1
|
Meng X, Qi X, Guo H, Cai M, Li C, Zhu J, Chen F, Guo H, Li J, Zhao Y, Liu P, Jia X, Yu J, Zhang C, Sun W, Yu Y, Jin Y, Bai J, Wang M, Rosales J, Lee KY, Fu S. Novel role for non-homologous end joining in the formation of double minutes in methotrexate-resistant colon cancer cells. J Med Genet 2014; 52:135-44. [PMID: 25537274 PMCID: PMC4316941 DOI: 10.1136/jmedgenet-2014-102703] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Gene amplification is a frequent manifestation of genomic instability that plays a role in tumour progression and development of drug resistance. It is manifested cytogenetically as extrachromosomal double minutes (DMs) or intrachromosomal homogeneously staining regions (HSRs). To better understand the molecular mechanism by which HSRs and DMs are formed and how they relate to the development of methotrexate (MTX) resistance, we used two model systems of MTX-resistant HT-29 colon cancer cell lines harbouring amplified DHFR primarily in (i) HSRs and (ii) DMs. Results In DM-containing cells, we found increased expression of non-homologous end joining (NHEJ) proteins. Depletion or inhibition of DNA-PKcs, a key NHEJ protein, caused decreased DHFR amplification, disappearance of DMs, increased formation of micronuclei or nuclear buds, which correlated with the elimination of DHFR, and increased sensitivity to MTX. These findings indicate for the first time that NHEJ plays a specific role in DM formation, and that increased MTX sensitivity of DM-containing cells depleted of DNA-PKcs results from DHFR elimination. Conversely, in HSR-containing cells, we found no significant change in the expression of NHEJ proteins. Depletion of DNA-PKcs had no effect on DHFR amplification and resulted in only a modest increase in sensitivity to MTX. Interestingly, both DM-containing and HSR-containing cells exhibited decreased proliferation upon DNA-PKcs depletion. Conclusions We demonstrate a novel specific role for NHEJ in the formation of DMs, but not HSRs, in MTX-resistant cells, and that NHEJ may be targeted for the treatment of MTX-resistant colon cancer.
Collapse
Affiliation(s)
- Xiangning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xiuying Qi
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Huanhuan Guo
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Mengdi Cai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chunxiang Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jing Zhu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Feng Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Huan Guo
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jie Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yuzhen Zhao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jingcui Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chunyu Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yang Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China Key Laboratory of Medical Genetics (Harbin Medical University), Heilongjiang Higher Education Institutions, Harbin, China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jesusa Rosales
- Departments of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Ki-Young Lee
- Cell Biology & Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China Key Laboratory of Medical Genetics (Harbin Medical University), Heilongjiang Higher Education Institutions, Harbin, China
| |
Collapse
|
2
|
How a replication origin and matrix attachment region accelerate gene amplification under replication stress in mammalian cells. PLoS One 2014; 9:e103439. [PMID: 25061979 PMCID: PMC4111587 DOI: 10.1371/journal.pone.0103439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
The gene amplification plays a critical role in the malignant transformation of mammalian cells. The most widespread method for amplifying a target gene in cell culture is the use of methotrexate (Mtx) treatment to amplify dihydrofolate reductase (Dhfr). Whereas, we found that a plasmid bearing both a mammalian origin of replication (initiation region; IR) and a matrix attachment region (MAR) was spontaneously amplified in mammalian cells. In this study, we attempted to uncover the underlying mechanism by which the IR/MAR sequence might accelerate Mtx induced Dhfr amplification. The plasmid containing the IR/MAR was extrachromosomally amplified, and then integrated at multiple chromosomal locations within individual cells, increasing the likelihood that the plasmid might be inserted into a chromosomal environment that permits high expression and further amplification. Efficient amplification of this plasmid alleviated the genotoxicity of Mtx. Clone-based cytogenetic and sequence analysis revealed that the plasmid was amplified in a chromosomal context by breakage-fusion-bridge cycles operating either at the plasmid repeat or at the flanking fragile site activated by Mtx. This mechanism explains how a circular molecule bearing IR/MAR sequences of chromosomal origin might be amplified under replication stress, and also provides insight into gene amplification in human cancer.
Collapse
|
3
|
Gibaud A, Vogt N, Brison O, Debatisse M, Malfoy B. Characterization at nucleotide resolution of the homogeneously staining region sites of insertion in two cancer cell lines. Nucleic Acids Res 2013; 41:8210-9. [PMID: 23821669 PMCID: PMC3783161 DOI: 10.1093/nar/gkt566] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanisms of formation of intrachromosomal amplifications in tumours are still poorly understood. By using quantitative polymerase chain reaction, DNA sequencing, chromosome walking, in situ hybridization on metaphase chromosomes and whole-genome analysis, we studied two cancer cell lines containing an MYC oncogene amplification with acquired copies ectopically inserted in rearranged chromosomes 17. These intrachromosomal amplifications result from the integration of extrachromosomal DNA molecules. Replication stress could explain the formation of the double-strand breaks involved in their insertion and in the rearrangements of the targeted chromosomes. The sequences of the junctions indicate that homologous recombination was not involved in their formation and support a non-homologous end-joining process. The replication stress-inducible common fragile sites present in the amplicons may have driven the intrachromosomal amplifications. Mechanisms associating break-fusion-bridge cycles and/or chromosome fragmentation may have led to the formation of the uncovered complex structures. To our knowledge, this is the first characterization of an intrachromosomal amplification site at nucleotide resolution.
Collapse
Affiliation(s)
- Anne Gibaud
- Institut Curie, Centre de Recherche, CNRS, UMR3244 and UPMC, 26 Rue d'Ulm, F-75248 Paris, France
| | | | | | | | | |
Collapse
|
4
|
The role of fragile sites in sporadic papillary thyroid carcinoma. J Thyroid Res 2012; 2012:927683. [PMID: 22762011 PMCID: PMC3384961 DOI: 10.1155/2012/927683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/18/2012] [Indexed: 12/15/2022] Open
Abstract
The incidence of thyroid cancer is increasing, especially papillary thyroid carcinoma (PTC), making it currently the fastest-growing cancer among women. Reasons for this increase remain unclear, but several risk factors including radiation exposure and improved detection techniques have been suggested. Recently, the induction of chromosomal fragile site breakage was found to result in the formation of RET/PTC1 rearrangements, a common cause of PTC. Chromosomal fragile sites are regions of the genome with a high susceptibility to forming DNA breaks and are often associated with cancer. Exposure to a variety of external agents can induce fragile site breakage, which may account for some of the observed increase in PTC. This paper discusses the role of fragile site breakage in PTC development, external fragile site-inducing agents that may be potential risk factors for PTC, and how these factors are especially targeting women.
Collapse
|
5
|
Wan C, Kulkarni A, Wang YH. ATR preferentially interacts with common fragile site FRA3B and the binding requires its kinase activity in response to aphidicolin treatment. Mutat Res 2010; 686:39-46. [PMID: 20060399 DOI: 10.1016/j.mrfmmm.2009.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/17/2009] [Accepted: 12/29/2009] [Indexed: 11/17/2022]
Abstract
The instability of common fragile sites (CFSs) contributes to the development of a variety of cancers. The ATR-dependent DNA damage checkpoint pathway has been implicated in maintaining CFS stability, but the mechanism is incompletely understood. The goal of our study was to elucidate the action of the ATR protein in the CFS-specific ATR-dependent checkpoint response. Using a chromatin immunoprecipitation assay, we demonstrated that ATR protein preferentially binds (directly or through complexes) to fragile site FRA3B as compared to non-fragile site regions, under conditions of mild replication stress. Interestingly, the amount of ATR protein that bound to three regions of FRA3B peaked at 0.4microM aphidicolin (APH) treatment and decreased again at higher concentrations of APH. The total amounts of cellular ATR and several ATR-interacting proteins remained unchanged, suggesting that ATR binding to the fragile site is guided initially by the level of replication stress signals generated at FRA3B due to APH treatment and then sequestered from FRA3B regions by successive signals from other non-fragile site regions, which are produced at the higher concentrations of APH. This decrease in ATR binding to fragile site FRA3B at the higher concentrations of APH may account for the increasing number of chromosome gaps and breaks observed under the same conditions. Furthermore, inhibition of ATR kinase activity by treatment with 2-aminopurine (2-AP) or by over-expression of a kinase-dead ATR mutant showed that the kinase activity is required for the binding of ATR to fragile DNAs in response to APH treatment. Our results provide novel insight into the mechanism for the regulation of fragile site stability by ATR.
Collapse
Affiliation(s)
- Cheng Wan
- Department of Biochemistry, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27157-1016, USA
| | | | | |
Collapse
|
6
|
Sawyer JR, Tian E, Thomas E, Koller M, Stangeby C, Sammartino G, Goosen L, Swanson C, Binz RL, Barlogie B, Shaughnessy J. Evidence for a novel mechanism for gene amplification in multiple myeloma: 1q12 pericentromeric heterochromatin mediates breakage-fusion-bridge cycles of a 1q12 approximately 23 amplicon. Br J Haematol 2009; 147:484-94. [PMID: 19744130 DOI: 10.1111/j.1365-2141.2009.07869.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gene amplification is defined as a copy number (CN) increase in a restricted region of a chromosome arm, and is a mechanism for acquired drug resistance and oncogene activation. In multiple myeloma (MM), high CNs of genes in a 1q12 approximately 23 amplicon have been associated with disease progression and poor prognosis. To investigate the mechanisms for gene amplification in this region in MM, we performed a comprehensive metaphase analysis combining G-banding, fluorescence in situ hybridization, and spectral karyotyping in 67 patients with gain of 1q. In six patients (9%), evidence for at least one breakage-fusion-bridge (BFB) cycle was found. In three patients (4%), extended ladders of 1q12 approximately 23 amplicons were identified. Several key structures that are predicted intermediates in BFB cycles were observed, including: equal-spaced organization of amplicons, inverted repeat organization of amplicons along the same chromosome arm, and deletion of sequences distal to the amplified region. The 1q12 pericentromeric heterochromatin region served as both a recurrent breakpoint as well as a fusion point for sister chromatids, and ultimately bracketed both the proximal and distal boundaries of the amplicon. Our findings provide evidence for a novel BFB mechanism involving 1q12 pericentromeric breakage in the amplification of a large number of genes within a 1q12 approximately 23 amplicon.
Collapse
Affiliation(s)
- Jeffrey R Sawyer
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Deletions and duplications of chromosomal segments (copy number variants, CNVs) are a major source of variation between individual humans and are an underlying factor in human evolution and in many diseases, including mental illness, developmental disorders and cancer. CNVs form at a faster rate than other types of mutation, and seem to do so by similar mechanisms in bacteria, yeast and humans. Here we review current models of the mechanisms that cause copy number variation. Non-homologous end-joining mechanisms are well known, but recent models focus on perturbation of DNA replication and replication of non-contiguous DNA segments. For example, cellular stress might induce repair of broken replication forks to switch from high-fidelity homologous recombination to non-homologous repair, thus promoting copy number change.
Collapse
Affiliation(s)
- P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
8
|
Plasmodium falciparum pfmdr1 amplification, mefloquine resistance, and parasite fitness. Antimicrob Agents Chemother 2009; 53:1509-15. [PMID: 19164150 DOI: 10.1128/aac.00241-08] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mefloquine is widely used in combination with artemisinin derivatives for the treatment of falciparum malaria. Mefloquine resistance in Plasmodium falciparum has been related to increased copy numbers of multidrug-resistant gene 1 (pfmdr1). We studied the ex vivo dynamics of pfmdr1 gene amplification in culture-adapted P. falciparum in relation to mefloquine resistance and parasite fitness. A Thai P. falciparum isolate (isolate TM036) was assessed by the use of multiple genetic markers as a single genotype. Resistance was selected by exposure to stepwise increasing concentrations of mefloquine up to 30 ng/ml in continuous culture. The pfmdr1 gene copy numbers increased as susceptibility to mefloquine declined (P = 0.03). No codon mutations at positions 86, 184, 1034, 1042, and 1246 in the pfmdr1 gene were detected. Two subclones of selected parasites (average copy numbers, 2.3 and 3.1, respectively) showed a fitness disadvantage when they were grown together with the original parasites containing a single pfmdr1 gene copy in the absence of mefloquine; the multiplication rates were 6.3% and 8.7% lower, respectively (P < 0.01). Modeling of the dynamics of the pfmdr1 copy numbers over time in relation to the relative fitness of the parasites suggested that net pfmdr1 gene amplification from one to two copies occurs once in every 10(8) parasites and that amplification from two to three copies occurs once in every 10(3) parasites. pfmdr1 gene amplification in P. falciparum is a frequent event and confers mefloquine resistance. Parasites with multiple copies of the pfmdr1 gene have decreased survival fitness in the absence of drug pressure.
Collapse
|
9
|
Kuo MT. Redox regulation of multidrug resistance in cancer chemotherapy: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2009; 11:99-133. [PMID: 18699730 PMCID: PMC2577715 DOI: 10.1089/ars.2008.2095] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/18/2008] [Accepted: 06/21/2008] [Indexed: 02/07/2023]
Abstract
The development of multidrug resistance to cancer chemotherapy is a major obstacle to the effective treatment of human malignancies. It has been established that membrane proteins, notably multidrug resistance (MDR), multidrug resistance protein (MRP), and breast cancer resistance protein (BCRP) of the ATP binding cassette (ABC) transporter family encoding efflux pumps, play important roles in the development of multidrug resistance. Overexpression of these transporters has been observed frequently in many types of human malignancies and correlated with poor responses to chemotherapeutic agents. Evidence has accumulated showing that redox signals are activated in response to drug treatments that affect the expression and activity of these transporters by multiple mechanisms, including (a) conformational changes in the transporters, (b) regulation of the biosynthesis cofactors required for the transporter's function, (c) regulation of the expression of transporters at transcriptional, posttranscriptional, and epigenetic levels, and (d) amplification of the copy number of genes encoding these transporters. This review describes various specific factors and their relevant signaling pathways that are involved in the regulation. Finally, the roles of redox signaling in the maintenance and evolution of cancer stem cells and their implications in the development of intrinsic and acquired multidrug resistance in cancer chemotherapy are discussed.
Collapse
Affiliation(s)
- Macus Tien Kuo
- Department of Molecular Pathology (Unit 951), The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
10
|
Gajduskova P, Snijders AM, Kwek S, Roydasgupta R, Fridlyand J, Tokuyasu T, Pinkel D, Albertson DG. Genome position and gene amplification. Genome Biol 2008; 8:R120. [PMID: 17584934 PMCID: PMC2394771 DOI: 10.1186/gb-2007-8-6-r120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 05/15/2007] [Accepted: 06/21/2007] [Indexed: 01/05/2023] Open
Abstract
Genomic analyses of human cells expressing dihydrofolate reductase provide insight into the effects of genome position on the propensity for a drug-resistance gene to amplify in human cells.
Background Amplifications, regions of focal high-level copy number change, lead to overexpression of oncogenes or drug resistance genes in tumors. Their presence is often associated with poor prognosis; however, the use of amplification as a mechanism for overexpression of a particular gene in tumors varies. To investigate the influence of genome position on propensity to amplify, we integrated a mutant form of the gene encoding dihydrofolate reductase into different positions in the human genome, challenged cells with methotrexate and then studied the genomic alterations arising in drug resistant cells. Results We observed site-specific differences in methotrexate sensitivity, amplicon organization and amplification frequency. One site was uniquely associated with a significantly enhanced propensity to amplify and recurrent amplicon boundaries, possibly implicating a rare folate-sensitive fragile site in initiating amplification. Hierarchical clustering of gene expression patterns and subsequent gene enrichment analysis revealed two clusters differing significantly in expression of MYC target genes independent of integration site. Conclusion These studies suggest that genome context together with the particular challenges to genome stability experienced during the progression to cancer contribute to the propensity to amplify a specific oncogene or drug resistance gene, whereas the overall functional response to drug (or other) challenge may be independent of the genomic location of an oncogene.
Collapse
Affiliation(s)
- Pavla Gajduskova
- Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143-0808, USA
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská, Brno, 612 65, Czech Republic
| | - Antoine M Snijders
- Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Serena Kwek
- Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Ritu Roydasgupta
- Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Jane Fridlyand
- Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Taku Tokuyasu
- Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Daniel Pinkel
- Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | - Donna G Albertson
- Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143-0808, USA
- Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143-0808, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143-0808, USA
| |
Collapse
|
11
|
Lattenmayer C, Loeschel M, Steinfellner W, Trummer E, Mueller D, Schriebl K, Vorauer-Uhl K, Katinger H, Kunert R. Identification of transgene integration loci of different highly expressing recombinant CHO cell lines by FISH. Cytotechnology 2006; 51:171-82. [PMID: 19002887 DOI: 10.1007/s10616-006-9029-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 10/04/2006] [Indexed: 11/26/2022] Open
Abstract
Recombinant CHO cell lines have integrated the expression vectors in various parts of the genome leading to different levels of gene amplification, productivity and stability of protein expression. Identification of insertion sites where gene amplification is possible and the transcription rate is high may lead to systems of site-directed integration and will significantly reduce the process for the generation of stably and highly expressing recombinant cell lines. We have investigated a broad range of recombinant cell lines by FISH analysis and Giemsa-Trypsin banding and analysed their integration loci with regard to the extent of methotrexate pressure, transfection methods, promoters and protein productivities. To summarise, we found that the majority of our high producing recombinant CHO cell lines had integrated the expression construct on a larger chromosome of the genome. Furthermore, except from two cell lines, the exogene was integrated at a single site. The dhfr selection marker was co-localised to the target gene.
Collapse
Affiliation(s)
- Christine Lattenmayer
- Austrian Center of Biopharmaceutical Technology, Muthgasse 18, 1190, Vienna, Austria,
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Casper AM, Durkin SG, Arlt MF, Glover TW. Chromosomal instability at common fragile sites in Seckel syndrome. Am J Hum Genet 2004; 75:654-60. [PMID: 15309689 PMCID: PMC1182052 DOI: 10.1086/422701] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 05/10/2004] [Indexed: 11/03/2022] Open
Abstract
Seckel syndrome (SCKL) is a rare, genetically heterogeneous disorder, with dysmorphic facial appearance, growth retardation, microcephaly, mental retardation, variable chromosomal instability, and hematological disorders. To date, three loci have been linked to this syndrome, and recently, the gene encoding ataxia-telangiectasia and Rad3-related protein (ATR) was identified as the gene mutated at the SCKL1 locus. The ATR mutation affects splicing efficiency, resulting in low levels of ATR in affected individuals. Elsewhere, we reported increased instability at common chromosomal fragile sites in cells lacking the replication checkpoint gene ATR. Here, we tested whether cells from patients carrying the SCKL1 mutation would show increased chromosome breakage following replication stress. We found that, compared with controls, there is greater chromosomal instability, particularly at fragile sites, in SCKL1-affected patient cells after treatment with aphidicolin, an inhibitor of DNA polymerase alpha and other polymerases. The difference in chromosomal instability between control and patient cells increases at higher levels of aphidicolin treatment, suggesting that the low level of ATR present in these patients is not sufficient to respond appropriately to replication stress. This is the first human genetic syndrome associated with increased chromosome instability at fragile sites following replication stress, and these findings may be related to the phenotypic findings in patients with SCKL1.
Collapse
Affiliation(s)
- Anne M Casper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA
| | | | | | | |
Collapse
|
13
|
Snijders AM, Fridlyand J, Mans DA, Segraves R, Jain AN, Pinkel D, Albertson DG. Shaping of tumor and drug-resistant genomes by instability and selection. Oncogene 2003; 22:4370-9. [PMID: 12853973 DOI: 10.1038/sj.onc.1206482] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumors with defects in mismatch repair (MMR) show fewer chromosomal changes by cytogenetic analyses than most solid tumors, suggesting that a greater proportion of the alterations required for malignancy occur in genes with nucleotide sequences susceptible to errors normally corrected by MMR. Here, we used genome-wide microarray comparative genomic hybridization to carry out a higher resolution evaluation of the effect of MMR competence on genomic alterations occurring in 20 cell lines and to determine if characteristic aberrations arise in MMR-proficient and -deficient HCT116 cells undergoing selection for methotrexate resistance. We observed different spectra of aberrations in MMR-proficient compared to -deficient cell lines, as well as among cell lines with different types of MMR-deficiency. We also observed different genetic routes to drug resistance. Resistant MMR-deficient cells most frequently displayed no copy number alterations (16/29 cell pools), whereas all MMR-proficient cells had unique abnormalities involving chromosome 5, including amplicons centered on the target gene, DHFR and/or a neighboring novel locus (7/13 pools). These observations support the concept that tumor genomes are shaped by selection for alterations that promote survival and growth advantage, as well as by the particular dysfunctions in genes responsible for maintenance of genetic integrity.
Collapse
Affiliation(s)
- Antoine M Snijders
- Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Lemoine FJ, Marriott SJ. Genomic instability driven by the human T-cell leukemia virus type I (HTLV-I) oncoprotein, Tax. Oncogene 2002; 21:7230-4. [PMID: 12370813 DOI: 10.1038/sj.onc.1205898] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Revised: 07/11/2002] [Accepted: 08/06/2002] [Indexed: 11/08/2022]
Abstract
The importance of maintaining genomic stability is evidenced by the fact that transformed cells often contain a variety of chromosomal abnormalities such as euploidy, translocations, and inversions. Gene amplification is a well-characterized hallmark of genomic instability thought to result from recombination events following the formation of double-strand, chromosomal breaks. Therefore, gene amplification frequency serves as an indicator of genomic stability. The PALA assay is designed to measure directly the frequency with which a specific gene, CAD, is amplified within a cell's genome. We have used the PALA assay to analyse the effects of the human T-cell leukemia virus type I (HTLV-I) oncoprotein, Tax, on genomic amplification. We demonstrate that Tax-expressing cells are five-times more likely to undergo gene amplification than control cells. Additionally, we show that Tax alters the ability of cells to undergo the typical PALA-mediated G(1) phase cell cycle arrest, thereby allowing cells to replicate DNA in the absence of appropriate nucleotide pools. This effect is likely the mechanism by which Tax induces gene amplification. These data suggest that HTLV-I Tax alters the genomic stability of cells, an effect that may play an important role in Tax-mediated, HTLV-I associated cellular transformation.
Collapse
Affiliation(s)
- Francene J Lemoine
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, TX 77030, USA
| | | |
Collapse
|
15
|
Huang X, Gollin SM, Raja S, Godfrey TE. High-resolution mapping of the 11q13 amplicon and identification of a gene, TAOS1, that is amplified and overexpressed in oral cancer cells. Proc Natl Acad Sci U S A 2002; 99:11369-74. [PMID: 12172009 PMCID: PMC123263 DOI: 10.1073/pnas.172285799] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amplification of chromosomal band 11q13 is a common event in human cancer. It has been reported in about 45% of head and neck carcinomas and in other cancers including esophageal, breast, liver, lung, and bladder cancer. To understand the mechanism of 11q13 amplification and to identify the potential oncogene(s) driving it, we have fine-mapped the structure of the amplicon in oral squamous cell carcinoma cell lines and localized the proximal and distal breakpoints. A 5-Mb physical map of the region has been prepared from which sequence is available. We quantified copy number of sequence-tagged site markers at 42-550 kb intervals along the length of the amplicon and defined the amplicon core and breakpoints by using TaqMan-based quantitative microsatellite analysis. The core of the amplicon maps to a 1.5-Mb region. The proximal breakpoint localizes to two intervals between sequence-tagged site markers, 550 kb and 160 kb in size, and the distal breakpoint maps to a 250 kb interval. The cyclin D1 gene maps to the amplicon core, as do two new expressed sequence tag clusters. We have analyzed one of these expressed sequence tag clusters and now report that it contains a previously uncharacterized gene, TAOS1 (tumor amplified and overexpressed sequence 1), which is both amplified and overexpressed in oral cancer cells. The data suggest that TAOS1 may be an amplification-dependent candidate oncogene with a role in the development and/or progression of human tumors, including oral squamous cell carcinomas. The approach described here should be useful for characterizing amplified genomic regions in a wide variety of tumors.
Collapse
Affiliation(s)
- Xin Huang
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
16
|
Toledo F, Coquelle A, Svetlova E, Debatisse M. Enhanced flexibility and aphidicolin-induced DNA breaks near mammalian replication origins: implications for replicon mapping and chromosome fragility. Nucleic Acids Res 2000; 28:4805-13. [PMID: 11095694 PMCID: PMC115181 DOI: 10.1093/nar/28.23.4805] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Common fragile sites are chromosomal loci prone to breakage and rearrangement that can be induced by aphidicolin, an inhibitor of DNA polymerases. Within these loci, sites of preferential DNA breaks were proposed to correlate with peaks of enhanced DNA flexibility, the function of which remains elusive. Here we show that mammalian DNA replication origins are enriched in peaks of enhanced flexibility. This finding suggests that the search for these features may help in the mapping of replication origins, and we present evidence supporting this hypothesis. The association of peaks of flexibility with replication origins also suggests that some origins may associate with minor levels of fragility. As shown here, an increased sensitivity to aphidicolin was found near two mammalian DNA replication origins.
Collapse
Affiliation(s)
- F Toledo
- Unité de Génétique Somatique (URA CNRS 1960), Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
17
|
Paulson TG, Almasan A, Brody LL, Wahl GM. Gene amplification in a p53-deficient cell line requires cell cycle progression under conditions that generate DNA breakage. Mol Cell Biol 1998; 18:3089-100. [PMID: 9566927 PMCID: PMC110691 DOI: 10.1128/mcb.18.5.3089] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Amplification of genes involved in signal transduction and cell cycle control occurs in a significant fraction of human cancers. Loss of p53 function has been proposed to enable cells with gene amplification to arise spontaneously during growth in vitro. However, this conclusion derives from studies employing the UMP synthesis inhibitor N-phosphonacetyl-L-aspartate (PALA), which, in addition to selecting for cells containing extra copies of the CAD locus, enables p53-deficient cells to enter S phase and acquire the DNA breaks that initiate the amplification process. Thus, it has not been possible to determine if gene amplification occurs spontaneously or results from the inductive effects of the selective agent. The studies reported here assess whether p53 deficiency leads to spontaneous genetic instability by comparing cell cycle responses and amplification frequencies of the human fibrosarcoma cell line HT1080 when treated with PALA or with methotrexate, an antifolate that, under the conditions used, should not generate DNA breaks. p53-deficient HT1080 cells generated PALA-resistant variants containing amplified CAD genes at a frequency of >10(-5). By contrast, methotrexate selection did not result in resistant cells at a detectable frequency (<10(-9)). However, growth of HT1080 cells under conditions that induced DNA breakage prior to selection generated methotrexate-resistant clones containing amplified dihydrofolate reductase sequences at a high frequency. These data demonstrate that, under standard growth conditions, p53 loss is not sufficient to enable cells to produce the DNA breaks that initiate amplification. We propose that p53-deficient cells must proceed through S phase under conditions that induce DNA breakage for genetic instability to occur.
Collapse
Affiliation(s)
- T G Paulson
- Department of Biology, University of California, San Diego, La Jolla 92093, USA
| | | | | | | |
Collapse
|
18
|
Shimizu N, Itoh N, Utiyama H, Wahl GM. Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. J Cell Biol 1998; 140:1307-20. [PMID: 9508765 PMCID: PMC2132668 DOI: 10.1083/jcb.140.6.1307] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/1997] [Revised: 12/16/1997] [Indexed: 02/06/2023] Open
Abstract
Acentric, autonomously replicating extrachromosomal structures called double-minute chromosomes (DMs) frequently mediate oncogene amplification in human tumors. We show that DMs can be removed from the nucleus by a novel micronucleation mechanism that is initiated by budding of the nuclear membrane during S phase. DMs containing c-myc oncogenes in a colon cancer cell line localized to and replicated at the nuclear periphery. Replication inhibitors increased micronucleation; cell synchronization and bromodeoxyuridine-pulse labeling demonstrated de novo formation of buds and micronuclei during S phase. The frequencies of S-phase nuclear budding and micronucleation were increased dramatically in normal human cells by inactivating p53, suggesting that an S-phase function of p53 minimizes the probability of producing the broken chromosome fragments that induce budding and micronucleation. These data have implications for understanding the behavior of acentric DNA in interphase nuclei and for developing chemotherapeutic strategies based on this new mechanism for DM elimination.
Collapse
Affiliation(s)
- N Shimizu
- Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 724, Japan
| | | | | | | |
Collapse
|