1
|
Abstract
Budding yeast harbors a simple point centromere, which is originally believed to be sequence dependent without much epigenetic regulation and is transcription incompatible, as inserting a strong promoter upstream inactivates the centromere completely. Here, we demonstrate that an optimal level centromeric noncoding RNA is required for budding yeast centromere activity. Centromeric transcription is induced in S phase, coinciding with the assembly of new centromeric proteins. Too much or too little centromeric noncoding RNA leads to centromere malfunction. Overexpression of centromeric noncoding RNA reduces the protein levels and chromatin localization of inner centromere and kinetochore proteins, such as CENP-A, CENP-C, and the chromosome passenger complex. This work shows that point centromere is epigenetically regulated by noncoding RNA. In budding yeast, which possesses simple point centromeres, we discovered that all of its centromeres express long noncoding RNAs (cenRNAs), especially in S phase. Induction of cenRNAs coincides with CENP-ACse4 loading time and is dependent on DNA replication. Centromeric transcription is repressed by centromere-binding factor Cbf1 and histone H2A variant H2A.ZHtz1. Deletion of CBF1 and H2A.ZHTZ1 results in an up-regulation of cenRNAs; an increased loss of a minichromosome; elevated aneuploidy; a down-regulation of the protein levels of centromeric proteins CENP-ACse4, CENP-A chaperone HJURPScm3, CENP-CMif2, SurvivinBir1, and INCENPSli15; and a reduced chromatin localization of CENP-ACse4, CENP-CMif2, and Aurora BIpl1. When the RNA interference system was introduced to knock down all cenRNAs from the endogenous chromosomes, but not the cenRNA from the circular minichromosome, an increase in minichromosome loss was still observed, suggesting that cenRNA functions in trans to regulate centromere activity. CenRNA knockdown partially alleviates minichromosome loss in cbf1Δ, htz1Δ, and cbf1Δ htz1Δ in a dose-dependent manner, demonstrating that cenRNA level is tightly regulated to epigenetically control point centromere function.
Collapse
|
2
|
Nannas NJ, O'Toole ET, Winey M, Murray AW. Chromosomal attachments set length and microtubule number in the Saccharomyces cerevisiae mitotic spindle. Mol Biol Cell 2014; 25:4034-48. [PMID: 25318669 PMCID: PMC4263447 DOI: 10.1091/mbc.e14-01-0016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Altering the number of kinetochores revealed that chromosomal attachments set the length of the metaphase spindle and the number of microtubules within it. Reducing the number of kinetochores increases length, whereas adding extra kinetochores shortens it, suggesting that kinetochore-generated inward forces help set spindle length in budding yeast. The length of the mitotic spindle varies among different cell types. A simple model for spindle length regulation requires balancing two forces: pulling, due to microtubules that attach to the chromosomes at their kinetochores, and pushing, due to interactions between microtubules that emanate from opposite spindle poles. In the budding yeast Saccharomyces cerevisiae, we show that spindle length scales with kinetochore number, increasing when kinetochores are inactivated and shortening on addition of synthetic or natural kinetochores, showing that kinetochore–microtubule interactions generate an inward force to balance forces that elongate the spindle. Electron microscopy shows that manipulating kinetochore number alters the number of spindle microtubules: adding extra kinetochores increases the number of spindle microtubules, suggesting kinetochore-based regulation of microtubule number.
Collapse
Affiliation(s)
- Natalie J Nannas
- Molecular and Cellular Biology Department, Harvard University, Cambridge, MA 02138 FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Eileen T O'Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309
| | - Mark Winey
- Molecular, Cellular, and Developmental Biology Department, University of Colorado, Boulder, CO 80309
| | - Andrew W Murray
- Molecular and Cellular Biology Department, Harvard University, Cambridge, MA 02138 FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
3
|
Abstract
The Rb protein is a tumor suppressor, which plays a pivotal role in the negative control of the cell cycle and in tumor progression. It has been shown that Rb protein (pRb) is responsible for a major G1 checkpoint, blocking S-phase entry and cell growth. The retinoblastoma family includes three members, Rb/p105, p107 and Rb2/p130, collectively referred to as 'pocket proteins'. The pRb protein represses gene transcription, required for transition from G1 to S phase, by directly binding to the transactivation domain of E2F and by binding to the promoter of these genes as a complex with E2F. pRb represses transcription also by remodeling chromatin structure through interaction with proteins such as hBRM, BRG1, HDAC1 and SUV39H1, which are involved in nucleosome remodeling, histone acetylation/deacetylation and methylation, respectively. Loss of pRb functions may induce cell cycle deregulation and so lead to a malignant phenotype. Gene inactivation of pRB through chromosomal mutations is one of the principal reasons for retinoblastoma tumor development. Functional inactivation of pRb by viral oncoprotein binding is also shown in many neoplasias such as cervical cancer, mesothelioma and AIDS-related Burkitt's lymphoma.
Collapse
Affiliation(s)
- C Giacinti
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | | |
Collapse
|
4
|
Ortiz J, Stemmann O, Rank S, Lechner J. A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev 1999; 13:1140-55. [PMID: 10323865 PMCID: PMC316948 DOI: 10.1101/gad.13.9.1140] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have established a one-hybrid screen that allows the in vivo localization of proteins at a functional Saccharomyces cerevisiae centromere. Applying this screen we have identified three proteins-Ctf19, Mcm21, and the product of an unspecified open reading frame that we named Okp1-as components of the budding yeast centromere. Ctf19, Mcm21, and Okp1 most likely form a protein complex that links CBF3, a protein complex directly associated with the CDE III element of the centromere DNA, with further components of the budding yeast centromere, Cbf1, Mif2, and Cse4. We demonstrate that the CDE III element is essential and sufficient to localize the established protein network to the centromere and propose that the interaction of the CDE II element with the CDE III localized protein complex facilitates a protein-DNA conformation that evokes the active centromere.
Collapse
Affiliation(s)
- J Ortiz
- Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, 93040 Regensburg, Germany
| | | | | | | |
Collapse
|
5
|
Meluh PB, Koshland D. Budding yeast centromere composition and assembly as revealed by in vivo cross-linking. Genes Dev 1997; 11:3401-12. [PMID: 9407032 PMCID: PMC524546 DOI: 10.1101/gad.11.24.3401] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The centromere-kinetochore complex is a specialized chromatin structure that mediates bipolar attachment of replicated chromosomes to the mitotic spindle, thereby ensuring proper sister chromatid separation during anaphase. The manner in which this important multimeric structure is specified and assembled within chromatin is unknown. Using in vivo cross-linking followed by immunoprecipitation, we show that the Mif2 protein of the budding yeast Saccharomyces cerevisiae, previously implicated in centromere function by genetic criteria, resides specifically at centromeric loci in vivo. This provides definitive evidence for structural conservation between yeast and mammalian centromeres, as Mif2p shares homology with CENP-C, a mammalian centromere protein. Ndc10p and Cbf1p, previously implicated in centromere function by genetic and in vitro biochemical assays, were also found to interact with centromeric DNA in vivo. By examining Mif2p, Ndc10p, and Cbf1p association with centromeric DNA derivatives, we demonstrate the existence of centromeric subcomplexes that may correspond to assembly intermediates. Based on these observations, we provide a simple model for centromere assembly. Finally, given the sensitivity of this technique, its application to other sequence-specific protein-DNA complexes within the cell, such as origins of replication and enhancer-promoter regions, could be of significant value.
Collapse
Affiliation(s)
- P B Meluh
- Howard Hughes Medical Institute, Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210, USA.
| | | |
Collapse
|
6
|
Strunnikov AV, Kingsbury J, Koshland D. CEP3 encodes a centromere protein of Saccharomyces cerevisiae. J Biophys Biochem Cytol 1995; 128:749-60. [PMID: 7876302 PMCID: PMC2120391 DOI: 10.1083/jcb.128.5.749] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have designed a screen to identify mutants specifically affecting kinetochore function in the yeast Saccharomyces cerevisiae. The selection procedure was based on the generation of "synthetic acentric" minichromosomes. "Synthetic acentric" minichromosomes contain a centromere locus, but lack centromere activity due to combination of mutations in centromere DNA and in a chromosomal gene (CEP) encoding a putative centromere protein. Ten conditional lethal cep mutants were isolated, seven were found to be alleles of NDC10 (CEP2) encoding the 110-kD protein of yeast kinetochore. Three mutants defined a novel essential gene CEP3. The CEP3 product (Cep3p) is a 71-kD protein with a potential DNA-binding domain (binuclear Zn-cluster). At nonpermissive temperature the cep3 cells arrest with an undivided nucleus and a short mitotic spindle. At permissive temperature the cep3 cells are unable to support segregation of minichromosomes with mutations in the central part of element III of yeast centromere DNA. These minichromosomes, when isolated from cep3 cultures, fail to bind bovine microtubules in vitro. The sum of genetic, cytological and biochemical data lead us to suggest that the Cep3 protein is a DNA-binding component of yeast centromere. Molecular mass and sequence comparison confirm that Cep3p is the p64 component of centromere DNA binding complex Cbf3 (Lechner, 1994).
Collapse
Affiliation(s)
- A V Strunnikov
- Carnegie Institution of Washington, Department of Embryology, Baltimore, Maryland 21210
| | | | | |
Collapse
|
7
|
Sorger PK, Severin FF, Hyman AA. Factors required for the binding of reassembled yeast kinetochores to microtubules in vitro. J Cell Biol 1994; 127:995-1008. [PMID: 7962081 PMCID: PMC2200058 DOI: 10.1083/jcb.127.4.995] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Kinetochores are structures that assemble on centromeric DNA and mediate the attachment of chromosomes to the microtubules of the mitotic spindle. The protein components of kinetochores are poorly understood, but the simplicity of the S. cerevisiae kinetochore makes it an attractive candidate for molecular dissection. Mutations in genes encoding CBF1 and CBF3, proteins that bind to yeast centromeres, interfere with chromosome segregation in vivo. To determine the roles played by these factors and by various regions of centromeric DNA in kinetochore function, we have developed a method to partially reassemble kinetochores on exogenous centromeric templates in vitro and to visualize the attachment of these reassembled kinetochore complexes to microtubules. In this assay, single reassembled complexes appear to mediate microtubule binding. We find that CBF3 is absolutely essential for this attachment but, contrary to previous reports (Hyman, A. A., K. Middleton, M. Centola, T.J. Mitchison, and J. Carbon. 1992. Microtubule-motor activity of a yeast centromere-binding protein complex. Nature (Lond.). 359:533-536) is not sufficient. Additional cellular factors interact with CBF3 to form active microtubule-binding complexes. This is mediated primarily by the CDEIII region of centromeric DNA but CDEII plays an essential modulatory role. Thus, the attachment of kinetochores to microtubules appears to involve a hierarchy of interactions by factors that assemble on a core complex consisting of DNA-bound CBF3.
Collapse
Affiliation(s)
- P K Sorger
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
8
|
Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol Cell Biol 1994. [PMID: 8289808 DOI: 10.1128/mcb.14.2.1293] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In haploid rad52 Saccharomyces cerevisiae strains unable to undergo homologous recombination, a chromosomal double-strand break (DSB) can be repaired by imprecise rejoining of the broken chromosome ends. We have used two different strategies to generate broken chromosomes: (i) a site-specific DSB generated at the MAT locus by HO endonuclease cutting or (ii) a random DSB generated by mechanical rupture during mitotic segregation of a conditionally dicentric chromosome. Broken chromosomes were repaired by deletions that were highly variable in size, all of which removed more sequences than was required either to prevent subsequent HO cleavage or to eliminate a functional centromere, respectively. The junction of the deletions frequently occurred where complementary strands from the flanking DNA could anneal to form 1 to 5 bp, although 12% (4 of 34) of the events appear to have occurred by blunt-end ligation. These types of deletions are very similar to the junctions observed in the repair of DSBs by mammalian cells (D. B. Roth and J. H. Wilson, Mol. Cell. Biol. 6:4295-4304, 1986). When a high level of HO endonuclease, expressed in all phases of the cell cycle, was used to create DSBs, we also recovered a large class of very small (2- or 3-bp) insertions in the HO cleavage site. These insertions appear to represent still another mechanism of DSB repair, apparently by annealing and filling in the overhanging 3' ends of the cleavage site. These types of events have also been well documented for vertebrate cells.
Collapse
|
9
|
Kramer KM, Brock JA, Bloom K, Moore JK, Haber JE. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol Cell Biol 1994; 14:1293-301. [PMID: 8289808 PMCID: PMC358484 DOI: 10.1128/mcb.14.2.1293-1301.1994] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In haploid rad52 Saccharomyces cerevisiae strains unable to undergo homologous recombination, a chromosomal double-strand break (DSB) can be repaired by imprecise rejoining of the broken chromosome ends. We have used two different strategies to generate broken chromosomes: (i) a site-specific DSB generated at the MAT locus by HO endonuclease cutting or (ii) a random DSB generated by mechanical rupture during mitotic segregation of a conditionally dicentric chromosome. Broken chromosomes were repaired by deletions that were highly variable in size, all of which removed more sequences than was required either to prevent subsequent HO cleavage or to eliminate a functional centromere, respectively. The junction of the deletions frequently occurred where complementary strands from the flanking DNA could anneal to form 1 to 5 bp, although 12% (4 of 34) of the events appear to have occurred by blunt-end ligation. These types of deletions are very similar to the junctions observed in the repair of DSBs by mammalian cells (D. B. Roth and J. H. Wilson, Mol. Cell. Biol. 6:4295-4304, 1986). When a high level of HO endonuclease, expressed in all phases of the cell cycle, was used to create DSBs, we also recovered a large class of very small (2- or 3-bp) insertions in the HO cleavage site. These insertions appear to represent still another mechanism of DSB repair, apparently by annealing and filling in the overhanging 3' ends of the cleavage site. These types of events have also been well documented for vertebrate cells.
Collapse
Affiliation(s)
- K M Kramer
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110
| | | | | | | | | |
Collapse
|