
Affiliation(s)
- Phuong Le
- Department of Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | | |
Collapse
|
6
|
Kühn K, Richter U, Meyer EH, Delannoy E, de Longevialle AF, O'Toole N, Börner T, Millar AH, Small ID, Whelan J. Phage-type RNA polymerase RPOTmp performs gene-specific transcription in mitochondria of Arabidopsis thaliana. THE PLANT CELL 2009; 21:2762-79. [PMID: 19783760 PMCID: PMC2768943 DOI: 10.1105/tpc.109.068536] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/23/2009] [Accepted: 09/01/2009] [Indexed: 05/18/2023]
Abstract
Transcription of mitochondrial genes in animals, fungi, and plants relies on the activity of T3/T7 phage-type RNA polymerases. Two such enzymes, RPOTm and RPOTmp, are present in the mitochondria of eudicotyledonous plants; RPOTmp is additionally found in plastids. We have characterized the transcriptional role of the dual-targeted RNA polymerase in mitochondria of Arabidopsis thaliana. Examination of mitochondrial transcripts in rpoTmp mutants revealed major differences in transcript abundances between wild-type and rpoTmp plants. Decreased levels of specific transcripts were correlated with reduced abundances of the respiratory chain complexes I and IV. Altered transcript levels in rpoTmp were found to result from gene-specific transcriptional changes, establishing that RPOTmp functions in distinct transcriptional processes within mitochondria. Decreased transcription of specific genes in rpoTmp was not associated with changes in promoter utilization; therefore, RPOTmp function is not promoter specific but gene specific. This implies that additional gene-specific elements direct the transcription of a subset of mitochondrial genes by RPOTmp.
Collapse
Affiliation(s)
- Kristina Kühn
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Farré JC, Choury D, Araya A. In organello gene expression and RNA editing studies by electroporation-mediated transformation of isolated plant mitochondria. Methods Enzymol 2007; 424:483-500. [PMID: 17662855 DOI: 10.1016/s0076-6879(07)24022-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Plant mitochondrial gene expression is a complex process involving multiple steps such as transcription, cis- and trans-splicing, RNA trimming, RNA editing, and translation. One of the main hurdles in understanding more about these processes has been the inability to incorporate engineered genes into mitochondria. We recently reported an in organello approach on the basis of the introduction of foreign DNA into isolated plant mitochondria by electroporation. This procedure allows the investigation of transcriptional and posttranscriptional processes, such as splicing and RNA editing, by use of site-directed mutagenesis. Foreign gene expression in organello is strongly dependent on the functional status of mitochondria, thus providing relevant information in conditions closer to the situation found in vivo. The study of mutants that affect RNA splicing and editing provides a novel and powerful method to explain the role of specific sequences involved in these processes. Here we describe a protocol to "transform" isolated plant mitochondria that has allowed us to investigate successfully some aspects of RNA editing.
Collapse
Affiliation(s)
- Jean-Claude Farré
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | | | | |
Collapse
|
8
|
Kühn K, Bohne AV, Liere K, Weihe A, Börner T. Arabidopsis phage-type RNA polymerases: accurate in vitro transcription of organellar genes. THE PLANT CELL 2007; 19:959-71. [PMID: 17400896 PMCID: PMC1867361 DOI: 10.1105/tpc.106.046839] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The T7 bacteriophage RNA polymerase (RNAP) performs all steps of transcription, including promoter recognition, initiation, and elongation as a single-polypeptide enzyme. Arabidopsis thaliana possesses three nuclear-encoded T7 phage-type RNAPs that localize to mitochondria (RpoTm), plastids (RpoTp), or presumably both organelles (RpoTmp). Their specific functions are as yet unresolved. We have established an in vitro transcription system to examine the abilities of the three Arabidopsis phage-type RNAPs to synthesize RNA and to recognize organellar promoters. All three RpoT genes were shown to encode transcriptionally active RNAPs. RpoTmp displayed no significant promoter specificity, whereas RpoTm and RpoTp were able to accurately initiate transcription from overlapping subsets of mitochondrial and plastidial promoters without the aid of protein cofactors. Our study strongly suggests RpoTm to be the enzyme that transcribes most, if not all, mitochondrial genes in Arabidopsis. Intrinsic promoter specificity, a feature that RpoTm and RpoTp share with the T7 RNAP, appears to have been conserved over the long period of evolution of nuclear-encoded mitochondrial and plastidial RNAPs. Selective promoter recognition by the Arabidopsis phage-type RNAPs in vitro implies that auxiliary factors are required for efficient initiation of transcription in vivo.
Collapse
Affiliation(s)
- Kristina Kühn
- Institute of Biology (Genetics), Humboldt University, D-10115, Berlin, Germany
| | | | | | | | | |
Collapse
|
9
|
Placido A, Damiano F, Sciancalepore M, De Benedetto C, Rainaldi G, Gallerani R. Comparison of promoters controlling on the sunflower mitochondrial genome the transcription of two copies of the same native trnK gene reveals some differences in their structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1207-16. [PMID: 16820139 DOI: 10.1016/j.bbabio.2006.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/18/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
Two copies of native trnK (UUU) gene are encoded on the sunflower mitochondrial DNA. They lie within two 12-kb direct repeats, presumably generated by a duplication event. During an investigation aimed at detecting DNA regions activating the trnK1 and trnK2 genes, three distinct promoters have been identified. Their locations were deduced using standard procedures (RT-PCR, RNA capping and 5'RACE) usually employed for the detection of transcription initiation sites (TISs). Promoters P3 and P2 control two independent partially overlapping transcription units containing the trnK2 and ccb206 genes, respectively. Promoter P1 has been mapped about 5200 bp upstream of the trnK1 gene which is part of a transcription unit also containing exons c, d and e of the nad2 gene, 5' to the tRNA gene. Most probably this promoter is not alone in controlling this transcription unit because this DNA region could be cotranscribed, at least partially, starting from other two promoters located upstream of the trnC and trnN genes, respectively. These genes have been previously mapped in a 5' region adjacent to the cluster containing nad2 exons c, d and e and the trnK1 gene. The comparative analysis of promoters P3 and P1 suggests that the difference between them could be related to the duplication event generating the second copy of trnK gene. The availability of a high number of new promoters belonging to dicot mitochondrial genomes makes possible to note some of their specific features.
Collapse
Affiliation(s)
- Antonio Placido
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari, via Orabona 4, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Placido A, Damiano F, Losacco M, Rainaldi G, De Benedetto C, Gallerani R. Variable structures of promoters regulating transcription of cp-like tRNA genes and of some native genes on the sunflower mitochondrial genome. Gene 2006; 371:93-101. [PMID: 16520008 DOI: 10.1016/j.gene.2005.11.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 11/02/2005] [Accepted: 11/17/2005] [Indexed: 11/16/2022]
Abstract
Promoter regions regulating the transcription of all cp-like tRNA genes encoded by the sunflower chondriome have been identified. Some of these genes are part of clusters where the first gene is a typical mitochondrial isoform. Promoters regulating the transcription of single cp-like tRNA genes have a variable structure whereas those regulating the transcription of native genes or clusters with typical mitochondrial genes in the first position conform to a similar common structure. The variability of promoter regions described in this paper could be the result of modifications of regions having, at the moment of the cpDNA insertion event, only minimal structural features as promoters.
Collapse
Affiliation(s)
- Antonio Placido
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari, via Orabona 4, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Staudinger M, Bolle N, Kempken F. Mitochondrial electroporation and in organello RNA editing of chimeric atp6 transcripts. Mol Genet Genomics 2005; 273:130-6. [PMID: 15729585 DOI: 10.1007/s00438-005-1117-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 01/14/2005] [Indexed: 11/25/2022]
Abstract
The Sorghum bicolor atp6-1 gene and chimeric atp6 genes with additional maize sequences were introduced into isolated maize mitochondria via electroporation. Transcripts isolated after in vitro incubation of the transformed organelles were then analysed for RNA editing. Transcripts of the S. bicolor atp6-1 gene, and the RNAs obtained from most of chimeric sorghum-maize atp6 gene constructs tested, were not edited. However, the transcript of one engineered chimeric gene comprising the 5'untranslated sequence and a segment of the N-terminal ORF of the maize atp6 combined with the sorghum atp6 core ORF and 3'untranslated sequence was found to be partially edited. We were able to exclude low RNA stability or insufficient editing capacity as the reason for failure to edit in the other instances. Instead, the data indicate that the maize sequence in the edited fusion transcript provides a structural motif or binding site for a transcript-specific editing factor.
Collapse
Affiliation(s)
- Matthias Staudinger
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, 24098, Kiel, Germany
| | | | | |
Collapse
|
12
|
Hoffmann M, Binder S. Functional importance of nucleotide identities within the pea atp9 mitochondrial promoter sequence. J Mol Biol 2002; 320:943-50. [PMID: 12126616 DOI: 10.1016/s0022-2836(02)00552-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sequences ranging from nucleotide positions -14 to +4 relative to the transcription start site constitute an in vitro functional pea atp9 promoter. A comparison of respective sequence segments surrounding 11 unambiguously identified transcription initiation sites of various dicotyledoneous plant species revealed the highest level of evolutionary fidelity of nucleotide identities within the conserved nonanucleotide motif (CNM), suggesting their importance for promoter function. Using a mitochondrial in vitro transcription system, a detailed analysis by site-directed mutagenesis now reveals that the alteration of nucleotides -6 to -2 and +1 within the CNM indeed reduces promoter activity by more than 80%. Changes of nucleotide identities at the less conserved positions -12 to -9 within the AT-rich region reduced the initiation efficiency by about 70%. The alteration of the highly conserved position -7 has little influence on promoter function, indicating that evolutionary conservation does not always correlate with the functional importance of certain nucleotides. Mutagenesis of nucleotides at positions +3 or +4 reveals a minimal requirement of at least one purine for wild-type transcription initiation efficiency. The assignment of functionally important nucleotide identities should now facilitate an efficient and reliable prediction of other promoters in mitochondria of dicotyledon plants.
Collapse
Affiliation(s)
- Michaela Hoffmann
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | | |
Collapse
|
13
|
Damiano F, Ceci LR, Siculella L, Gallerani R. Transcription of two sunflower (Helianthus annuus L.) mitochondrial tRNA genes having different genetic origins. Gene 2002; 286:25-32. [PMID: 11943457 DOI: 10.1016/s0378-1119(01)00801-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The divergent transcription of two tRNA genes encoded in sunflower mitochondrial DNA, proposed as genes of different genetic origin, has been studied in detail. The transcription initiation site (TIS) for both transcript precursors has been identified by hybridization with in vitro (32)P-capped total RNAs and primer extension. The location of two TISs and the analysis of distribution of sequence elements (motifs) usually present in higher plant mitochondrial promoters led to the identification of two short regions (about 30-40 bp) which can be proposed as the promoters for the transcription of two genes. This conclusion is supported by the observation that within the short intergenic region included between the 5' termini of two genes (1924 bp) the distribution of those specific motifs is unique around the TISs, although not identical for the two promoters. Based on specific experimental results the trnE promoter shows a higher efficiency in comparison with that of the trnH promoter. This result is in good agreement with its structure which strictly conforms to those described for mitochondrial genes of dicot plants. Instead the other promoter shows some divergences which could be responsible for its lower efficiency. The context in which trnH lies in the sunflower mitochondrial genome and other features described in the paper may suggest that, despite the high similarity with the chloroplast counterpart, the trnH gene could have a native origin.
Collapse
Affiliation(s)
- Fabrizio Damiano
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari, via Orabona 4, 70126 Bari, Italy
| | | | | | | |
Collapse
|
14
|
Hoffmann M, Kuhn J, Däschner K, Binder S. The RNA world of plant mitochondria. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:119-54. [PMID: 11642360 DOI: 10.1016/s0079-6603(01)70015-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Mitochondria are well known as the cellular power factory. Much less is known about these organelles as a genetic system. This is particularly true for mitochondria of plants, which subsist with respect to attention by the scientific community in the shadow of the chloroplasts. Nevertheless the mitochondrial genetic system is essential for the function of mitochondria and thus for the survival of the plant. In plant mitochondria the pathway from the genetic information encoded in the DNA to the functional protein leads through a very diverse RNA world. How the RNA is generated and what kinds of regulation and control mechanisms are operative in transcription are current topics in research. Furthermore, the modes of posttranscriptional alterations and their consequences for RNA stability and thus for gene expression in plant mitochondria are currently objects of intensive investigations. In this article current results obtained in the examination of plant mitochondrial transcription, RNA processing, and RNA stability are illustrated. Recent developments in the characterization of promoter structure and the respective transcription apparatus as well as new aspects of RNA processing steps including mRNA 3' processing and stability, mRNA polyadenylation, RNA editing, and tRNA maturation are presented. We also consider new suggestions concerning the endosymbiont hypothesis and evolution of mitochondria. These novel considerations may yield important clues for the further analysis of the plant mitochondrial genetic system. Conversely, an increasing knowledge about the mechanisms and components of the organellar genetic system might reveal new aspects of the evolutionary history of mitochondria.
Collapse
Affiliation(s)
- M Hoffmann
- Molekulare Botanik, Universität Ulm, Germany
| | | | | | | |
Collapse
|
15
|
Giegé P, Brennicke A. From gene to protein in higher plant mitochondria. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2001; 324:209-17. [PMID: 11291307 DOI: 10.1016/s0764-4469(00)01293-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Higher plant mitochondria contain a genetic system with a genome, transcription and translation processes, which have to be logistically integrated with the two other genomes in the nucleus and the plastid. In plant mitochondria, after transcripts have been synthesised, at least in some cases by a phage-type RNA polymerase, they have to go through a complex processing apparatus, which depends on protein factors imported from the cytosol. Processing involves cis- and trans-splicing, internal RNA editing and maturation at the transcript termini, these steps often occurring in parallel. Transcript life is terminated by RNA degradation mechanisms, one of which involves polyadenylation. RNA metabolism seems to be a key element of the regulation of gene expression in higher plant mitochondria.
Collapse
Affiliation(s)
- P Giegé
- Department of Plant Sciences, Oxford University, South Parks Road, Oxford, OX1 3RB, UK.
| | | |
Collapse
|
16
|
Farré JC, Araya A. The mat-r open reading frame is transcribed from a non-canonical promoter and contains an internal promoter to co-transcribe exons nad1e and nad5III in wheat mitochondria. PLANT MOLECULAR BIOLOGY 1999; 40:959-967. [PMID: 10527420 DOI: 10.1023/a:1006296422485] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The expression of the mat-r locus (mat-r-nad1e-nad5III) was studied in wheat mitochondria. Transcription initiation sites were mapped by S1 protection, primer extension and capping experiments. Two different transcription initiation sites were found. One, non-canonical promoter of low expression level generates a transcript containing the complete mat-r open reading frame (orf), suggesting that this form is the maturase-reverse transcriptase mRNA. A second transcription initiation site, found within the coding region of the mat-r orf, directs the transcription of an abundant co-transcript containing the carboxy-terminal region of the mat-r orf, exon e of the nad1 gene, exon III of the nad5 gene and their respective trains-introns. The co-transcript promoter carries the consensus motif of plant mitochondrial promoters. Analysis of transcript sequences reveals the presence of editing sites in analogous positions in both nad1e and nad5III trans-introns, suggesting that RNA editing is necessary for the trans-splicing process.
Collapse
Affiliation(s)
- J C Farré
- Laboratoire de Réplication et Expression des Gènes Eucaryotes et Rétroviraux, EP-630, Centre National de la Recherche Scientifique and Université Victor Segalen-Bordeaux II, France
| | | |
Collapse
|
17
|
Abstract
The nuclear genome of the model plant Arabidopsis thaliana contains a small gene family consisting of three genes encoding RNA polymerases of the single-subunit bacteriophage type. There is evidence that similar gene families also exist in other plants. Two of these RNA polymerases are putative mitochondrial enzymes, whereas the third one may represent the nuclear-encoded RNA polymerase (NEP) active in plastids. In addition, plastid genes are transcribed from another, entirely different multisubunit eubacterial-type RNA polymerase, the core subunits of which are encoded by plastid genes [plastid-encoded RNA polymerase (PEP)]. This core enzyme is complemented by one of several nuclear-encoded sigma-like factors. The development of photosynthetically active chloroplasts requires both PEP and NEP. Most NEP promoters show certain similarities to mitochondrial promoters in that they include the sequence motif 5'-YRTA-3' near the transcription initiation site. PEP promoters are similar to bacterial promoters of the -10/-35 sigma 70 type.
Collapse
Affiliation(s)
- W R Hess
- Institute of Biology, Humboldt University, Berlin, Germany
| | | |
Collapse
|
18
|
Chang CC, Sheen J, Bligny M, Niwa Y, Lerbs-Mache S, Stern DB. Functional analysis of two maize cDNAs encoding T7-like RNA polymerases. THE PLANT CELL 1999; 11:911-26. [PMID: 10330475 PMCID: PMC144232 DOI: 10.1105/tpc.11.5.911] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have characterized two maize cDNAs, rpoTm and rpoTp, that encode putative T7-like RNA polymerases. In vivo cellular localization experiments using transient expression of the green fluorescent protein suggest that their encoded proteins are targeted exclusively to mitochondria and plastids, respectively. An antibody raised against the C terminus of the rpoTp gene product identified mitochondrial polypeptides of approximately 100 kD. Their presence was correlated with RNA polymerase activity, and the antibody inhibited mitochondrial in vitro transcription activity. Together, these results strongly suggest that the product of rpoTm is involved in maize mitochondrial transcription. By contrast, immunoblot analysis and an antibody-linked polymerase assay indicated that rpoTp specifies a plastid RNA polymerase component. A quantitative reverse transcription-polymerase chain reaction assay was used to study the transcription of rpoTp and rpoTm in different tissues and under different environmental conditions. Although both genes were constitutively expressed, rpoTm transcripts were generally more prevalent in nonphotosynthetic tissues, whereas an increase in rpoTp transcripts paralleled chloroplast development. We suggest that these two genes encode constitutive components of the organelle transcription machinery but that their expression is nonetheless subject to modulation during plant development.
Collapse
Affiliation(s)
- C C Chang
- Boyce Thompson Institute for Plant Research, Tower Road, Cornell University, Ithaca, New York 14853-1801, USA
| | | | | | | | | | | |
Collapse
|
19
|
Dombrowski S, Hoffmann M, Guha C, Binder S. Continuous primary sequence requirements in the 18-nucleotide promoter of dicot plant mitochondria. J Biol Chem 1999; 274:10094-9. [PMID: 10187790 DOI: 10.1074/jbc.274.15.10094] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleotide requirements of mitochondrial promoters of dicot plants were studied in detail in a pea in vitro transcription system. Deletions in the 5' regions of three different transcription initiation sites from pea, soybean, and Oenothera identified a crucial AT-rich sequence element (AT-Box) comprising nucleotide positions -14 to -9 relative to the first transcribed nucleotide. Transversion of the AT-Box sequence to comple- mentary nucleotide identities results in an almost complete loss of promoter activity, suggesting that primary structure rather than a simple accumulation of adenines and thymidines in this region is essential for promoter activity. This promoter segment thus appears to be involved in sequence specific binding of a respective protein factor(s) rather than merely loosening and melting the DNA helix during or for an initiation event. Manipulation of nucleotide identities in the 3' portion of the pea atp9 promoter and the respective 3'-flanking region revealed that essential sequences extend to positions +3/+4 beyond this transcription start site. Efficient transcription initiation at an 18-base pair promoter sequence ranging from nucleotide positions -14 to +4 integrated into different sequence contexts shows this element to be sufficient for autonomous promoter function independent of surrounding sequences.
Collapse
Affiliation(s)
- S Dombrowski
- Allgemeine Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | | | | | | |
Collapse
|
20
|
Gutierres S, Combettes B, De Paepe R, Mirande M, Lelandais C, Vedel F, Chétrit P. In the Nicotiana sylvestris CMSII mutant, a recombination-mediated change 5' to the first exon of the mitochondrial nad1 gene is associated with lack of the NADH:ubiquinone oxidoreductase (complex I) NAD1 subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:361-70. [PMID: 10215845 DOI: 10.1046/j.1432-1327.1999.00310.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously reported that the Nicotiana sylvestris CMSII mutant mitochondrial DNA carried a large deletion. Several expressed sequences, most of which are duplicated, and the unique copy of the nad7 gene encoding the NAD7 subunit of the NADH:ubiquinone oxidoreductase complex (complex I) are found in the deletion. Here, we show that the orf87-nad3-nad1/A cotranscription unit transcribed from a unique promoter element in the wild-type, is disrupted in CMSII. Nad3, orf87 and the promoter element are part of the deleted sequence, whilst the nad1/A sequence is present and transcribed from a new promoter brought by the recombination event, as indicated by Northern and primer extension experiments. However, Western analyses of mitochondrial protein fractions and of complex I purified using anti-NAD9 affinity columns, revealed that NAD1 is lacking in CMSII mitochondria. Our results suggest that translation of nad1 transcripts rather than transcription itself could be altered in the mutant. Consequences of lack of this submit belonging the membrane arm of complex I and thought to contain the ubiquinone-binding site, are discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- DNA, Mitochondrial/genetics
- Electron Transport Complex I
- Exons/genetics
- Gene Expression Regulation, Plant/genetics
- Genes, Plant
- Mitochondrial Proteins
- Molecular Sequence Data
- NADH, NADPH Oxidoreductases/chemistry
- NADH, NADPH Oxidoreductases/genetics
- Open Reading Frames/genetics
- Plant Proteins/genetics
- Plants, Toxic
- Promoter Regions, Genetic/genetics
- Protein Biosynthesis
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombination, Genetic/genetics
- Sequence Homology
- Nicotiana/enzymology
- Nicotiana/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- S Gutierres
- Institut de Biotechnologie des Plantes, CNRS UMR 8618, Université Paris-Sud, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- S Mackenzie
- Department of Agronomy, 1150 Lilly Hall, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
22
|
Fey J, Maréchal-Drouard L. Compilation and analysis of plant mitochondrial promoter sequences: An illustration of a divergent evolution between monocot and dicot mitochondria. Biochem Biophys Res Commun 1999; 256:409-14. [PMID: 10079198 DOI: 10.1006/bbrc.1999.0349] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have analyzed 67 sequences surrounding transcription initiation sites identified in higher plant mitochondria. The sequences were classified, independently for monocots and dicots, according to the presence of the CRTA core element found upstream of the first transcribed nucleotide and previously reported as an essential element of plant mitochondrial consensus promoters. This compilation provides new elements concerning the structure of consensus promoters and the relative importance of non-conserved promoters in plant mitochondria. It can be emphasized that promoter regions exhibit several differences between monocot and dicot mitochondria, presumably reflecting a divergent evolution: The sequences classified among consensus promoters as well as the distance between the first transcribed nucleotide and the core element are highly conserved in dicots while more plasticity is observed in monocots. It also appears that the proportion of promoters with neither the conserved promoter sequence nor any conserved motif is far greater in dicots than in monocots.
Collapse
Affiliation(s)
- J Fey
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, Strasbourg Cedex, F-67084, France
| | | |
Collapse
|
23
|
Lupold DS, Caoile AG, Stern DB. The maize mitochondrial cox2 gene has five promoters in two genomic regions, including a complex promoter consisting of seven overlapping units. J Biol Chem 1999; 274:3897-903. [PMID: 9920945 DOI: 10.1074/jbc.274.6.3897] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant mitochondrial genes are often transcribed into complex sets of RNAs, resulting from multiple initiation sites and processing steps. To elucidate the role of initiation in generating the more than 10 cox2 transcripts found in maize mitochondria, we surveyed sequences upstream of cox2 for active promoters. Because the cox2 coding region is immediately downstream of a 0.7-kb recombination repeat, cox2 is under the control of two different sets of potential expression signals. Using an in vitro transcription assay, we localized four promoters upstream of the coding region in the so-called master chromosome, and two promoters upstream of the coding region in the recombinant subgenome. Ribonuclease protection analysis of labeled primary transcripts confirmed that all but one of these promoters is active in vivo. Primer extension was used to identify the promoter sequences and initiation sites, which agree with the consensus established earlier for maize mitochondria. This study identified two unusual promoters, the core sequences of which were composed entirely of adenines and thymines, and one of which was a complex promoter consisting of seven overlapping units. Deletion mutagenesis of the complex promoter suggested that each of its units was recognized independently by RNA polymerase. While each active promoter fit the maize core consensus sequence YRTAT, not all such sequences surveyed supported initiation. We conclude that in vitro transcription is a powerful tool for locating mitochondrial promoters and that, in the case of cox2, promoter multiplicity contributes strongly to transcript complexity.
Collapse
Affiliation(s)
- D S Lupold
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853-1801, USA.
| | | | | |
Collapse
|
24
|
Sarria R, Lyznik A, Vallejos CE, Mackenzie SA. A cytoplasmic male sterility-associated mitochondrial peptide in common bean is post-translationally regulated. THE PLANT CELL 1998; 10:1217-28. [PMID: 9668139 PMCID: PMC144055 DOI: 10.1105/tpc.10.7.1217] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cytoplasmic male sterility in the common bean plant is associated with a dominant mitochondrial mutation designated pvs-or f 239 (for Phaseolus vulgaris sterility sequence open reading frame 239). The sequence is transcribed in both vegetative and reproductive tissues, but the translation product, ORF239, is present only in reproductive tissues. We present evidence to support a model of post-translational regulation of ORF239 expression based on the following observations. In organello translation experiments using purified mitochondria from young seedlings demonstrated accumulation of ORF239 only when a protease inhibitor was included. Proteolytic activity against ORF239 was observed in mitochondrial extracts fractionating with the mitochondrial inner membrane. The DNA sequence encoding a serine-type protease, similar to the lon protease gene of Escherichia coli, was cloned from the Arabidopsis genome. The expression product of this sequence demonstrated proteolytic activity against ORF239 in vitro, with features resembling the activity detected in mitochondrial inner membrane preparations. Antibodies generated against the overexpressed Lon homolog reduced proteolytic activity against ORF239 when added to mitochondrial extracts. Our data suggest that ORF239 was undetected in vegetative tissue due to rapid turnover by at least one mitochondrial protease that acts against ORF239 post-translationally.
Collapse
Affiliation(s)
- R Sarria
- Department of Agronomy, Lilly Hall, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
25
|
Hatzack F, Dombrowski S, Brennicke A, Binder S. Characterization of DNA-Binding Proteins from Pea Mitochondria. PLANT PHYSIOLOGY 1998; 116:519-528. [PMID: 9490756 PMCID: PMC35109 DOI: 10.1104/pp.116.2.519] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/1997] [Accepted: 10/06/1997] [Indexed: 05/22/2023]
Abstract
We studied transcription initiation in the mitochondria of higher plants, with particular respect to promoter structures. Conserved elements of these promoters have been successfully identified by in vitro transcription systems in different species, whereas the involved protein components are still unknown. Proteins binding to double-stranded oligonucleotides representing different parts of the pea (Pisum sativum) mitochondrial atp9 were analyzed by denaturation-renaturation chromatography and mobility-shift experiments. Two DNA-protein complexes were detected, which appeared to be sequence specific in competition experiments. Purification by hydroxyapatite, phosphocellulose, and reversed-phase high-pressure liquid chromatography separated two polypeptides with apparent molecular masses of 32 and 44 kD. Both proteins bound to conserved structures of the pea atp9 and the heterologous Oenothera berteriana atp1 promoters and to sequences just upstream. Possible functions of these proteins in mitochondrial promoter recognition are discussed.
Collapse
Affiliation(s)
- F Hatzack
- Allgemeine Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | | | | | | |
Collapse
|
26
|
Yan B, Salazar RA, Pring DR. Transcription initiation sites for sorghum mitochondrial atp9 are positioned immediately 3' to trnfM. PLANT MOLECULAR BIOLOGY 1997; 34:823-829. [PMID: 9278173 DOI: 10.1023/a:1005814812438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sorghum mitochondrial atp9 is polymorphic among male-sterile cytoplasms, but each cytoplasm is characterized by a major 650 nt transcript, regardless of fertility status. The gene is positioned 323 bp 3' to trnfM. Primer extension revealed multiple atp9 5' transcript termini, distributed from +1 to +28 3' to trnfM; the termini could be labeled with polynucleotide kinase, suggesting that they result from the maturation of trnfM. Guanylyltransferase experiments, however, showed that four of the termini were capable. The juxtaposition of a putative promoter 3' to trnfM results in a unique atp9 transcript population consisting of primary and processed transcripts.
Collapse
Affiliation(s)
- B Yan
- Department of Plant Pathology, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville 32611, USA
| | | | | |
Collapse
|
27
|
Binder S, Marchfelder A, Brennicke A. Regulation of gene expression in plant mitochondria. PLANT MOLECULAR BIOLOGY 1996; 32:303-314. [PMID: 8980484 DOI: 10.1007/bf00039387] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many genes is plant mitochondria have been analyzed in the past 15 years and regulatory processes controlling gene expression can now be investigated. In vitro systems capable of initiating transcription faithfully at promoter sites have been developed for both monocot and dicot plants and will allow the identification of the interacting nucleic acid elements and proteins which specify and guide transcriptional activities. Mitochondrial activity, although required in all plant tissues, is capable of adapting to specific requirements by regulated gene expression. Investigation of the factors governing the quality and quantity of distinct RNAs will define the extent of interorganelle regulatory interference in mitochondrial gene expression.
Collapse
Affiliation(s)
- S Binder
- Allgemeine Botanik, Universität Ulm, Germany
| | | | | |
Collapse
|
28
|
Giese A, Thalheim C, Brennicke A, Binder S. Correlation of nonanucleotide motifs with transcript initiation of 18S rRNA genes in mitochondria of pea, potato and Arabidopsis. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:429-36. [PMID: 8879244 DOI: 10.1007/bf02173008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transcription initiation sites for the mitochondrial 18S rRNA genes in the dicot plants Arabidopsis thaliana, potato and pea were identified by a combination of in vitro capping, primer extension and S-1 analyses. These promoters contain a nonanucleotide motif and an AT-rich sequence similar to many mRNA and tRNA promoters in dicot mitochondria. In Arabidopsis and potato, active promoters are located within 120 nucleotides upstream of the 18S rRNA genes, as in Oenothera. The nucleotide sequence in the corresponding region in pea mitochondria is well conserved, but is not used as promoter in this plant. Instead a novel promoter sequence is used that lies several hundred nucleotides upstream. These results show that rRNAs can be transcribed from the same promoter types as mRNAs and tRNAs in plant mitochondria. However, the sequence features presently attributed to plant mitochondrial promoters-the conserved nonanucleotide and the upstream AT-rich box-do not allow to deduce the presence of an active promoter from genomic sequence data alone.
Collapse
Affiliation(s)
- A Giese
- Allgemeine Botanik, Universität Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
29
|
Nakazono M, Ishikawa M, Yoshida KT, Tsutsumi N, Hirai A. Multiple initiation sites for transcription of a gene for subunit 1 of F1-ATPase (atp1) in rice mitochondria. Curr Genet 1996; 29:417-22. [PMID: 8625419 DOI: 10.1007/bf02221508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We identified the sites for the initiation of transcription of a gene for subunit 1 of F1-ATPase (atp1) in rice mitochondrial DNA. Capping and ribonuclease protection experiments in vitro, together with primer extension analysis, demonstrated that there were at least eight transcription initiation sites upstream of atp1. One initiation site, expressed most actively, was flanked by a sequence identical to the consensus promotor motif of rice mitochondrial genes. However, the sequences surrounding the other seven initiation sites exhibited no similarity to the consensus sequence.
Collapse
Affiliation(s)
- M Nakazono
- Laboratory of Radiation Genetics, Faculty of Agriculture, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113, Japan
| | | | | | | | | |
Collapse
|
30
|
Binder S, Hatzack F, Brennicke A. A novel pea mitochondrial in vitro transcription system recognizes homologous and heterologous mRNA and tRNA promoters. J Biol Chem 1995; 270:22182-9. [PMID: 7673196 DOI: 10.1074/jbc.270.38.22182] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To elucidate the mechanism involved in the transcription initiation process in mitochondria of dicotyledonous plants, an in vitro transcription system was established for pea (Pisum sativum L.). The partially purified mitochondrial protein extract initiates transcription on homologous pea templates as well as on heterologous mitochondrial DNA from other dicot plant species. In vitro transcription begins within the nonanucleotide 5'-(-7)CRTAAGAGA(+2)-3' (transcription start site is underlined) conserved at most of the identified transcription initiation sites in dicot plant mitochondria. The in vitro initiation at promoters of protein as well as of tRNA coding genes indicates a common mode of transcription initiation for different types of RNA. The competent recognition of different heterologous templates supports a general functional role of the conserved nonanucleotide within mitochondrial promoters of dicotyledonous plants. Initial studies of the promoter structure by deletion analysis in the 5' region of the pea atp9 promoter show that in addition to the conserved nonanucleotide, which is essential for transcription initiation in vitro, sequences up to 25 nucleotides upstream of the transcription start site are necessary for an efficient initiation event.
Collapse
Affiliation(s)
- S Binder
- Institut für Genbiologische Forschung, Berlin, Federal Republic of Germany
| | | | | |
Collapse
|
31
|
Nakazono M, Tsutsumi N, Sugiura M, Hirai A. A small repeated sequence contains the transcription initiation sites for both trnfM and rrn26 in rice mitochondria. PLANT MOLECULAR BIOLOGY 1995; 28:343-346. [PMID: 7599319 DOI: 10.1007/bf00020253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The 76 bp sequence found in the upstream region of a gene for 26S rRNA (rrn26) is duplicated in the upstream region of a gene for initiator methionine tRNA (trnfM) in the mitochondrial genome of rice. An in vitro capping/ribonuclease protection assay and primer extension analysis demonstrated that the transcription of trnfM and of rrn26, which are at least 190 kb from one another in the rice mitochondrial genome, starts from these same sequences in the upstream regions of the respective genes. This result indicates that the short sequence that is duplicated in the upstream regions of trnfM and rrn26 in rice mtDNA is recognized as the promoter of each respective gene.
Collapse
Affiliation(s)
- M Nakazono
- Laboratory of Radiation Genetics, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | |
Collapse
|
32
|
|
33
|
|
34
|
Binder S, Thalheim C, Brennicke A. Transcription of potato mitochondrial 26S rRNA is initiated at its mature 5' end. Curr Genet 1994; 26:519-23. [PMID: 7533059 DOI: 10.1007/bf00309943] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transcription initiation sites in plant mitochondria can be located by in vitro capping of primary 5' transcript termini. Direct sequencing of a cap-labelled mitochondrial RNA from potato shows its sequence to be identical to the 5' terminal part of the 26S rRNA. Primer extension analysis indicates the mature 5' end to be the sole detectable 5' transcript terminus. In potato mitochondria the mature 5' end of the 26S rRNA is thus created by transcription initiation without any further 5' processing. The nucleotide sequence surrounding this transcription initiation site shows only limited similarity to other putative promoter sequences from dicot plant mitochondria suggesting the possibility that divergent RNA polymerases, and/or transcription initiation factors, are present in plant mitochondria.
Collapse
Affiliation(s)
- S Binder
- Institut für Genbiologische Forschung, Berlin, Germany
| | | | | |
Collapse
|
35
|
Lizama L, Holuigue L, Jordana X. Transcription initiation sites for the potato mitochondrial gene coding for subunit 9 of ATP synthase (atp9). FEBS Lett 1994; 349:243-8. [PMID: 8050574 DOI: 10.1016/0014-5793(94)00677-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The potato mitochondrial atp9 gene has a simple expression pattern. To determine where transcription initiates, primary mitochondrial RNAs were labeled by in vitro capping and hybridized to the 5' flanking sequences of the atp9 gene. A single transcription initiation region was identified. Primer extension and nuclease S1 protection analyses were used to precisely map the transcript 5' termini in this region. These results indicate that transcription initiates at 121-128 bp upstream of the atp9 open reading frame, in a sequence which does not present any homology with proposed consensus sequences for plant mitochondrial promoters. Nuclease S1 protection were also used to map 3' termini 67-71 nucleotides downstream of a putative single-stem loop structure.
Collapse
Affiliation(s)
- L Lizama
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago
| | | | | |
Collapse
|