1
|
Mabin JW, Lewis PW, Brow DA, Dvinge H. Human spliceosomal snRNA sequence variants generate variant spliceosomes. RNA (NEW YORK, N.Y.) 2021; 27:1186-1203. [PMID: 34234030 PMCID: PMC8457000 DOI: 10.1261/rna.078768.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/29/2021] [Indexed: 06/02/2023]
Abstract
Human pre-mRNA splicing is primarily catalyzed by the major spliceosome, comprising five small nuclear ribonucleoprotein complexes, U1, U2, U4, U5, and U6 snRNPs, each of which contains the corresponding U-rich snRNA. These snRNAs are encoded by large gene families exhibiting significant sequence variation, but it remains unknown if most human snRNA genes are untranscribed pseudogenes or produce variant snRNAs with the potential to differentially influence splicing. Since gene duplication and variation are powerful mechanisms of evolutionary adaptation, we sought to address this knowledge gap by systematically profiling human U1, U2, U4, and U5 snRNA variant gene transcripts. We identified 55 transcripts that are detectably expressed in human cells, 38 of which incorporate into snRNPs and spliceosomes in 293T cells. All U1 snRNA variants are more than 1000-fold less abundant in spliceosomes than the canonical U1, whereas at least 1% of spliceosomes contain a variant of U2 or U4. In contrast, eight U5 snRNA sequence variants occupy spliceosomes at levels of 1% to 46%. Furthermore, snRNA variants display distinct expression patterns across five human cell lines and adult and fetal tissues. Different RNA degradation rates contribute to the diverse steady state levels of snRNA variants. Our findings suggest that variant spliceosomes containing noncanonical snRNAs may contribute to different tissue- and cell-type-specific alternative splicing patterns.
Collapse
Affiliation(s)
- Justin W Mabin
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - Heidi Dvinge
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| |
Collapse
|
2
|
Wong DK, Stark MS, Rader SD, Fast NM. Characterization of Pre-mRNA Splicing and Spliceosomal Machinery in Porphyridium purpureum and Evolutionary Implications for Red Algae. J Eukaryot Microbiol 2021; 68:e12844. [PMID: 33569840 DOI: 10.1111/jeu.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Pre-mRNA splicing is a highly conserved eukaryotic process, but our understanding of it is limited by a historical focus on well-studied organisms such as humans and yeast. There is considerable diversity in mechanisms and components of pre-mRNA splicing, especially in lineages that have evolved under the pressures of genome reduction. The ancestor of red algae is thought to have undergone genome reduction prior to the lineage's radiation, resulting in overall gene and intron loss in extant groups. Previous studies on the extremophilic red alga Cyanidioschyzon merolae revealed an intron-sparse genome with a highly reduced spliceosome. To determine whether these features applied to other red algae, we investigated multiple aspects of pre-mRNA splicing in the mesophilic red alga Porphyridium purpureum. Through strand-specific RNA-Seq, we observed high levels of intron retention across a large number of its introns, and nearly half of the transcripts for these genes are not spliced at all. We also discovered a relationship between variability of 5' splice site sequences and levels of splicing. To further investigate the connections between intron retention and splicing machinery, we bioinformatically assembled the P. purpureum spliceosome, and biochemically verified the presence of snRNAs. While most other core spliceosomal components are present, our results suggest highly divergent or missing U1 snRNP proteins, despite the presence of an uncharacteristically long U1 snRNA. These unusual aspects highlight the diverse nature of pre-mRNA splicing that can be seen in lesser-studied eukaryotes, raising the importance of investigating fundamental eukaryotic processes outside of model organisms.
Collapse
Affiliation(s)
- Donald K Wong
- Department of Botany, University of British Columbia, 3156-6270 University Boulevard, Vancouver, BC, Canada
| | - Martha S Stark
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada
| | - Stephen D Rader
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada
| | - Naomi M Fast
- Department of Botany, University of British Columbia, 3156-6270 University Boulevard, Vancouver, BC, Canada
| |
Collapse
|
3
|
Morais P, Adachi H, Yu YT. Spliceosomal snRNA Epitranscriptomics. Front Genet 2021; 12:652129. [PMID: 33737950 PMCID: PMC7960923 DOI: 10.3389/fgene.2021.652129] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Small nuclear RNAs (snRNAs) are critical components of the spliceosome that catalyze the splicing of pre-mRNA. snRNAs are each complexed with many proteins to form RNA-protein complexes, termed as small nuclear ribonucleoproteins (snRNPs), in the cell nucleus. snRNPs participate in pre-mRNA splicing by recognizing the critical sequence elements present in the introns, thereby forming active spliceosomes. The recognition is achieved primarily by base-pairing interactions (or nucleotide-nucleotide contact) between snRNAs and pre-mRNA. Notably, snRNAs are extensively modified with different RNA modifications, which confer unique properties to the RNAs. Here, we review the current knowledge of the mechanisms and functions of snRNA modifications and their biological relevance in the splicing process.
Collapse
Affiliation(s)
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
4
|
Åsman AKM, Curtis BA, Archibald JM. Nucleomorph Small RNAs in Cryptophyte and Chlorarachniophyte Algae. Genome Biol Evol 2019; 11:1117-1134. [PMID: 30949682 PMCID: PMC6461891 DOI: 10.1093/gbe/evz064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2019] [Indexed: 12/27/2022] Open
Abstract
The regulation of gene expression and RNA maturation underlies fundamental processes such as cell homeostasis, development, and stress acclimation. The biogenesis and modification of RNA is tightly controlled by an array of regulatory RNAs and nucleic acid-binding proteins. While the role of small RNAs (sRNAs) in gene expression has been studied in-depth in select model organisms, little is known about sRNA biology across the eukaryotic tree of life. We used deep sequencing to explore the repertoires of sRNAs encoded by the miniaturized, endosymbiotically derived “nucleomorph” genomes of two single-celled algae, the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. A total of 32.3 and 35.3 million reads were generated from G. theta and B. natans, respectively. In G. theta, we identified nucleomorph U1, U2, and U4 spliceosomal small nuclear RNAs (snRNAs) as well as 11 C/D box small nucleolar RNAs (snoRNAs), five of which have potential plant and animal homologs. The snoRNAs are predicted to perform 2′-O methylation of rRNA (but not snRNA). In B. natans, we found the previously undetected 5S rRNA as well as six orphan sRNAs. Analysis of chlorarachniophyte snRNAs shed light on the removal of the miniature 18–21 nt introns found in B. natans nucleomorph genes. Neither of the nucleomorph genomes appears to encode RNA pseudouridylation machinery, and U5 snRNA cannot be found in the cryptophyte G. theta. Considering the central roles of U5 snRNA and RNA modifications in other organisms, cytoplasm-to-nucleomorph RNA shuttling in cryptophyte algae is a distinct possibility.
Collapse
Affiliation(s)
- Anna K M Åsman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Nova Scotia, Canada.,Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Nova Scotia, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
5
|
Abstract
MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and were inserted itself in the noncoding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-tuning of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. MiRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, manufactured intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy, and generation of transgenic animal models. The biogenesis of miRNAs, circulating miRNAs, miRNAs and cancer, iPSCs, and heart disease are presented in this chapter, highlighting some recent studies on these topics.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Donald C Chang
- WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| | - Shi-Lung Lin
- Division of Regenerative Medicine, WJWU & LYNN Institute for Stem Cell Research, Santa Fe Springs, CA, USA
| |
Collapse
|
6
|
Yan C, Wan R, Bai R, Huang G, Shi Y. Structure of a yeast step II catalytically activated spliceosome. Science 2016; 355:149-155. [PMID: 27980089 DOI: 10.1126/science.aak9979] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/05/2016] [Indexed: 12/30/2022]
Abstract
Each cycle of precursor messenger RNA (pre-mRNA) splicing comprises two sequential reactions, first freeing the 5' exon and generating an intron lariat-3' exon and then ligating the two exons and releasing the intron lariat. The second reaction is executed by the step II catalytically activated spliceosome (known as the C* complex). Here, we present the cryo-electron microscopy structure of a C* complex from Saccharomyces cerevisiae at an average resolution of 4.0 angstroms. Compared with the preceding spliceosomal complex (C complex), the lariat junction has been translocated by 15 to 20 angstroms to vacate space for the incoming 3'-exon sequences. The step I splicing factors Cwc25 and Yju2 have been dissociated from the active site. Two catalytic motifs from Prp8 (the 1585 loop and the β finger of the ribonuclease H-like domain), along with the step II splicing factors Prp17 and Prp18 and other surrounding proteins, are poised to assist the second transesterification. These structural features, together with those reported for other spliceosomal complexes, yield a near-complete mechanistic picture on the splicing cycle.
Collapse
Affiliation(s)
- Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Yamauchi Y, Nobe Y, Izumikawa K, Higo D, Yamagishi Y, Takahashi N, Nakayama H, Isobe T, Taoka M. A mass spectrometry-based method for direct determination of pseudouridine in RNA. Nucleic Acids Res 2015; 44:e59. [PMID: 26673725 PMCID: PMC4824092 DOI: 10.1093/nar/gkv1462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/27/2015] [Indexed: 02/01/2023] Open
Abstract
Pseudouridine (5-ribosyluracil, Ψ) is the only ‘mass-silent’ nucleoside produced by post-transcriptional RNA modification. We describe here a novel mass spectrometry (MS)-based method for direct determination of Ψ in RNA. The method assigns a Ψ-containing nucleolytic RNA fragment by an accurate measurement of a signature doubly dehydrated nucleoside anion ([C9H7N2O4]1−, m/z 207.04) produced by collision-induced dissociation MS, and it determines the Ψ-containing nucleotide sequence by pseudo-MS3, i.e. in-source fragmentation followed by MS2. By applying this method, we identified all of the known Ψs in the canonical human spliceosomal snRNAs and, unexpectedly, found two previously unknown Ψs in the U5 and U6 snRNAs. Because the method allows direct determination of Ψ in a subpicomole quantity of RNA, it will serve as a useful tool for the structure/function studies of a wide variety of non-coding RNAs.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Keiichi Izumikawa
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Daisuke Higo
- Thermo Fisher Scientific, 3-9 Moriya-cho, Kanagawa-ku, Yokohama-shi, Kanagawa 221-0022, Japan
| | - Yoko Yamagishi
- Thermo Fisher Scientific, 3-9 Moriya-cho, Kanagawa-ku, Yokohama-shi, Kanagawa 221-0022, Japan
| | - Nobuhiro Takahashi
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan
| | - Hiroshi Nakayama
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
8
|
Nancollis V, Ruckshanthi JPD, Frazer LN, O'Keefe RT. The U5 snRNA internal loop 1 is a platform for Brr2, Snu114 and Prp8 protein binding during U5 snRNP assembly. J Cell Biochem 2014; 114:2770-84. [PMID: 23857713 PMCID: PMC4065371 DOI: 10.1002/jcb.24625] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 06/26/2013] [Indexed: 12/25/2022]
Abstract
The U5 small nuclear ribonucleoprotein particle (snRNP) forms the heart of the spliceosome which is required for intron removal from pre-mRNA. The proteins Prp8, Snu114 and Brr2 all assemble with the U5 small nuclear RNA (snRNA) to produce the U5 snRNP. Successful assembly of the U5 snRNP, then incorporation of this snRNP into the U4/U6.U5 tri-snRNP and the spliceosome, is essential for producing an active spliceosome. We have investigated the requirements for Prp8, Snu114 and Brr2 association with the U5 snRNA to form the U5 snRNP in yeast. Mutations were constructed in the highly conserved loop 1 and internal loop 1 (IL1) of the U5 snRNA and their function assessed in vivo. The influence of these U5 mutations on association of Prp8, Snu114 and Brr2 with the U5 snRNA were then determined. U5 snRNA loop 1 and both sides of IL1 in U5 were important for association of Prp8, Snu114 and Brr2 with the U5 snRNA. Mutations in the 3′ side of U5 IL1 resulted in the greatest reduction of Prp8, Snu114 and Brr2 association with the U5 snRNA. Genetic screening of brr2 and U5 snRNA mutants revealed synthetic lethal interactions between alleles in Brr2 and the 3′ side of U5 snRNA IL1 which reflects reduced association between Brr2 and U5 IL1. We propose that the U5 snRNA IL1 is a platform for protein binding and is required for Prp8, Brr2 and Snu114 association with the U5 snRNA to form the U5 snRNP. J. Cell. Biochem. 114: 2770–2784, 2013. © 2013 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Verity Nancollis
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
9
|
Li X, Zhang W, Xu T, Ramsey J, Zhang L, Hill R, Hansen KC, Hesselberth JR, Zhao R. Comprehensive in vivo RNA-binding site analyses reveal a role of Prp8 in spliceosomal assembly. Nucleic Acids Res 2013; 41:3805-18. [PMID: 23393194 PMCID: PMC3616732 DOI: 10.1093/nar/gkt062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Prp8 stands out among hundreds of splicing factors as a protein that is intimately involved in spliceosomal activation and the catalytic reaction. Here, we present the first comprehensive in vivo RNA footprints for Prp8 in budding yeast obtained using CLIP (cross-linking and immunoprecipitation)/CRAC (cross-linking and analyses of cDNAs) and next-generation DNA sequencing. These footprints encompass known direct Prp8-binding sites on U5, U6 snRNA and intron-containing pre-mRNAs identified using site-directed cross-linking with in vitro assembled small nuclear ribonucleoproteins (snRNPs) or spliceosome. Furthermore, our results revealed novel Prp8-binding sites on U1 and U2 snRNAs. We demonstrate that Prp8 directly cross-links with U2, U5 and U6 snRNAs and pre-mRNA in purified activated spliceosomes, placing Prp8 in position to bring the components of the active site together. In addition, disruption of the Prp8 and U1 snRNA interaction reduces tri-snRNP level in the spliceosome, suggesting a previously unknown role of Prp8 in spliceosomal assembly through its interaction with U1 snRNA.
Collapse
Affiliation(s)
- Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
The 5S rDNA High Dynamism in Diplodus sargus is a Transposon-Mediated Mechanism. Comparison with Other Multigene Families and Sparidae Species. J Mol Evol 2013; 76:83-97. [DOI: 10.1007/s00239-013-9541-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/10/2013] [Indexed: 01/27/2023]
|
11
|
Horowitz DS. The mechanism of the second step of pre-mRNA splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:331-50. [PMID: 22012849 DOI: 10.1002/wrna.112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The molecular mechanisms of the second step of pre-mRNA splicing in yeast and higher eukaryotes are reviewed. The important elements in the pre-mRNA, the participating proteins, and the proposed secondary structures and roles of the snRNAs are described. The sequence of events in the second step is presented, focusing on the actions of the proteins in setting up and facilitating the second reaction. Mechanisms for avoiding errors in splicing are discussed.
Collapse
Affiliation(s)
- David S Horowitz
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
12
|
Kershaw CJ, Barrass JD, Beggs JD, O'Keefe RT. Mutations in the U5 snRNA result in altered splicing of subsets of pre-mRNAs and reduced stability of Prp8. RNA (NEW YORK, N.Y.) 2009; 15:1292-304. [PMID: 19447917 PMCID: PMC2704078 DOI: 10.1261/rna.1347409] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 03/27/2009] [Indexed: 05/04/2023]
Abstract
The U5 snRNA loop 1 aligns the 5' and 3' exons for ligation during the second step of pre-mRNA splicing. U5 is intimately associated with Prp8, which mediates pre-mRNA repositioning within the catalytic core of the spliceosome and interacts directly with U5 loop 1. The genome-wide effect of three U5 loop 1 mutants has been assessed by microarray analysis. These mutants exhibited impaired and improved splicing of subsets of pre-mRNAs compared to wild-type U5. Analysis of pre-mRNAs that accumulate revealed a change in base prevalence at specific positions near the splice sites. Analysis of processed pre-mRNAs exhibiting mRNA accumulation revealed a bias in base prevalence at one position within the 5' exon. While U5 loop 1 can interact with some of these positions the base bias is not directly related to sequence changes in loop 1. All positions that display a bias in base prevalence are at or next to positions known to interact with Prp8. Analysis of Prp8 in the presence of the three U5 loop 1 mutants revealed that the most severe mutant displayed reduced Prp8 stability. Depletion of U5 snRNA in vivo also resulted in reduced Prp8 stability. Our data suggest that certain mutations in U5 loop 1 perturb the stability of Prp8 and may affect interactions of Prp8 with a subset of pre-mRNAs influencing their splicing. Therefore, the integrity of U5 is important for the stability of Prp8 during splicing and provides one possible explanation for why U5 loop 1 and Prp8 are so highly conserved.
Collapse
Affiliation(s)
- Christopher J Kershaw
- Faculty of Life Sciences, The University of Manchester, Manchester M139PT, United Kingdom
| | | | | | | |
Collapse
|
13
|
Mitrovich QM, Guthrie C. Evolution of small nuclear RNAs in S. cerevisiae, C. albicans, and other hemiascomycetous yeasts. RNA (NEW YORK, N.Y.) 2007; 13:2066-2080. [PMID: 17956975 PMCID: PMC2080600 DOI: 10.1261/rna.766607] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Accepted: 08/29/2007] [Indexed: 05/25/2023]
Abstract
The spliceosome is a large, dynamic ribonuclear protein complex, required for the removal of intron sequences from newly synthesized eukaryotic RNAs. The spliceosome contains five essential small nuclear RNAs (snRNAs): U1, U2, U4, U5, and U6. Phylogenetic comparisons of snRNAs from protists to mammals have long demonstrated remarkable conservation in both primary sequence and secondary structure. In contrast, the snRNAs of the hemiascomycetous yeast Saccharomyces cerevisiae have highly unusual features that set them apart from the snRNAs of other eukaryotes. With an emphasis on the pathogenic yeast Candida albicans, we have now identified and compared snRNAs from newly sequenced yeast genomes, providing a perspective on spliceosome evolution within the hemiascomycetes. In addition to tracing the origins of previously identified snRNA variations present in Saccharomyces cerevisiae, we have found numerous unexpected changes occurring throughout the hemiascomycetous lineages. Our observations reveal interesting examples of RNA and protein coevolution, giving rise to altered interaction domains, losses of deeply conserved snRNA-binding proteins, and unique snRNA sequence changes within the catalytic center of the spliceosome. These same yeast lineages have experienced exceptionally high rates of intron loss, such that modern hemiascomycetous genomes contain introns in only approximately 5% of their genes. Also, the splice site sequences of those introns that remain adhere to an unusually strict consensus. Some of the snRNA variations we observe may thus reflect the altered intron landscape with which the hemiascomycetous spliceosome must contend.
Collapse
Affiliation(s)
- Quinn M Mitrovich
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143-2200, USA
| | | |
Collapse
|
14
|
Ying SY, Chang DC, Lin SL. The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol 2007; 38:257-68. [PMID: 17999201 PMCID: PMC7091389 DOI: 10.1007/s12033-007-9013-8] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 10/22/2007] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and inserted in the non-coding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-funing of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. Recently, miRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, man-made intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy and generation of transgenic animal models. The biogenesis and identification of miRNAs, potential applications, and future directions for research are presented, hopefully providing a guideline for further miRNA and gene function studies.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, BMT-403, Los Angeles, CA, 90033, USA.
| | | | | |
Collapse
|
15
|
Aronova A, Bacíková D, Crotti LB, Horowitz DS, Schwer B. Functional interactions between Prp8, Prp18, Slu7, and U5 snRNA during the second step of pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2007; 13:1437-44. [PMID: 17626844 PMCID: PMC1950762 DOI: 10.1261/rna.572807] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
After the second transesterification step of pre-mRNA splicing, the Prp22 helicase catalyzes release of spliced mRNA by disrupting contacts in the spliceosome that likely involve Prp8. Mutations at Arg1753 in Prp8, which suppress helicase-defective prp22 mutants, elicit temperature-sensitive growth phenotypes, indicating that interactions in the spliceosome involving Prp8-R1753 might be broken prematurely at 37 degrees C. Here we report that mutations in loop I of the U5 snRNA or in Prp18 can suppress the temperature-sensitive prp8-R1753 mutants. The same gain-of-function PRP18 alleles can also alleviate the growth phenotypes of multiple slu7-ts mutants, indicating a functional link between Prp8 and the second step splicing factors Prp18 and Slu7. These findings, together with the demonstration that changes at Arg1753 in Prp8 impair step 2 of pre-mRNA splicing in vitro, are consistent with a model in which (1) Arg1753 plays a role in stabilizing U5/exon interactions prior to exon joining and (2) these contacts persist until they are broken by the helicase Prp22.
Collapse
Affiliation(s)
- Anna Aronova
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
16
|
Manchado M, Zuasti E, Cross I, Merlo A, Infante C, Rebordinos L. Molecular characterization and chromosomal mapping of the 5S rRNA gene in Solea senegalensis: a new linkage to the U1, U2, and U5 small nuclear RNA genes. Genome 2006; 49:79-86. [PMID: 16462904 DOI: 10.1139/g05-068] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Some units of the 5S rDNA of Solea senegalensis were amplified by PCR and sequenced. Three main PCR products (227, 441, and 2166 bp) were identified. The 227- and 441-bp fragments were characterized by highly divergent nontranscribed spacer sequences (referred to as NTS-I and NTS-II) that were 109 and 324 bp long, respectively, yet their coding sequences were nearly identical. The 2166-bp 5S rDNA unit was composed of two 5S rRNA genes separated by NTS-I and followed by a 1721-bp spacer containing the U2, U5, and U1 small nuclear RNA genes (snRNAs). They were inverted and arranged in the transcriptional direction opposite that of the 5S rRNA gene. This simultaneous linkage of 3 different snRNAs had never been observed before. The PCR products were used as probes in fluorescence in situ hybridization experiments to locate the corresponding loci on the chromosomes of S. senegalensis. A major 5S rDNA chromosomal site was located along most of the short arm of a submetacentric pair, while a minor site was detected near the centromeric region of an acrocentric pair.
Collapse
Affiliation(s)
- Manuel Manchado
- Laboratorio de Identificación de Especies Pesqueras y Acuícolas, CIFPA, El Toruño, IFAPA, Consejería de Innovación, Ciencia y Empresa, El Puerto de Santa María, Cádiz, Spain.
| | | | | | | | | | | |
Collapse
|
17
|
Brenner TJ, Guthrie C. Assembly of Snu114 into U5 snRNP requires Prp8 and a functional GTPase domain. RNA (NEW YORK, N.Y.) 2006; 12:862-71. [PMID: 16540695 PMCID: PMC1440915 DOI: 10.1261/rna.2319806] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Snu114 is a U5 snRNP protein essential for pre-mRNA splicing. Based on its homology with the ribosomal translocase EF-G, it is thought that GTP hydrolysis by Snu114 induces conformational rearrangements in the spliceosome. We recently identified allele-specific genetic interactions between SNU114 and genes encoding three other U5 snRNP components, Prp8 and two RNA-dependent ATPases, Prp28 and Brr2, required for destabilization of U1 and U4 snRNPs prior to catalysis. To shed more light onto the function of Snu114, we have now directly analyzed snRNP and spliceosome assembly in SNU114 mutant extracts. The Snu114-60 C-terminal truncation mutant, which is synthetically lethal with the ATPase mutants prp28-1 and brr2-1, assembles spliceosomes but subsequently blocks U4 snRNP release. Conversely, mutants in the GTPase domain fail to assemble U5 snRNPs. These mutations prevent the interaction of Snu114 with Prp8 as well as with U5 snRNA. Since Prp8 is thought to regulate the activity of the DEAD-box ATPases, this strategy of snRNP assembly could ensure that Prp8 activity is itself regulated by a GTP-dependent mechanism.
Collapse
Affiliation(s)
- Tamara J Brenner
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-2200, USA
| | | |
Collapse
|
18
|
Chen L, Lullo DJ, Ma E, Celniker SE, Rio DC, Doudna JA. Identification and analysis of U5 snRNA variants in Drosophila. RNA (NEW YORK, N.Y.) 2005; 11:1473-7. [PMID: 16199758 PMCID: PMC1370830 DOI: 10.1261/rna.2141505] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Distinct isoforms of spliceosomal RNAs may be involved in regulating pre-messenger RNA splicing in eukaryotic cells. During a large-scale effort to identify small noncoding RNAs in Drosophila, we isolated a U5 snRNA-like molecule containing a 5' segment identical to that of the canonical (major) U5 snRNA but with a variant Sm binding site and a distinct 3' hairpin sequence. Based on this finding, another six similar U5 snRNA-like sequences were identified within the Drosophila genome by sequence similarity to the invariant loop in the 5' half of U5. Interestingly, although all of these variants are expressed in vivo, each shows a distinct temporal expression profile during Drosophila development, and one is expressed primarily in fly heads. The presence of these U5 snRNA variants within RNP particles suggests their role in splicing and implies a possible connection to regulation of developmental and tissue-specific gene expression.
Collapse
|
19
|
Jean-Joseph B, Flisser A, Martinez A, Metzenberg S. The U5/U6 snRNA genomic repeat of Taenia solium. J Parasitol 2003; 89:329-35. [PMID: 12760649 DOI: 10.1645/0022-3395(2003)089[0329:tusgro]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The U6 and U5 snRNA (small nuclear ribonucleic acid) genes were identified in Taenia solium with the aim of characterizing their sequence and genomic structures. They are contained within a shared 1,009-nt tandem genomic repeat and present at approximately 3 copies per haploid genome. The U6 snRNA gene shares 92 and 95% sequence similarity with the U6 homologs from humans and Schistosoma mansoni, respectively. The U5 snRNA gene of T. solium is 70% similar to the human U5 sequence in the 5' stem and loop 1 domains. The U6 and U5 snRNA genes are on complementary genomic strands and separated by 458 nt at their "heads" and 306 nt at their "tails." The nucleotides upstream of the U6 gene lack a recognizable TATA box and proximal sequence elements (PSEs), and the putative gene promoter for U5 snRNA does not resemble vertebrate examples. There are short blocks of similarity between the sequences upstream of the U5 and U6 snRNA genes, and these may be sites of shared transcription factor binding at the respective RNA polymerase II and III promoters. It is possible that this unusual allied U5/U6 snRNA genomic repeat may help mediate coordinated regulation of expression of the 2 snRNAs.
Collapse
Affiliation(s)
- Bernadette Jean-Joseph
- Department of Biology, California State University Northridge, 18111 Nordhoff Street, Northridge, California 91330-8303, USA
| | | | | | | |
Collapse
|
20
|
Mougin A, Gottschalk A, Fabrizio P, Lührmann R, Branlant C. Direct probing of RNA structure and RNA-protein interactions in purified HeLa cell's and yeast spliceosomal U4/U6.U5 tri-snRNP particles. J Mol Biol 2002; 317:631-49. [PMID: 11955014 DOI: 10.1006/jmbi.2002.5451] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The U4/U6.U5 tri-snRNP is a key component of spliceosomes. By using chemical reagents and RNases, we performed the first extensive experimental analysis of the structure and accessibility of U4 and U6 snRNAs in tri-snRNPs. These were purified from HeLa cell nuclear extract and Saccharomyces cerevisiae cellular extract. U5 accessibility was also investigated. For both species, data demonstrate the formation of the U4/U6 Y-shaped structure. In the human tri-snRNP and U4/U6 snRNP, U6 forms the long range interaction, that was previously proposed to be responsible for dissociation of the deproteinized U4/U6 duplex. In both yeast and human tri-snRNPs, U5 is more protected than U4 and U6, suggesting that the U5 snRNP-specific protein complex and other components of the tri-snRNP wrapped the 5' stem-loop of U5. Loop I of U5 is partially accessible, and chemical modifications of loop I were identical in yeast and human tri-snRNPs. This reflects a strong conservation of the interactions of proteins with the functional loop I. Only some parts of the U4/U6 Y-shaped motif (the 5' stem-loop of U4 and helix II) are protected. Due to difference of protein composition of yeast and human tri-snRNP, the U6 segment linking the 5' stem-loop to the Y-shaped structure and the U4 central single-stranded segment are more accessible in the yeast than in the human tri-snRNP, especially, the phylogenetically conserved ACAGAG sequence of U6. Data are discussed taking into account knowledge on RNA and protein components of yeast and human snRNPs and their involvement in splicesome assembly.
Collapse
Affiliation(s)
- Annie Mougin
- UMR 7567 CNRS-UHP Nancy I, Maturation des ARN et Enzymologie Moléculaire, Université H. Poincaré B.P. 239, 54506 Vandoeuvre-les Nancy Cédex, France
| | | | | | | | | |
Collapse
|
21
|
Lund M, Kjems J. Defining a 5' splice site by functional selection in the presence and absence of U1 snRNA 5' end. RNA (NEW YORK, N.Y.) 2002; 8:166-179. [PMID: 11911363 PMCID: PMC1370240 DOI: 10.1017/s1355838202010786] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pre-mRNA splicing in metazoans is mainly specified by sequences at the termini of introns. We have selected functional 5' splice sites from randomized intron sequences through repetitive rounds of in vitro splicing in HeLa cell nuclear extract. The consensus sequence obtained after one round of selection in normal extract closely resembled the consensus of natural occurring 5' splice sites, suggesting that the selection pressures in vitro and in vivo are similar. After three rounds of selection under competitive splicing conditions, the base pairing potential to the U1 snRNA increased, yielding a G100%U100%R94%A67%G89%U76%R83% intronic consensus sequence. Surprisingly, a nearly identical consensus sequence was obtained when the selection was performed in nuclear extract containing U1 snRNA with a deleted 5' end, suggesting that other factors than the U1 snRNA are involved in 5' splice site recognition. The importance of a consecutive complementarity between the 5' splice site and the U1 snRNA was analyzed systematically in the natural range for in vitro splicing efficiency and complex formation. Extended complementarity was inhibitory to splicing at a late step in spliceosome assembly when pre-mRNA substrates were incubated in normal extract, but favorable for splicing under competitive splicing conditions or in the presence of truncated U1 snRNA where transition from complex A to complex B occurred more rapidly. This suggests that stable U1 snRNA binding is advantageous for assembly of commitment complexes, but inhibitory for the entry of the U4/U6.U5 tri-snRNP, probably due to a delayed release of the U1 snRNP.
Collapse
Affiliation(s)
- Mette Lund
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | |
Collapse
|
22
|
Luukkonen BG, Séraphin B. A conditional U5 snRNA mutation affecting pre-mRNA splicing and nuclear pre-mRNA retention identifies SSD1/SRK1 as a general splicing mutant suppressor. Nucleic Acids Res 1999; 27:3455-65. [PMID: 10446233 PMCID: PMC148587 DOI: 10.1093/nar/27.17.3455] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A combination of point mutations disrupting both stem 1 and stem 2 of U5 snRNA (U5AI) was found to confer a thermosensitive phenotype in vivo. In a strain expressing U5AI, pre-mRNA splicing was blocked before the first step through an inability of the mutant U5 snRNA to efficiently associate with the U4/U6 di-snRNP. Formation of early splicing complexes was not affected in extracts prepared from U5 snRNA mutant cells, while the capacity of these extracts to splice a pre-mRNA in vitro was greatly diminished. In addition, significant levels of a translation product derived from intron containing pre-mRNAs could be detected in vivo. The SSD1/SRK1 gene was identified as a multi-copy suppressor of the U5AI snRNA mutant. Single copy expression of SSD1/SRK1 was sufficient to suppress the thermosensitive phenotype, and high copy expression partially suppressed the splicing and U4/U6.U5 tri-snRNP assembly pheno-types. SSD1/SRK1 also suppressed thermosensitive mutations in the Prp18p and U1-70K proteins, while inhibiting growth of the cold sensitive U1-4U snRNA mutant at 30 degrees C. Thus we have identified SSD1/SRK1 as a general suppressor of splicing mutants.
Collapse
Affiliation(s)
- B G Luukkonen
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
23
|
Kambach C, Walke S, Young R, Avis JM, de la Fortelle E, Raker VA, Lührmann R, Li J, Nagai K. Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 1999; 96:375-87. [PMID: 10025403 DOI: 10.1016/s0092-8674(00)80550-4] [Citation(s) in RCA: 348] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F, and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs (snRNAs). These proteins share a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. Crystal structures of two Sm protein complexes, D3B and D1D2, show that these proteins have a common fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta sheet, and the D1D2 and D3B dimers superpose closely in their core regions, including the dimer interfaces. The crystal structures suggest that the seven Sm proteins could form a closed ring and the snRNAs may be bound in the positively charged central hole.
Collapse
Affiliation(s)
- C Kambach
- MRC Laboratory of Molecular Biology, Cambridge, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dix I, Russell CS, O'Keefe RT, Newman AJ, Beggs JD. Protein-RNA interactions in the U5 snRNP of Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 1998; 4:1239-50. [PMID: 9769098 PMCID: PMC1369696 DOI: 10.1017/s1355838298981109] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present here the first insights into the organization of proteins on the RNA in the U5 snRNP of Saccharomyces cerevisiae. Photo-crosslinking with uniformly labeled U5 RNA in snRNPs reconstituted in vitro revealed five contacting proteins, Prp8p, Snu114p, p30, p16, and p10, contact by the three smaller proteins requiring an intact Sm site. Site-specific crosslinking showed that Snu114p contacts the 5' side of internal loop 1, whereas Prp8p interacts with five different regions of the 5' stem-loop, but not with the Sm site or 3' stem-loop. Both internal loops in the 5' domain are essential for Prp8p to associate with the snRNP, but the conserved loop 1 is not, although this is the region to which Prp8p crosslinks most strongly. The extensive contacts between Prp8p and the 5' stem-loop of U5 RNA support the hypothesis that, in spliceosomes, Prp8p stabilizes loop 1-exon interactions. Moreover, data showing that Prp8p contacts the exons even in the absence of loop 1 indicate that Prp8p may be the principal anchoring factor for exons in the spliceosome. This and the close proximity of the spliceosomal translocase, Snu114p, to U5 loop 1 and Prp8p support and extend the proposal that Snu114p mimics U5 loop 1 during a translocation event in the spliceosome.
Collapse
Affiliation(s)
- I Dix
- Institute of Cell and Molecular Biology, University of Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
25
|
Luukkonen BG, Séraphin B. Construction of an in vivo-regulated U6 snRNA transcription unit as a tool to study U6 function. RNA (NEW YORK, N.Y.) 1998; 4:231-238. [PMID: 9570323 PMCID: PMC1369612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
U6 snRNA is the only spliceosomal snRNA transcribed by RNA polymerase III in yeast. We have constructed a regulated U6 snRNA transcription unit by introducing the binding site for the Escherichia coli lacI repressor protein in the U6 snRNA promoter. GAL-induced expression of lacI protein led to a decrease in U6 snRNA levels and blocked cell growth. lacI dissociation from the promoter, and consequent U6 snRNA transcription, could be induced by addition of IPTG and repression of lacI transcription. To test the usefulness of this system in studying spliceosomal U6 snRNA function, we conditionally expressed U6 snRNAs with a single base substitution in position A51. We demonstrate that expression of the U6-A51 mutations confers a strong dominant negative phenotype as shown by severe reductions in growth rate. In these strains, splicing of endogenous pre-mRNAs was blocked before the second step.
Collapse
Affiliation(s)
- B G Luukkonen
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
26
|
Hetzer M, Wurzer G, Schweyen RJ, Mueller MW. Trans-activation of group II intron splicing by nuclear U5 snRNA. Nature 1997; 386:417-20. [PMID: 9121561 DOI: 10.1038/386417a0] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Similarities between RNA splicing during autocatalytic excision of group II introns and pre-mRNA processing led to the hypothesis that group II introns might be the evolutionary predecessors of spliceosomal small nuclear RNAs. The ID3 subdomain stem-loop structure of group II introns, the proposed analogue of the spliceosomal U5 snRNA, is thought to be essential for 5' splice site recognition and anchoring of the free 5' exon. Using the group II intron bI1 we have analysed the role of ID3 in splicing. In the absence of ID3 the 5' splice site was recognized accurately and efficiently, but exon anchoring was greatly reduced. This step was restored in the presence of RNA fragments consisting of either the terminal stem-loop structure of ID3 or spliceosomal U5 snRNA. This suggests that the predominant role of both RNAs is to anchor the 5' exon during exon ligation. Furthermore, as U5 complements for the loss of ID3, a similar network of structural RNAs may form the catalytic core of both group II introns and spliceosomes.
Collapse
Affiliation(s)
- M Hetzer
- Vienna Biocenter, Institute of Microbiology and Genetics, University of Vienna, Austria.
| | | | | | | |
Collapse
|
27
|
Morales J, Borrero M, Sumerel J, Santiago C. Identification of developmentally regulated sea urchin U5 snRNA genes. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1997; 7:243-59. [PMID: 9255516 DOI: 10.3109/10425179709034044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A PCR approach was used to isolate repeated U5 small nuclear RNA (snRNA) genes from the sea urchin Lytechinus variegatus. A 1.3 kb repeat, LvU5.0, and three other variants, LvU5.1-U5.3, that differ in the coding region and in the proximal sequence element (PSE) region were isolated. Southern Blot analysis indicate that the U5 snRNA genes, unlike other embryonically expressed snRNA genes (U1, U2 and U6), are not found in a simple tandem repeat, but instead, exist in several heterogeneous clusters each with a small number of genes. The U5 PSE has limited sequence similarity with the other sea urchin PSEs. However, when used in a mobility shift assay the U5 PSE forms a protein/DNA complex that is very similar to the complex formed with the U6 PSE. An RNase protection assay used to monitor the accumulation of U5 snRNA during development shows that at least two U5 variants are coordinately expressed during embryogenesis.
Collapse
Affiliation(s)
- J Morales
- University of Puerto Rico, Department of Biology, San Juan 00931-3360
| | | | | | | |
Collapse
|
28
|
O'Keefe RT, Norman C, Newman AJ. The invariant U5 snRNA loop 1 sequence is dispensable for the first catalytic step of pre-mRNA splicing in yeast. Cell 1996; 86:679-89. [PMID: 8752221 DOI: 10.1016/s0092-8674(00)80140-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have developed an in vitro reconstitution system to investigate the role of U5 snRNA in the two catalytic steps of pre-mRNA splicing. The invariant U5 loop 1 is known to interact with exon sequences at the 5' splice site before the first catalytic step. Remarkably, analysis of U5 mutations in vitro reveals that the first transesterification occurs accurately in the absence of the U5 loop. Therefore this sequence is not an essential component of the spliceosomal active site for the first catalytic step. The second catalytic step, although strongly dependent on the presence of a U5 loop to tether the exon 1 splicing intermediate, is surprisingly tolerant of mutations in the invariant sequence.
Collapse
Affiliation(s)
- R T O'Keefe
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|
29
|
Hinz M, Moore MJ, Bindereif A. Domain analysis of human U5 RNA. Cap trimethylation, protein binding, and spliceosome assembly. J Biol Chem 1996; 271:19001-7. [PMID: 8702566 DOI: 10.1074/jbc.271.31.19001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have analyzed the sequence requirements of the human U5 RNA during small nuclear ribonucleoprotein (snRNP) and spliceosome assembly. A collection of mutant derivatives of the human U5 RNA gene was constructed in a U1 expression vector and transiently transfected in mammalian cells. Using immunoprecipitation and affinity selection assays, the cap trimethylation, the binding of Sm proteins and of the U5 snRNP-specific protein p220, as well as the assembly of the U4/U5/U6 triple snRNP and of spliceosomes were determined. By mutational analysis we were able to assign distinct functions to several structural elements of the human U5 RNA. Efficient binding of the Sm proteins requires the 3' stem-loop. Both the Sm protein-binding site and the 3' stem-loop are necessary for the formation of the trimethyl guanosine cap, consistent with Sm protein binding being a prerequisite for cap trimethylation. Specific elements of the U5 RNA 5' stem-loop contribute to efficient p220 association, in particular stem Ib. Interestingly, the highly conserved loop I appears to be a multifunctional element; in addition to its function in splice-site selection the 5' loop is involved in binding of p220 and in the assembly of the U4/U5/U6 triple snRNP. In sum, this mutational analysis has identified four functional domains of the human U5 RNA.
Collapse
Affiliation(s)
- M Hinz
- Institut für Biochemie, Medizinische Fakultät der Humboldt-Universität/Charité, Monbijoustrasse 2 a, D-10117 Berlin, Federal Republic of Germany
| | | | | |
Collapse
|
30
|
Dungan JM, Watkins KP, Agabian N. Evidence for the presence of a small U5-like RNA in active trans-spliceosomes of Trypanosoma brucei. EMBO J 1996; 15:4016-29. [PMID: 8670906 PMCID: PMC452122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The existence of the Trypanosoma brucei 5' splice site on a small RNA of uniform sequence (the spliced leader or SL RNA) has allowed us to characterize the RNAs with which it interacts in vivo by psoralen crosslinking treatment. Analysis of the most abundant crosslinks formed by the SL RNA allowed us previously to identify the spliced leader-associated (SLA) RNA. The role of this RNA in trans-splicing, as well as the possible existence of an analogous RNA interaction in cis-splicing, is unknown. We show here that the 5' splice site region of the SL RNA is also crosslinked in vivo to a second small RNA. Although it is very small and lacks a 5' trimethylguanosine (TMG) cap, the SLA2RNA possesses counterparts of the conserved U5 snRNA stem-loop 1 and internal loop 1 sequence elements, as well as a potential trypanosome snRNA core protein binding site; these combined features meet the phylogenetic definition of U5 snRNA. Like U5, the SLA2 RNA forms an RNP complex with the U4 and U6 RNAs, and interacts with the 5' splice site region via its putative loop 1 sequence. In a final analogy with U5, the SLA2 RNA is found crosslinked to a molecule identical to the free 5' exon splicing intermediate. These data present a compelling case for the SLA2 RNA not only as an active trans-spliceosomal component, but also for its identification as the trypanosome U5 structural homolog. The presence of a U5-like RNA in this ancient eukaryote establishes the universality of the spliceosomal RNA core components.
Collapse
Affiliation(s)
- J M Dungan
- Intercampus Program in Molecular Parasitology, University of California, San Francisco, 94143-0422, USA
| | | | | |
Collapse
|
31
|
Xu D, Nouraini S, Field D, Tang SJ, Friesen JD. An RNA-dependent ATPase associated with U2/U6 snRNAs in pre-mRNA splicing. Nature 1996; 381:709-13. [PMID: 8649518 DOI: 10.1038/381709a0] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The hydrolysis of ATP by a group of RNA-dependent ATPases (DEAD/H proteins) is required for spliceosome assembly, but not for the subsequent transesterification reactions. Little is known about the function of these ATPases in relation to the RNA conformational changes that occur in formation of active structures, in which U2/U6 small nuclear RNA (snRNA) interactions are essential for splicing to take place. Using a synthetic lethal genetic screen, we have isolated four yeast splicing factors involved in U2/U6 snRNA interactions (D.X. et al., manuscript in preparation). The RNA-dependent ATPase activity associated with one such factor, the Slt22 protein, is stimulated preferentially by annealed U2/U6 snRNAs. Both mutant slt22-1 and U2 snRNA cause a reduction in stimulation. The slt22-1 mutation blocks splicing at or before the first step, resulting in the accumulation of an unusual complex which lacks U5 snRNA. Our results indicate that the U2/U6 snRNA interactions facilitated by Slt22 are also involved in the interaction of U5 snRNA with the spliceosome.
Collapse
Affiliation(s)
- D Xu
- Department of Genetics, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
32
|
Nunes LR, Teixeira MM, Camargo EP, Buck GA. Sequence and structural characterization of the spliced leader genes and transcripts in Phytomonas. Mol Biochem Parasitol 1995; 74:233-7. [PMID: 8719166 DOI: 10.1016/0166-6851(95)02496-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- L R Nunes
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond 23298-0678, USA
| | | | | | | |
Collapse
|
33
|
Szkukalek A, Myslinski E, Mougin A, Luhrmann R, Branlant C. Phylogenetic conservation of modified nucleotides in the terminal loop 1 of the spliceosomal U5 snRNA. Biochimie 1995; 77:16-21. [PMID: 7599272 DOI: 10.1016/0300-9084(96)88099-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to study the phylogenetic conservation of modified nucleotides in the spliceosomal U5 snRNA, we determined the nucleotide sequences of the U5 snRNAs from the slime mold Physarum polycephalum (EMBL data bank accession numbers: X74440 and X74441) and we identified the pseudouridine and 2'-O-methylated residues. From a comparison of all the U5 snRNAs studied at the level of nucleotide modifications, we concluded that the modified nucleotides in U5 snRNA can be divided into three classes according to their degree of conservation: i) the modified nucleotides of the 5' terminal cap structure that display some variations from one species to the other; ii) the modified nucleotides located in the helical part of the stem/loop structure I that vary greatly in number, position and identity from one species to the other; and iii) the modified nucleotides of the terminal loop 1, that are almost identical in all the species studied. Taking into account the recent discovery of a crucial role played by this terminal loop of U5 snRNA in 5' and 3' splice site definition, we postulate that the numerous modified nucleotides it contains, five out of a total of 11, play an important role in spliceosome assembly and function. Their possible role is discussed.
Collapse
Affiliation(s)
- A Szkukalek
- Laboratoire d'Enzymologie et de Génie Génétique, URA-CNRS 457, Université de Nancy I, Faculté des Sciences, Vandoeuvre-les-Nancy, France
| | | | | | | | | |
Collapse
|
34
|
Ares M, Weiser B. Rearrangement of snRNA structure during assembly and function of the spliceosome. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 50:131-59. [PMID: 7754032 DOI: 10.1016/s0079-6603(08)60813-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M Ares
- Biology Department, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|