1
|
Sequence-Modified Antibiotic Resistance Genes Provide Sustained Plasmid-Mediated Transgene Expression in Mammals. Mol Ther 2017; 25:1187-1198. [PMID: 28365028 DOI: 10.1016/j.ymthe.2017.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/26/2017] [Accepted: 03/02/2017] [Indexed: 02/05/2023] Open
Abstract
Conventional plasmid vectors are incapable of achieving sustained levels of transgene expression in vivo even in quiescent mammalian tissues because the transgene expression cassette is silenced. Transcriptional silencing results from the presence of the bacterial plasmid backbone or virtually any DNA sequence of >1 kb in length placed outside of the expression cassette. Here, we show that transcriptional silencing can be substantially forestalled by increasing the An/Tn sequence composition in the plasmid bacterial backbone. Increasing numbers of An/Tn sequences increased sustained transcription of both backbone sequences and adjacent expression cassettes. In order to recapitulate these expression profiles in compact and portable plasmid DNA backbones, we engineered the standard kanamycin or ampicillin antibiotic resistance genes, optimizing the number of An/Tn sequence without altering the encoded amino acids. The resulting vector backbones yield sustained transgene expression from mouse liver, providing generic DNA vectors capable of sustained transgene expression without additional genes or mammalian regulatory elements.
Collapse
|
2
|
Liao JM, Cao B, Deng J, Zhou X, Strong M, Zeng S, Xiong J, Flemington E, Lu H. TFIIS.h, a new target of p53, regulates transcription efficiency of pro-apoptotic bax gene. Sci Rep 2016; 6:23542. [PMID: 27005522 PMCID: PMC4804275 DOI: 10.1038/srep23542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/03/2016] [Indexed: 11/09/2022] Open
Abstract
Tumor suppressor p53 transcriptionally regulates hundreds of genes involved in various cellular functions. However, the detailed mechanisms underlying the selection of p53 targets in response to different stresses are still elusive. Here, we identify TFIIS.h, a transcription elongation factor, as a new transcriptional target of p53, and also show that it can enhance the efficiency of transcription elongation of apoptosis-associated bax gene, but not cell cycle-associated p21 (CDKN1A) gene. TFIIS.h is revealed as a p53 target through microarray analysis of RNAs extracted from cells treated with or without inauhzin (INZ), a p53 activator, and further confirmed by RT-q-PCR, western blot, luciferase reporter, and ChIP assays. Interestingly, knocking down TFIIS.h impairs, but overexpressing TFIIS.h promotes, induction of bax, but not other p53 targets including p21, by p53 activation. In addition, overexpression of TFIIS.h induces cell death in a bax- dependent fashion. These findings reveal a mechanism by which p53 utilizes TFIIS.h to selectively promote the transcriptional elongation of the bax gene, upsurging cell death in response to severe DNA damage.
Collapse
Affiliation(s)
- Jun-Ming Liao
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Bo Cao
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Jun Deng
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA.,Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xiang Zhou
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Michael Strong
- Department of Pathology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Shelya Zeng
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Erik Flemington
- Department of Pathology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| |
Collapse
|
3
|
Hawryluk PJ, Ujvári A, Luse DS. Characterization of a novel RNA polymerase II arrest site which lacks a weak 3' RNA-DNA hybrid. Nucleic Acids Res 2004; 32:1904-16. [PMID: 15047857 PMCID: PMC390359 DOI: 10.1093/nar/gkh505] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcript elongation by RNA polymerase II is blocked at DNA sequences called arrest sites. An exceptionally weak RNA-DNA hybrid is often thought to be necessary at the point of arrest. We have identified an arrest site from the tyrosine hydroxylase (TH) gene which does not fit this pattern. Transcription of many sequence variants of this site shows that the RNA-DNA hybrid over the three bases immediately preceding the major arrest point may be strong (i.e. C:G) without interfering with arrest. However, arrest at the TH site requires the presence of a pyrimidine at the 3' end and arrest increases when the 3'-most segment is pyrimidine rich. We also demonstrated that arrest at the TH site is completely dependent on the presence of a purine-rich element immediately upstream of the RNA-DNA hybrid. Thus, the RNA polymerase II arrest element from the TH gene has several unanticipated characteristics: arrest is independent of a weak RNA-DNA hybrid at the 3' end of the transcript, but it requires both a pyrimidine at the 3' end and a polypurine element upstream of the RNA-DNA hybrid.
Collapse
Affiliation(s)
- Peter J Hawryluk
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
4
|
Guarino LA, Dong W, Jin J. In vitro activity of the baculovirus late expression factor LEF-5. J Virol 2002; 76:12663-75. [PMID: 12438592 PMCID: PMC136719 DOI: 10.1128/jvi.76.24.12663-12675.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2002] [Accepted: 09/05/2002] [Indexed: 11/20/2022] Open
Abstract
The baculovirus late expression factor LEF-5 has a zinc ribbon that is homologous to a domain in the eukaryotic transcription elongation factor SII. To determine whether LEF-5 is an elongation factor, we purified it from a bacterial overexpression system and added it to purified baculovirus RNA polymerase. LEF-5 increased transcription from both late and very late viral promoters. Two acidic residues within the zinc ribbon were essential for stimulation. Unlike SII, however, LEF-5 did not appear to enable RNA polymerase to escape from intrinsic pause sites. Furthermore, LEF-5 did not increase transcription in the presence of small DNA-binding ligands that inhibit elongation in other systems or viral DNA-binding proteins which inhibit the baculovirus RNA polymerase. Exonuclease activity assays revealed that baculovirus RNA polymerase has an intrinsic exonuclease activity, but this was not increased by the addition of LEF-5. Initiation assays and elongation assays using heparin to prevent reinitiation indicated that LEF-5 was active only in the absence of heparin. Taken together, these results suggest that LEF-5 functions as an initiation factor and not as an elongation factor.
Collapse
Affiliation(s)
- Linda A Guarino
- Departments of Biochemistry, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA.
| | | | | |
Collapse
|
5
|
Mote J, Reines D. Recognition of a human arrest site is conserved between RNA polymerase II and prokaryotic RNA polymerases. J Biol Chem 1998; 273:16843-52. [PMID: 9642244 PMCID: PMC3371603 DOI: 10.1074/jbc.273.27.16843] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA sequences that arrest transcription by either eukaryotic RNA polymerase II or Escherichia coli RNA polymerase have been identified previously. Elongation factors SII and GreB are RNA polymerase-binding proteins that enable readthrough of arrest sites by these enzymes, respectively. This functional similarity has led to general models of elongation applicable to both eukaryotic and prokaryotic enzymes. Here we have transcribed with phage and bacterial RNA polymerases, a human DNA sequence previously defined as an arrest site for RNA polymerase II. The phage and bacterial enzymes both respond efficiently to the arrest signal in vitro at limiting levels of nucleoside triphosphates. The E. coli polymerase remains in a template-engaged complex for many hours, can be isolated, and is potentially active. The enzyme displays a relatively slow first-order loss of elongation competence as it dwells at the arrest site. Bacterial RNA polymerase arrested at the human site is reactivated by GreB in the same way that RNA polymerase II arrested at this site is stimulated by SII. Very efficient readthrough can be achieved by phage, bacterial, and eukaryotic RNA polymerases in the absence of elongation factors if 5-Br-UTP is substituted for UTP. These findings provide additional and direct evidence for functional similarity between prokaryotic and eukaryotic transcription elongation and readthrough mechanisms.
Collapse
Affiliation(s)
| | - Daniel Reines
- To whom correspondence should be addressed. Tel.: 404-727-3361; Fax: 404-727-3452;
| |
Collapse
|
6
|
Szentirmay MN, Musso M, Van Dyke MW, Sawadogo M. Multiple rounds of transcription by RNA polymerase II at covalently cross-linked templates. Nucleic Acids Res 1998; 26:2754-60. [PMID: 9592165 PMCID: PMC147607 DOI: 10.1093/nar/26.11.2754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An important control point for gene regulation is the frequency of initiations leading to different numbers of RNA polymerases simultaneously transcribing the same gene. To date, the only direct assay for multiple-round transcription by RNA polymerase II in vitro required G-free cassette-containing templates and GTP-free conditions and was thus restricted in application. Here we used instead templates containing a triplex-directed interstrand psoralen-DNA cross-link to block RNA polymerase II elongation at a specific location. Covalently cross-linked templates allowed simultaneous detection of both specific initiation and reinitiation with any combination of promoter and transcribed sequence. In reconstituted systems, identical stacking of RNA polymerases was observed when the first polymerase was halted by GTP deprivation at the end of a G-free cassette or by a covalent cross-link downstream of different transcribed sequences. In contrast to transcription of G-free cassettes, reinitiation was unaffected by the transcription factor SII on sequences containing all four nucleotides. In crude nuclear extracts, transcription of covalently cross-linked templates yielded a reinitiation pattern with a wider spacing than in more purified fractions, indicating that the elongation complexes from nuclear extract contained a different form of RNA polymerase II or a different complement of associated factors.
Collapse
Affiliation(s)
- M N Szentirmay
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
7
|
Damert A, Leibiger B, Leibiger IB. Dual function of the intron of the rat insulin I gene in regulation of gene expression. Diabetologia 1996; 39:1165-72. [PMID: 8897003 DOI: 10.1007/bf02658502] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Since the short intron in the 5'-untranslated region (5'-UTR) has been preserved during duplication of the insulin genes in rodents we postulated a possible involvement of these sequences in the regulation of gene expression. To examine this hypothesis we fused nested 5'-deletion fragments of the rat insulin I (rins1) promoter and sequences of the 5'-UTR up to nucleotide +170 with the reporter gene chloramphenicol acetyltransferase (CAT) and generated two series of expression constructs differing by the presence or absence of the intron (rins11VS). Transient expression of these chimeric genes in HIT M2.2.2 cells revealed a four-fold higher CAT expression in the presence of rins1IVS. Comparison of the CAT transcript quantities generated by both counterparts showed only a 1.7-fold difference in the total nuclear RNA fraction, but a four-fold difference in the fraction of nuclear polyadenylated RNA. Further analysis of cytoplasmic RNA excluded nuclear-cytoplasmic transport, RNA stability, and efficiency of translation as targets of the rins1IVS-mediated effect. The higher rate in polyadenylated CAT transcripts generated by rins1IVS-containing vectors suggests a possible coupling between splicing and polyadenylation. Transient expression studies using chimeras containing mutations or deletions between nucleotides -87 and +110 showed a reduction of expression by 30%. These data suggest a dual function of the rins1 intron on transcription initiation and transcript maturation.
Collapse
Affiliation(s)
- A Damert
- Institute of Biochemistry, School of Medicine, E,-M.-Arndt University, Greifswald, Germany
| | | | | |
Collapse
|
8
|
Garrett KP, Aso T, Bradsher JN, Foundling SI, Lane WS, Conaway RC, Conaway JW. Positive regulation of general transcription factor SIII by a tailed ubiquitin homolog. Proc Natl Acad Sci U S A 1995; 92:7172-6. [PMID: 7638163 PMCID: PMC41301 DOI: 10.1073/pnas.92.16.7172] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
General transcription factor SIII, a heterotrimer composed of 110-kDa (p110), 18-kDa (p18), and 15-kDa (p15) subunits, increases the catalytic rate of transcribing RNA polymerase II by suppressing transient pausing by polymerase at multiple sites on DNA templates. Here we report molecular cloning and biochemical characterization of the SIII p18 subunit, which is found to be a member of the ubiquitin homology (UbH) gene family and functions as a positive regulatory subunit of SIII. p18 is a 118-amino acid protein composed of an 84-residue N-terminal UbH domain fused to a 34-residue C-terminal tail. Mechanistic studies indicate that p18 activates SIII transcriptional activity above a basal level inherent in the SIII p110 and p15 subunits. Taken together, these findings establish a role for p18 in regulating the activity of the RNA polymerase II elongation complex, and they bring to light a function for a UbH domain protein in transcriptional regulation.
Collapse
Affiliation(s)
- K P Garrett
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Vaulont S, Daines S, Evans M. Disruption of the adenosine deaminase (ADA) gene using a dicistronic promoterless construct: production of an ADA-deficient homozygote ES cell line. Transgenic Res 1995; 4:247-55. [PMID: 7655514 DOI: 10.1007/bf01969118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In man, deficiency of ADA activity is associated with an autosomal recessive form of severe combined immunodeficiency (SCID), a disease with profound defects both cellular and humoral immunity. Current treatments of ADA deficient patients include bone marrow transplantation, enzyme replacement and somatic gene therapy. The mechanism of the selective immune cell pathogenesis in ADA-SCIDS is, however, still poorly understood. Thus, the generation of an ADA deficient mouse model will be of considerable benefit to understand better the pathophysiology of the disorder and to improve the gene therapy treatments. We have disrupted the adenosine deaminase (ADA) gene in embryonic stem cells using a new efficient promoter trap gene-targeting approach. To this end, a dicistronic targeting construct containing a promoterless IRES beta geo cassette was used. This cassette allows, via the internal ribosomal entry site (IRES), the direct cap-independent translation of the beta geo reporter gene which encodes a protein with both beta-galactosidase and neomycin activities. After indentification of targeted clones by Southern blot, successful inactivation of the ADA gene was first confirmed by producing, from our heterozygote clones, an homozygote cell line. This line shows no ADA activity as judged by zymogram analysis. Second, we have been able to detect in the targeted clones, a specific beta galactosidase activity using a sensitive fluorogenic assay. The targeted ES cell clones are currently being injected into blastocysts to create an ADA deficient mouse model.
Collapse
Affiliation(s)
- S Vaulont
- Institut Cochin de Genetique Moleculaire, Inserm U 129, Paris, France
| | | | | |
Collapse
|
10
|
Szentirmay MN, Sawadogo M. Sarkosyl block of transcription reinitiation by RNA polymerase II as visualized by the colliding polymerases reinitiation assay. Nucleic Acids Res 1994; 22:5341-6. [PMID: 7529406 PMCID: PMC332080 DOI: 10.1093/nar/22.24.5341] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
There are indications that different concentrations of Sarkosyl can block transcription initiation by RNA polymerase II in vitro at different functional steps [Hawley and Roeder (1985) J. Biol. Chem. 260, 8163-8172]. Consequently, this reagent could be a very useful tool for mechanistic studies. So far, however, evidence for the selectivity of Sarkosyl effects on RNA polymerase II transcription has been only indirect. To directly investigate the effect of Sarkosyl on transcription initiation and reinitiation by RNA polymerase II, we employed the reinitiation assay based on utilization of templates containing G-free cassettes (colliding polymerases reinitiation assay, or CoPRA). These experiments showed unambiguously that, under the appropriate conditions, Sarkosyl can be used to block transcription reinitiation by RNA polymerase II while allowing a first round of initiations from preassembled initiation complexes. This inhibition is not due to a disruption of the SII-dependent elongation of the reinitiated transcripts, and the levels of Sarkosyl that prevent transcription reinitiation coincide with the levels that block preinitiation complex assembly. However, Sarkosyl addition to transcription reactions reconstituted with partially purified transcription factors was found to have several undesirable side effects. The usefulness and limitations of the Sarkosyl-based and CoPRA assays for measurements of transcription reinitiation are discussed.
Collapse
Affiliation(s)
- M N Szentirmay
- Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston 77030
| | | |
Collapse
|
11
|
Abstract
Transcription arrest plays a key role in the regulation of the murine adenosine deaminase (ADA) gene, as well as a number of other cellular and viral genes. We have previously characterized the ADA intron 1 arrest site, located 145 nucleotides downstream of the transcription start site, with respect to sequence and elongation factor requirements. Here, we show that the optimal conditions for both intron 1 arrest and overall ADA transcription involve the addition of high concentrations of KCl soon after initiation. As we have further delineated the sequence requirements for intron 1 arrest, we have found that sequences downstream of the arrest site are unnecessary for arrest. Also, a 24-bp fragment containing sequences upstream of the arrest site is sufficient to generate arrest downstream of the adenovirus major late promoter only in the native orientation. Surprisingly, we found that deletion of sequences encompassing the ADA transcription start site substantially reduced intron 1 arrest, with no effect on overall levels of transcription. At the same time, deletion of sequences upstream of the TATA box had no significant effect on either process. We believe the start site mutations have disrupted either the assembly or the composition of the transcription complex such that intron 1 site read-through is now favored. This finding, coupled with the increase in overall transcription after high-concentration KCl treatment, allows us to further refine our model of ADA gene regulation.
Collapse
|
12
|
Kash SF, Kellems RE. Control of transcription arrest in intron 1 of the murine adenosine deaminase gene. Mol Cell Biol 1994; 14:6198-207. [PMID: 8065352 PMCID: PMC359147 DOI: 10.1128/mcb.14.9.6198-6207.1994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transcription arrest plays a key role in the regulation of the murine adenosine deaminase (ADA) gene, as well as a number of other cellular and viral genes. We have previously characterized the ADA intron 1 arrest site, located 145 nucleotides downstream of the transcription start site, with respect to sequence and elongation factor requirements. Here, we show that the optimal conditions for both intron 1 arrest and overall ADA transcription involve the addition of high concentrations of KCl soon after initiation. As we have further delineated the sequence requirements for intron 1 arrest, we have found that sequences downstream of the arrest site are unnecessary for arrest. Also, a 24-bp fragment containing sequences upstream of the arrest site is sufficient to generate arrest downstream of the adenovirus major late promoter only in the native orientation. Surprisingly, we found that deletion of sequences encompassing the ADA transcription start site substantially reduced intron 1 arrest, with no effect on overall levels of transcription. At the same time, deletion of sequences upstream of the TATA box had no significant effect on either process. We believe the start site mutations have disrupted either the assembly or the composition of the transcription complex such that intron 1 site read-through is now favored. This finding, coupled with the increase in overall transcription after high-concentration KCl treatment, allows us to further refine our model of ADA gene regulation.
Collapse
Affiliation(s)
- S F Kash
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
13
|
Dusing MR, Wiginton DA. Sp1 is essential for both enhancer-mediated and basal activation of the TATA-less human adenosine deaminase promoter. Nucleic Acids Res 1994; 22:669-77. [PMID: 8127716 PMCID: PMC307859 DOI: 10.1093/nar/22.4.669] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tissue-specific expression of the human adenosine deaminase (ADA) gene is mediated by transcriptional activation over a thousand-fold range. Cis-regulatory regions responsible for high and basal levels of activation include an enhancer and the proximal promoter region. While analyses of the T-cell specific enhancer have been carried out, detailed studies of the the promoter region or promoter-enhancer interactions have not. Examination of the promoter region by homology searches revealed six putative Sp1 binding sites. DNase I footprinting showed that Sp1 is able to bind these sites. Deletion analysis indicated that the proximal Sp1 site is required for activation of a reporter gene to detectable levels and that the more distal Sp1 sites further activate the level of expression. Inclusion of an ADA enhancer-containing fragment in these deletion constructions demonstrated that Sp1 sites are also essential for enhancer function. Apparently Sp1 controls not only low level expression but is also an integral part of the mechanism by which the enhancer achieves high level ADA expression. Mutagenesis of a potential TBP binding site at base pairs -21 to -26 decreased activity only two-fold indicating that it is not essential for transcriptional activation or enhancement.
Collapse
Affiliation(s)
- M R Dusing
- Department of Pediatrics, University of Cincinnati College of Medicine, OH
| | | |
Collapse
|
14
|
Premature termination of tubulin gene transcription in Xenopus oocytes is due to promoter-dependent disruption of elongation. Mol Cell Biol 1994. [PMID: 8247007 DOI: 10.1128/mcb.13.12.7925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown previously that the Xenopus alpha-tubulin gene, X alpha T14, exhibits premature termination of transcription when injected into oocyte nuclei. The 3' ends of prematurely terminated transcripts are formed immediately downstream of a stem-loop sequence found in the first 41 bp of the 5' leader. We show here, using deleted constructs, that premature termination requires the presence only of sequences from -200 to +19 relative to the initiation site. Deletion of the stem-loop does not increase the production of extended transcripts, and premature termination apparently continues at nonspecific sites. This finding indicates that disruption of the elongation phase of transcription rather than abrogation of a specific antitermination mechanism is the cause of premature termination in X alpha T14. We also found that disruption of elongation on a reporter gene could be induced specifically by competition with X alpha T14 promoters. To identify which elements of the promoter might interact with elongation determinants to cause this competition, we constructed a series of internal promoter mutants. Most mutations in the -200 to -60 region of the promoter had some effect on initiation frequency but did not cause any significant change in levels of premature termination. However, mutations in the core promoter that removed the TATA box consensus causes major change in initiation and resulted in a marked decrease in the production of prematurely terminated transcripts relative to extended transcripts. We discuss why such promoters can apparently escape the disruption of elongation that leads to premature termination.
Collapse
|
15
|
Hair A, Morgan GT. Premature termination of tubulin gene transcription in Xenopus oocytes is due to promoter-dependent disruption of elongation. Mol Cell Biol 1993; 13:7925-34. [PMID: 8247007 PMCID: PMC364864 DOI: 10.1128/mcb.13.12.7925-7934.1993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have shown previously that the Xenopus alpha-tubulin gene, X alpha T14, exhibits premature termination of transcription when injected into oocyte nuclei. The 3' ends of prematurely terminated transcripts are formed immediately downstream of a stem-loop sequence found in the first 41 bp of the 5' leader. We show here, using deleted constructs, that premature termination requires the presence only of sequences from -200 to +19 relative to the initiation site. Deletion of the stem-loop does not increase the production of extended transcripts, and premature termination apparently continues at nonspecific sites. This finding indicates that disruption of the elongation phase of transcription rather than abrogation of a specific antitermination mechanism is the cause of premature termination in X alpha T14. We also found that disruption of elongation on a reporter gene could be induced specifically by competition with X alpha T14 promoters. To identify which elements of the promoter might interact with elongation determinants to cause this competition, we constructed a series of internal promoter mutants. Most mutations in the -200 to -60 region of the promoter had some effect on initiation frequency but did not cause any significant change in levels of premature termination. However, mutations in the core promoter that removed the TATA box consensus causes major change in initiation and resulted in a marked decrease in the production of prematurely terminated transcripts relative to extended transcripts. We discuss why such promoters can apparently escape the disruption of elongation that leads to premature termination.
Collapse
Affiliation(s)
- A Hair
- Department of Genetics, Queens Medical Centre, University of Nottingham, United Kingdom
| | | |
Collapse
|