1
|
Martinez-Fernandez V, Barascu A, Teixeira MT. Life and Death without Telomerase: The Saccharomyces cerevisiae Model. Cold Spring Harb Perspect Biol 2025; 17:a041699. [PMID: 39694811 PMCID: PMC12047662 DOI: 10.1101/cshperspect.a041699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Saccharomyces cerevisiae, a model organism in telomere biology, has been instrumental in pioneering a comprehensive understanding of the molecular processes that occur in the absence of telomerase across eukaryotes. This exploration spans investigations into telomere dynamics, intracellular signaling cascades, and organelle-mediated responses, elucidating their impact on proliferative capacity, genome stability, and cellular variability. Through the lens of budding yeast, numerous sources of cellular heterogeneity have been identified, dissected, and modeled, shedding light on the risks associated with telomeric state transitions, including the evasion of senescence. Moreover, the unraveling of the intricate interplay between the nucleus and other organelles upon telomerase inactivation has provided insights into eukaryotic evolution and cellular communication networks. These contributions, akin to milestones achieved using budding yeast, such as the discovery of the cell cycle, DNA damage checkpoint mechanisms, and DNA replication and repair processes, have been of paramount significance for the telomere field. Particularly, these insights extend to understanding replicative senescence as an anticancer mechanism in humans and enhancing our understanding of eukaryotes' evolution.
Collapse
Affiliation(s)
- Veronica Martinez-Fernandez
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCE, F-75005 Paris, France
| | - Aurélia Barascu
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCE, F-75005 Paris, France
| | - Maria Teresa Teixeira
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, LBMCE, F-75005 Paris, France
| |
Collapse
|
2
|
Wei J, Sun H, Huang Z, Yang L, Wu J, Zhang J, Liu M, Li M, Luo J, Wang H. Beyond interacting with Rap1: Dissecting the roles of Rif1. Int J Biol Macromol 2025; 306:141560. [PMID: 40032092 DOI: 10.1016/j.ijbiomac.2025.141560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/17/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Rap1 interacting factor 1 (Rif1), an evolutionarily conserved protein discovered in budding yeast, is crucial for controlling telomere length when it interacts with Rap1. Recent research, however, has shown that Rif1 not only controls telomere length and homeostasis, but also plays a role in transcriptional silencing, DNA replication timing, DNA replication fork protection, DNA damage repair and chromatin architecture. In this review, we summarize the current understanding of Rif1 in structure, function, and regulation, especially its relevance to cancer hallmarks. Also, we discuss its role as a regulator in the pathogenesis of disease.
Collapse
Affiliation(s)
- Jiyu Wei
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hao Sun
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhihong Huang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiaxing Wu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiaqi Zhang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Meiting Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
3
|
Calugaru K, Yu EY, Huang S, González-Rodríguez N, Coloma J, Lue NF. The yeast CST and Polα/primase complexes act in concert to ensure proper telomere maintenance and protection. Nucleic Acids Res 2025; 53:gkaf245. [PMID: 40245101 PMCID: PMC11997776 DOI: 10.1093/nar/gkaf245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Polα/primase (PP), the polymerase that initiates DNA synthesis at replication origins, also completes the task of genome duplication by synthesizing the telomere C-strand under the control of the CTC1/CDC13-STN1-TEN1 (CST) complex. Using cryo-electron microscopy (cryo-EM) structures of the human CST-Polα/primase-DNA complex as guides in conjunction with AlphaFold modeling, we identified structural elements in yeast CST and PP that promote complex formation. Mutating these structures in Candida glabrata Stn1, Ten1, Pri1, and Pri2 abrogated the stimulatory activity of CST on PP in vitro, supporting the functional relevance of the physical contacts in cryo-EM structures as well as the conservation of mechanisms between yeast and humans. Introducing these mutations into C. glabrata yielded two distinct groups of mutants. One group exhibited progressive, telomerase-dependent telomere elongation without evidence of DNA damage. The other manifested slow growth, telomere length heterogeneity, single-stranded DNA accumulation and elevated C-circles, which are indicative of telomere deprotection. These telomere deprotection phenotypes are altered or suppressed by mutations in multiple DNA damage response (DDR) and DNA repair factors. We conclude that in yeast, the telomerase inhibition and telomere protection function previously ascribed to the CST complex are mediated jointly by both CST and Polα/primase, highlighting the critical importance of a replicative DNA polymerase in telomere regulation.
Collapse
Affiliation(s)
- Kimberly Calugaru
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| | - Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| | - Sophie Huang
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| | - Nayim González-Rodríguez
- Structural Biology Programme, Spanish National Cancer Research Centre, Melchor Fernández Almagro, 3. 28029 Madrid, Spain
| | - Javier Coloma
- Structural Biology Programme, Spanish National Cancer Research Centre, Melchor Fernández Almagro, 3. 28029 Madrid, Spain
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| |
Collapse
|
4
|
Vijayraghavan S, Ruggiero A, Becker S, Mieczkowski P, Hanna GS, Hamann MT, Saini N. Methylglyoxal mutagenizes single-stranded DNA via Rev1-associated slippage and mispairing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643935. [PMID: 40166206 PMCID: PMC11956917 DOI: 10.1101/2025.03.18.643935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Methylglyoxal (MG) is a highly reactive aldehyde that is produced endogenously during metabolism and is derived from exogenous sources such as sugary food items and cigarette smoke. Unless detoxified by glyoxalases (Glo1 and Glo2), MG can readily react with all major biomolecules, including DNA and proteins, generating characteristic lesions and glycation-derived by- products. As a result, MG exposure has been linked to a variety of human diseases, including cancers. Prior studies show that MG can glycate DNA, preferentially on guanine residues, and cause DNA damage. However, the mutagenicity of MG is poorly understood in vivo. In the context of cancer, it is essential to comprehend the true contribution of MG to genome instability and global mutational burden. In the present study, we show that MG can robustly mutagenize induced single-stranded DNA (ssDNA) in yeast, within a guanine centered mutable motif. We demonstrate that genome-wide MG mutagenesis in ssDNA is greatly elevated throughout the genome in the absence of Glo1, and abrogated in the presence of the aldehyde quencher aminoguanidine. We uncovered strand slippage and mispairing as the predominant mechanism for generation of all MG-associated mutations, and demonstrate that the translesion polymerase Rev1 is necessary in this pathway. Finally, we find that the primary MG-associated mutation is enriched in a variety of sequenced tumor datasets. We discuss the genomic impact of methylglyoxal exposure in the context of mutagenesis, DNA damage, and carcinogenesis.
Collapse
|
5
|
Rosas Bringas FR, Yin Z, Yao Y, Boudeman J, Ollivaud S, Chang M. Interstitial telomeric sequences promote gross chromosomal rearrangement via multiple mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2407314121. [PMID: 39602274 PMCID: PMC11626172 DOI: 10.1073/pnas.2407314121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Telomeric DNA sequences are difficult to replicate. Replication forks frequently pause or stall at telomeres, which can lead to telomere truncation and dysfunction. In addition to being at chromosome ends, telomere repeats are also present at internal locations within chromosomes, known as interstitial telomeric sequences (ITSs). These sequences are unstable and prone to triggering gross chromosomal rearrangements (GCRs). In this study, we quantitatively examined the effect of ITSs on the GCR rate in Saccharomyces cerevisiae using a genetic assay. We find that the GCR rate increases exponentially with ITS length. This increase can be attributed to the telomere repeat binding protein Rap1 impeding DNA replication and a bias of repairing DNA breaks at or distal to the ITS via de novo telomere addition. Additionally, we performed a genome-wide screen for genes that modulate the rate of ITS-induced GCRs. We find that mutation of core components of the DNA replication machinery leads to an increase in GCRs, but many mutants known to increase the GCR rate in the absence of an ITS do not significantly affect the GCR rate when an ITS is present. We also identified genes that promote the formation of ITS-induced GCRs, including genes with roles in telomere maintenance, nucleotide excision repair, and transcription. Our work thus uncovers multiple mechanisms by which an ITS promotes GCR.
Collapse
Affiliation(s)
- Fernando R. Rosas Bringas
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Ziqing Yin
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Yue Yao
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Jonathan Boudeman
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Sandra Ollivaud
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen9713 AV, The Netherlands
| |
Collapse
|
6
|
Douglas ME. How to write an ending: Telomere replication as a multistep process. DNA Repair (Amst) 2024; 144:103774. [PMID: 39426311 DOI: 10.1016/j.dnarep.2024.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Telomeres are protective nucleoprotein caps found at the natural ends of eukaryotic chromosomes and are crucial for the preservation of stable chromosomal structure. In cycling cells, telomeres are maintained by a multi-step process called telomere replication, which involves the eukaryotic replisome navigating a complex repetitive template tightly bound by specific proteins, before terminating at the chromosome end prior to a 5' resection step that generates a protective 3' overhang. In this review, we examine mechanistic aspects of the telomere replication process and consider how individual parts of this multistep event are integrated and coordinated with one-another.
Collapse
Affiliation(s)
- Max E Douglas
- Telomere Biology Laboratory, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
7
|
Grandin N, Charbonneau M. Dysfunction of Telomeric Cdc13-Stn1-Ten1 Simultaneously Activates DNA Damage and Spindle Checkpoints. Cells 2024; 13:1605. [PMID: 39404369 PMCID: PMC11475793 DOI: 10.3390/cells13191605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Telomeres, the ends of eukaryotic linear chromosomes, are composed of repeated DNA sequences and specialized proteins, with the conserved telomeric Cdc13/CTC1-Stn1-Ten1 (CST) complex providing chromosome stability via telomere end protection and the regulation of telomerase accessibility. In this study, SIZ1, coding for a SUMO E3 ligase, and TOP2 (a SUMO target for Siz1 and Siz2) were isolated as extragenic suppressors of Saccharomyces cerevisiae CST temperature-sensitive mutants. ten1-sz, stn1-sz and cdc13-sz mutants were isolated next due to being sensitive to intracellular Siz1 dosage. In parallel, strong negative genetic interactions between mutants of CST and septins were identified, with septins being noticeably sumoylated through the action of Siz1. The temperature-sensitive arrest in these new mutants of CST was dependent on the G2/M Mad2-mediated and Bub2-mediated spindle checkpoints as well as on the G2/M Mec1-mediated DNA damage checkpoint. Our data suggest the existence of yet unknown functions of the telomeric Cdc13-Stn1-Ten1 complex associated with mitotic spindle positioning and/or assembly that could be further elucidated by studying these new ten1-sz, stn1-sz and cdc13-sz mutants.
Collapse
Affiliation(s)
| | - Michel Charbonneau
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 Place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France;
| |
Collapse
|
8
|
Petrík T, Brzáčová Z, Sepšiová R, Veljačiková K, Tomáška Ľ. Pros and cons of auxin-inducible degron as a tool for regulated depletion of telomeric proteins from Saccharomyces cerevisiae. Yeast 2024; 41:499-512. [PMID: 38923089 DOI: 10.1002/yea.3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
To assess the immediate responses of the yeast cells to telomere defects, we employed the auxin-inducible degron (AID) enabling rapid depletion of essential (Rap1, Tbf1, Cdc13, Stn1) and non-essential (Est1, Est2, Est3) telomeric proteins. Using two variants of AID systems, we show that most of the studied proteins are depleted within 10-30 min after the addition of auxin. As expected, depletion of essential proteins yields nondividing cells, provided that the strains are cultivated in an appropriate carbon source and at temperatures lower than 28°C. Cells with depleted Cdc13 and Stn1 exhibit extension of the single-stranded overhang as early as 3 h after addition of auxin. Notably, prolonged incubation of strains carrying AID-tagged essential proteins in the presence of auxin resulted in the appearance of auxin-resistant clones, caused at least in part by mutations within the OsTIR1 gene. Upon assessing the length of telomeres in strains carrying AID-tagged non-essential telomeric proteins, we found that the depletion of Est1 and Est3 leads to auxin-dependent telomere shortening. However, the EST3-AID strain had slightly shorter telomeres even in the absence of auxin. Furthermore, a strain with the AID-tagged version of Est2 (catalytic subunit of telomerase) not only had shorter telomeres in the absence of auxin but also did not exhibit auxin-dependent telomere shortening. Our results demonstrate that while AID can be useful in assessing immediate cellular responses to telomere deprotection, each strain must be carefully evaluated for the effect of AID-tag on the properties of the protein of interest.
Collapse
Affiliation(s)
- Tomáš Petrík
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Zuzana Brzáčová
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Regina Sepšiová
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Katarína Veljačiková
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
9
|
Nickens DG, Feng Z, Shen J, Gray SJ, Simmons RH, Niu H, Bochman ML. Cdc13 exhibits dynamic DNA strand exchange in the presence of telomeric DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569902. [PMID: 38105973 PMCID: PMC10723391 DOI: 10.1101/2023.12.04.569902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Telomerase is the enzyme that lengthens telomeres and is tightly regulated by a variety of means to maintain genome integrity. Several DNA helicases function at telomeres, and we previously found that the Saccharomyces cerevisiae helicases Hrq1 and Pif1 directly regulate telomerase. To extend these findings, we are investigating the interplay between helicases, single-stranded DNA (ssDNA) binding proteins (ssBPs), and telomerase. The yeast ssBPs Cdc13 and RPA differentially affect Hrq1 and Pif1 helicase activity, and experiments to measure helicase disruption of Cdc13/ssDNA complexes instead revealed that Cdc13 can exchange between substrates. Although other ssBPs display dynamic binding, this was unexpected with Cdc13 due to the reported in vitro stability of the Cdc13/telomeric ssDNA complex. We found that the DNA exchange by Cdc13 occurs rapidly at physiological temperatures, requires telomeric repeat sequence DNA, and is affected by ssDNA length. Cdc13 truncations revealed that the low-affinity binding site (OB1), which is distal from the high-affinity binding site (OB3), is required for this intermolecular dynamic DNA exchange (DDE). We hypothesize that DDE by Cdc13 is the basis for how Cdc13 'moves' at telomeres to alternate between modes where it regulates telomerase activity and assists in telomere replication.
Collapse
|
10
|
Ait Saada A, Guo W, Costa AB, Yang J, Wang J, Lobachev K. Widely spaced and divergent inverted repeats become a potent source of chromosomal rearrangements in long single-stranded DNA regions. Nucleic Acids Res 2023; 51:3722-3734. [PMID: 36919609 PMCID: PMC10164571 DOI: 10.1093/nar/gkad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
DNA inverted repeats (IRs) are widespread across many eukaryotic genomes. Their ability to form stable hairpin/cruciform secondary structures is causative in triggering chromosome instability leading to several human diseases. Distance and sequence divergence between IRs are inversely correlated with their ability to induce gross chromosomal rearrangements (GCRs) because of a lesser probability of secondary structure formation and chromosomal breakage. In this study, we demonstrate that structural parameters that normally constrain the instability of IRs are overcome when the repeats interact in single-stranded DNA (ssDNA). We established a system in budding yeast whereby >73 kb of ssDNA can be formed in cdc13-707fs mutants. We found that in ssDNA, 12 bp or 30 kb spaced Alu-IRs show similarly high levels of GCRs, while heterology only beyond 25% suppresses IR-induced instability. Mechanistically, rearrangements arise after cis-interaction of IRs leading to a DNA fold-back and the formation of a dicentric chromosome, which requires Rad52/Rad59 for IR annealing as well as Rad1-Rad10, Slx4, Msh2/Msh3 and Saw1 proteins for nonhomologous tail removal. Importantly, using structural characteristics rendering IRs permissive to DNA fold-back in yeast, we found that ssDNA regions mapped in cancer genomes contain a substantial number of potentially interacting and unstable IRs.
Collapse
Affiliation(s)
- Anissia Ait Saada
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Wenying Guo
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alex B Costa
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jiaxin Yang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Kirill S Lobachev
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
11
|
Vandenberg BN, Laughery MF, Cordero C, Plummer D, Mitchell D, Kreyenhagen J, Albaqshi F, Brown AJ, Mieczkowski PA, Wyrick JJ, Roberts SA. Contributions of replicative and translesion DNA polymerases to mutagenic bypass of canonical and atypical UV photoproducts. Nat Commun 2023; 14:2576. [PMID: 37142570 PMCID: PMC10160025 DOI: 10.1038/s41467-023-38255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
UV exposure induces a mutation signature of C > T substitutions at dipyrimidines in skin cancers. We recently identified additional UV-induced AC > TT and A > T substitutions that could respectively cause BRAF V600K and V600E oncogenic mutations. The mutagenic bypass mechanism past these atypical lesions, however, is unknown. Here, we whole genome sequenced UV-irradiated yeast and used reversion reporters to delineate the roles of replicative and translesion DNA polymerases in mutagenic bypass of UV-lesions. Our data indicates that yeast DNA polymerase eta (pol η) has varied impact on UV-induced mutations: protecting against C > T substitutions, promoting T > C and AC > TT substitutions, and not impacting A > T substitutions. Surprisingly, deletion rad30Δ increased novel UV-induced C > A substitutions at CA dinucleotides. In contrast, DNA polymerases zeta (pol ζ) and epsilon (pol ε) participated in AC > TT and A > T mutations. These results uncover lesion-specific accurate and mutagenic bypass of UV lesions, which likely contribute to key driver mutations in melanoma.
Collapse
Affiliation(s)
- Brittany N Vandenberg
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Marian F Laughery
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Cameron Cordero
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Dalton Plummer
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Debra Mitchell
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Jordan Kreyenhagen
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Fatimah Albaqshi
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Alexander J Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - John J Wyrick
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| | - Steven A Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
12
|
Pires VB, Lohner N, Wagner T, Wagner CB, Wilkens M, Hajikazemi M, Paeschke K, Butter F, Luke B. RNA-DNA hybrids prevent resection at dysfunctional telomeres. Cell Rep 2023; 42:112077. [PMID: 36729832 DOI: 10.1016/j.celrep.2023.112077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
At critically short telomeres, stabilized TERRA RNA-DNA hybrids drive homology-directed repair (HDR) to delay replicative senescence. However, even at long- and intermediate-length telomeres, not subject to HDR, transient TERRA RNA-DNA hybrids form, suggestive of additional roles. We report that telomeric RNA-DNA hybrids prevent Exo1-mediated resection when telomeres become non-functional. We used the well-characterized cdc13-1 allele, where telomere resection can be induced in a temperature-dependent manner, to demonstrate that ssDNA generation at telomeres is either prevented or augmented when RNA-DNA hybrids are stabilized or destabilized, respectively. The viability of cdc13-1 cells is affected by the presence or absence of hybrids accordingly. Telomeric hybrids do not affect the shortening rate of bulk telomeres. We suggest that TERRA hybrids require dynamic regulation to drive HDR at short telomeres; hybrid presence may initiate HDR through replication stress, whereby their removal allows strand resection.
Collapse
Affiliation(s)
- Vanessa Borges Pires
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Nina Lohner
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany; Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Tina Wagner
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Carolin B Wagner
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Maya Wilkens
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Mona Hajikazemi
- Clinic of Internal Medicine III, Oncology, Haematology, Rheumatology and Clinical Immunology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katrin Paeschke
- Clinic of Internal Medicine III, Oncology, Haematology, Rheumatology and Clinical Immunology, University Hospital Bonn, 53127 Bonn, Germany
| | - Falk Butter
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany; Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany.
| |
Collapse
|
13
|
Ueno M. Exploring Genetic Interactions with Telomere Protection Gene pot1 in Fission Yeast. Biomolecules 2023; 13:biom13020370. [PMID: 36830739 PMCID: PMC9953254 DOI: 10.3390/biom13020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The regulation of telomere length has a significant impact on cancer risk and aging in humans. Circular chromosomes are found in humans and are often unstable during mitosis, resulting in genome instability. Some types of cancer have a high frequency of a circular chromosome. Fission yeast is a good model for studying the formation and stability of circular chromosomes as deletion of pot1 (encoding a telomere protection protein) results in rapid telomere degradation and chromosome fusion. Pot1 binds to single-stranded telomere DNA and is conserved from fission yeast to humans. Loss of pot1 leads to viable strains in which all three fission yeast chromosomes become circular. In this review, I will introduce pot1 genetic interactions as these inform on processes such as the degradation of uncapped telomeres, chromosome fusion, and maintenance of circular chromosomes. Therefore, exploring genes that genetically interact with pot1 contributes to finding new genes and/or new functions of genes related to the maintenance of telomeres and/or circular chromosomes.
Collapse
Affiliation(s)
- Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan; ; Tel.: +81-82-424-7768
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
14
|
Yu X, Gray S, Ferreira H. POT-3 preferentially binds the terminal DNA-repeat on the telomeric G-overhang. Nucleic Acids Res 2023; 51:610-618. [PMID: 36583365 PMCID: PMC9881156 DOI: 10.1093/nar/gkac1203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic chromosomes typically end in 3' telomeric overhangs. The safeguarding of telomeric single-stranded DNA overhangs is carried out by factors related to the protection of telomeres 1 (POT1) protein in humans. Of the three POT1-like proteins in Caenorhabditis elegans, POT-3 was the only member thought to not play a role at telomeres. Here, we provide evidence that POT-3 is a bona fide telomere-binding protein. Using a new loss-of-function mutant, we show that the absence of POT-3 causes telomere lengthening and increased levels of telomeric C-circles. We find that POT-3 directly binds the telomeric G-strand in vitro and map its minimal DNA binding site to the six-nucleotide motif, GCTTAG. We further show that the closely related POT-2 protein binds the same motif, but that POT-3 shows higher sequence selectivity. Crucially, in contrast to POT-2, POT-3 prefers binding sites immediately adjacent to the 3' end of DNA. These differences are significant as genetic analyses reveal that pot-2 and pot-3 do not function redundantly with each other in vivo. Our work highlights the rapid evolution and specialisation of telomere binding proteins and places POT-3 in a unique position to influence activities that control telomere length.
Collapse
Affiliation(s)
- Xupeng Yu
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, UK
| | - Sean Gray
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, UK
| | - Helder C Ferreira
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, UK
| |
Collapse
|
15
|
Gelova SP, Chan K. Mutagenesis induced by protonation of single-stranded DNA is linked to glycolytic sugar metabolism. Mutat Res 2023; 826:111814. [PMID: 36634476 DOI: 10.1016/j.mrfmmm.2023.111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Mutagenesis can be thought of as random, in the sense that the occurrence of each mutational event cannot be predicted with precision in space or time. However, when sufficiently large numbers of mutations are analyzed, recurrent patterns of base changes called mutational signatures can be identified. To date, some 60 single base substitution or SBS signatures have been derived from analysis of cancer genomics data. We recently reported that the ubiquitous signature SBS5 matches the pattern of single nucleotide polymorphisms (SNPs) in humans and has analogs in many species. Using a temperature-sensitive single-stranded DNA (ssDNA) mutation reporter system, we also showed that a similar mutational pattern in yeast is dependent on error-prone translesion DNA synthesis (TLS) and glycolytic sugar metabolism. Here, we further investigated mechanisms that are responsible for this form of mutagenesis in yeast. We first confirmed that excess sugar metabolism leads to increased mutation rate, which was detectable by fluctuation assay. Since glycolysis is known to produce excess protons, we then investigated the effects of experimental manipulations on pH and mutagenesis. We hypothesized that yeast metabolizing 8% glucose would produce more excess protons than cells metabolizing 2% glucose. Consistent with this, cells metabolizing 8% glucose had lower intracellular and extracellular pH values. Similarly, deletion of vma3 (encoding a vacuolar H+-ATPase subunit) increased mutagenesis. We also found that treating cells with edelfosine (which renders membranes more permeable, including to protons) or culturing in low pH media increased mutagenesis. Analysis of the mutational pattern attributable to 20 µM edelfosine treatment revealed similarity to the SBS5-like TLS- and glycolysis-dependant mutational patterns previously observed in ssDNA. Altogether, our results agree with multiple biochemical studies showing that protonation of nitrogenous bases can alter base pairing so as to stabilize some mispairs, and shed new light on a common form of intrinsic mutagenesis.
Collapse
Affiliation(s)
- Suzana P Gelova
- University of Ottawa Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada; Agriculture and Agri-Food Canada, 2585 County Road 20, Harrow, Ontario N0R 1G0, Canada
| | - Kin Chan
- University of Ottawa Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
16
|
Coutelier H, Ilioaia O, Le Peillet J, Hamon M, D’Amours D, Teixeira MT, Xu Z. The Polo kinase Cdc5 is regulated at multiple levels in the adaptation response to telomere dysfunction. Genetics 2022; 223:6808627. [PMID: 36342193 PMCID: PMC9836022 DOI: 10.1093/genetics/iyac171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Telomere dysfunction activates the DNA damage checkpoint to induce a cell cycle arrest. After an extended period of time, however, cells can bypass the arrest and undergo cell division despite the persistence of the initial damage, a process called adaptation to DNA damage. The Polo kinase Cdc5 in Saccharomyces cerevisiae is essential for adaptation and for many other cell cycle processes. How the regulation of Cdc5 in response to telomere dysfunction relates to adaptation is not clear. Here, we report that Cdc5 protein level decreases after telomere dysfunction in a Mec1-, Rad53- and Ndd1-dependent manner. This regulation of Cdc5 is important to maintain long-term cell cycle arrest but not for the initial checkpoint arrest. We find that both Cdc5 and the adaptation-deficient mutant protein Cdc5-ad are heavily phosphorylated and several phosphorylation sites modulate adaptation efficiency. The PP2A phosphatases are involved in Cdc5-ad phosphorylation status and contribute to adaptation mechanisms. We finally propose that Cdc5 orchestrates multiple cell cycle pathways to promote adaptation.
Collapse
Affiliation(s)
| | | | | | - Marion Hamon
- Sorbonne Université, PSL, CNRS, FR550, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Maria Teresa Teixeira
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, 75005 Paris, France
| | - Zhou Xu
- Corresponding author: Sorbonne Université, CNRS, UMR7238, Institut de Biologie Paris‐Seine, Laboratory of Computational and Quantitative Biology, 75005 Paris, France.
| |
Collapse
|
17
|
Gelova SP, Doherty KN, Alasmar S, Chan K. Intrinsic base substitution patterns in diverse species reveal links to cancer and metabolism. Genetics 2022; 222:iyac144. [PMID: 36149294 PMCID: PMC9630983 DOI: 10.1093/genetics/iyac144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022] Open
Abstract
Analyses of large-scale cancer sequencing data have revealed that mutagenic processes can create distinctive patterns of base substitutions, called mutational signatures. Interestingly, mutational patterns resembling some of these signatures can also be observed in normal cells. To determine whether similar patterns exist more generally, we analyzed large data sets of genetic variation, including mutations from 7 model species and single nucleotide polymorphisms in 42 species, totaling >1.9 billion variants. We found that base substitution patterns for most species closely match single base substitution (SBS) mutational signature 5 in the Catalog of Somatic Mutations in Cancer (COSMIC) database. SBS5 is ubiquitous in cancers and also present in normal human cells, suggesting that similar patterns of genetic variation across so many species are likely due to conserved biochemistry. We investigated the mechanistic origins of the SBS5-like mutational pattern in Saccharomyces cerevisiae, and show that translesion DNA synthesis and sugar metabolism are directly linked to this form of mutagenesis. We propose that conserved metabolic processes in cells are coupled to continuous generation of genetic variants, which can be acted upon by selection to drive the evolution of biological entities.
Collapse
Affiliation(s)
- Suzana P Gelova
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kassidy N Doherty
- Biopharmaceutical Sciences Undergraduate Program, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Salma Alasmar
- Biopharmaceutical Sciences Undergraduate Program, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kin Chan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
18
|
Casari E, Gnugnoli M, Rinaldi C, Pizzul P, Colombo CV, Bonetti D, Longhese MP. To Fix or Not to Fix: Maintenance of Chromosome Ends Versus Repair of DNA Double-Strand Breaks. Cells 2022; 11:cells11203224. [PMID: 36291091 PMCID: PMC9601279 DOI: 10.3390/cells11203224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 02/08/2023] Open
Abstract
Early work by Muller and McClintock discovered that the physical ends of linear chromosomes, named telomeres, possess an inherent ability to escape unwarranted fusions. Since then, extensive research has shown that this special feature relies on specialized proteins and structural properties that confer identity to the chromosome ends, thus allowing cells to distinguish them from intrachromosomal DNA double-strand breaks. Due to the inability of conventional DNA replication to fully replicate the chromosome ends and the downregulation of telomerase in most somatic human tissues, telomeres shorten as cells divide and lose this protective capacity. Telomere attrition causes the activation of the DNA damage checkpoint that leads to a cell-cycle arrest and the entering of cells into a nondividing state, called replicative senescence, that acts as a barrier against tumorigenesis. However, downregulation of the checkpoint overcomes this barrier and leads to further genomic instability that, if coupled with re-stabilization of telomeres, can drive tumorigenesis. This review focuses on the key experiments that have been performed in the model organism Saccharomyces cerevisiae to uncover the mechanisms that protect the chromosome ends from eliciting a DNA damage response, the conservation of these pathways in mammals, as well as the consequences of their loss in human cancer.
Collapse
|
19
|
Thapa MJ, Fabros RM, Alasmar S, Chan K. Analyses of mutational patterns induced by formaldehyde and acetaldehyde reveal similarity to a common mutational signature. G3 GENES|GENOMES|GENETICS 2022; 12:6694047. [PMID: 36073936 PMCID: PMC9635668 DOI: 10.1093/g3journal/jkac238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 12/23/2022]
Abstract
Formaldehyde and acetaldehyde are reactive small molecules produced endogenously in cells as well as being environmental contaminants. Both of these small aldehydes are classified as human carcinogens, since they are known to damage DNA and exposure is linked to cancer incidence. However, the mutagenic properties of formaldehyde and acetaldehyde remain incompletely understood, at least in part because they are relatively weak mutagens. Here, we use a highly sensitive yeast genetic reporter system featuring controlled generation of long single-stranded DNA regions to show that both small aldehydes induced mutational patterns characterized by predominantly C/G → A/T, C/G → T/A, and T/A → C/G substitutions, each in similar proportions. We observed an excess of C/G → A/T transversions when compared to mock-treated controls. Many of these C/G → A/T transversions occurred at TC/GA motifs. Interestingly, the formaldehyde mutational pattern resembles single base substitution signature 40 from the Catalog of Somatic Mutations in Cancer. Single base substitution signature 40 is a mutational signature of unknown etiology. We also noted that acetaldehyde treatment caused an excess of deletion events longer than 4 bases while formaldehyde did not. This latter result could be another distinguishing feature between the mutational patterns of these simple aldehydes. These findings shed new light on the characteristics of 2 important, commonly occurring mutagens.
Collapse
Affiliation(s)
- Mahanish J Thapa
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa , Ottawa, ON K1H 8M5, Canada
| | - Reena M Fabros
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa , Ottawa, ON K1H 8M5, Canada
| | - Salma Alasmar
- Biopharmaceutical Sciences Undergraduate Program, University of Ottawa , Ottawa, ON K1N 6N5, Canada
| | - Kin Chan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa , Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
20
|
Vijayraghavan S, Porcher L, Mieczkowski PA, Saini N. Acetaldehyde makes a distinct mutation signature in single-stranded DNA. Nucleic Acids Res 2022; 50:7451-7464. [PMID: 35776120 PMCID: PMC9303387 DOI: 10.1093/nar/gkac570] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Acetaldehyde (AA), a by-product of ethanol metabolism, is acutely toxic due to its ability to react with various biological molecules including DNA and proteins, which can greatly impede key processes such as replication and transcription and lead to DNA damage. As such AA is classified as a group 1 carcinogen by the International Agency for Research on Cancer (IARC). Previous in vitro studies have shown that AA generates bulky adducts on DNA, with signature guanine-centered (GG→TT) mutations. However, due to its weak mutagenicity, short chemical half-life, and the absence of powerful genetic assays, there is considerable variability in reporting the mutagenic effects of AA in vivo. Here, we used an established yeast genetic reporter system and demonstrate that AA treatment is highly mutagenic to cells and leads to strand-biased mutations on guanines (G→T) at a high frequency on single stranded DNA (ssDNA). We further demonstrate that AA-derived mutations occur through lesion bypass on ssDNA by the translesion polymerase Polζ. Finally, we describe a unique mutation signature for AA, which we then identify in several whole-genome and -exome sequenced cancers, particularly those associated with alcohol consumption. Our study proposes a key mechanism underlying carcinogenesis by acetaldehyde—mutagenesis of single-stranded DNA.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Latarsha Porcher
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
21
|
Yeast Stn1 promotes MCM to circumvent Rad53 control of the S phase checkpoint. Curr Genet 2022; 68:165-179. [PMID: 35150303 PMCID: PMC8976814 DOI: 10.1007/s00294-022-01228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
Treating yeast cells with the replication inhibitor hydroxyurea activates the S phase checkpoint kinase Rad53, eliciting responses that block DNA replication origin firing, stabilize replication forks, and prevent premature extension of the mitotic spindle. We previously found overproduction of Stn1, a subunit of the telomere-binding Cdc13–Stn1–Ten1 complex, circumvents Rad53 checkpoint functions in hydroxyurea, inducing late origin firing and premature spindle extension even though Rad53 is activated normally. Here, we show Stn1 overproduction acts through remarkably similar pathways compared to loss of RAD53, converging on the MCM complex that initiates origin firing and forms the catalytic core of the replicative DNA helicase. First, mutations affecting Mcm2 and Mcm5 block the ability of Stn1 overproduction to disrupt the S phase checkpoint. Second, loss of function stn1 mutations compensate rad53 S phase checkpoint defects. Third Stn1 overproduction suppresses a mutation in Mcm7. Fourth, stn1 mutants accumulate single-stranded DNA at non-telomeric genome locations, imposing a requirement for post-replication DNA repair. We discuss these interactions in terms of a model in which Stn1 acts as an accessory replication factor that facilitates MCM activation at ORIs and potentially also maintains MCM activity at replication forks advancing through challenging templates.
Collapse
|
22
|
Malyavko AN, Petrova OA, Zvereva MI, Polshakov VI, Dontsova OA. Telomere length regulation by Rif1 protein from Hansenula polymorpha. eLife 2022; 11:75010. [PMID: 35129114 PMCID: PMC8820739 DOI: 10.7554/elife.75010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Rif1 is a large multifaceted protein involved in various processes of DNA metabolism – from telomere length regulation and replication to double-strand break repair. The mechanistic details of its action, however, are often poorly understood. Here, we report functional characterization of the Rif1 homologue from methylotrophic thermotolerant budding yeast Hansenula polymorpha DL-1. We show that, similar to other yeast species, H. polymorpha Rif1 suppresses telomerase-dependent telomere elongation. We uncover two novel modes of Rif1 recruitment at H. polymorpha telomeres: via direct DNA binding and through the association with the Ku heterodimer. Both of these modes (at least partially) require the intrinsically disordered N-terminal extension – a region of the protein present exclusively in yeast species. We also demonstrate that Rif1 binds Stn1 and promotes its accumulation at telomeres in H. polymorpha.
Collapse
Affiliation(s)
- Alexander N Malyavko
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga A Petrova
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Maria I Zvereva
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga A Dontsova
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
23
|
Rosas Bringas FR, Stinus S, de Zoeten P, Cohn M, Chang M. Rif2 protects Rap1-depleted telomeres from MRX-mediated degradation in Saccharomyces cerevisiae. eLife 2022; 11:74090. [PMID: 35044907 PMCID: PMC8791636 DOI: 10.7554/elife.74090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/17/2022] [Indexed: 12/01/2022] Open
Abstract
Rap1 is the main protein that binds double-stranded telomeric DNA in Saccharomyces cerevisiae. Examination of the telomere functions of Rap1 is complicated by the fact that it also acts as a transcriptional regulator of hundreds of genes and is encoded by an essential gene. In this study, we disrupt Rap1 telomere association by expressing a mutant telomerase RNA subunit (tlc1-tm) that introduces mutant telomeric repeats. tlc1-tm cells grow similar to wild-type cells, although depletion of Rap1 at telomeres causes defects in telomere length regulation and telomere capping. Rif2 is a protein normally recruited to telomeres by Rap1, but we show that Rif2 can still associate with Rap1-depleted tlc1-tm telomeres, and that this association is required to inhibit telomere degradation by the MRX complex. Rif2 and the Ku complex work in parallel to prevent tlc1-tm telomere degradation; tlc1-tm cells lacking Rif2 and the Ku complex are inviable. The partially redundant mechanisms may explain the rapid evolution of telomere components in budding yeast species.
Collapse
Affiliation(s)
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University Medical Center Groningen
| | - Pien de Zoeten
- European Research Institute for the Biology of Ageing, University Medical Center Groningen
| | | | - Michael Chang
- European Research Institute for the Biology of Ageing, University Medical Center Groningen
| |
Collapse
|
24
|
Telomeres and Cancer. Life (Basel) 2021; 11:life11121405. [PMID: 34947936 PMCID: PMC8704776 DOI: 10.3390/life11121405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.
Collapse
|
25
|
Fekete-Szücs E, Rosas Bringas FR, Stinus S, Chang M. Suppression of cdc13-2-associated senescence by pif1-m2 requires Ku-mediated telomerase recruitment. G3-GENES GENOMES GENETICS 2021; 12:6395364. [PMID: 34751785 PMCID: PMC8728030 DOI: 10.1093/g3journal/jkab360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
In Saccharomyces cerevisiae, recruitment of telomerase to telomeres requires an interaction between Cdc13, which binds single-stranded telomeric DNA, and the Est1 subunit of telomerase. A second pathway involving an interaction between the yKu complex and telomerase RNA (TLC1) contributes to telomerase recruitment but cannot sufficiently recruit telomerase on its own to prevent replicative senescence when the primary Cdc13-Est1 pathway is abolished—for example, in the cdc13-2 mutant. In this study, we find that mutation of PIF1, which encodes a helicase that inhibits telomerase, suppresses the replicative senescence of cdc13-2 by increasing reliance on the yKu-TLC1 pathway for telomerase recruitment. Our findings reveal new insight into telomerase-mediated telomere maintenance.
Collapse
Affiliation(s)
- Enikő Fekete-Szücs
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Fernando R Rosas Bringas
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| |
Collapse
|
26
|
Yamamoto I, Nakaoka H, Takikawa M, Tashiro S, Kanoh J, Miyoshi T, Ishikawa F. Fission yeast Stn1 maintains stability of repetitive DNA at subtelomere and ribosomal DNA regions. Nucleic Acids Res 2021; 49:10465-10476. [PMID: 34520548 PMCID: PMC8501966 DOI: 10.1093/nar/gkab767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
Telomere binding protein Stn1 forms the CST (Cdc13/CTC1-STN1-TEN1) complex in budding yeast and mammals. Likewise, fission yeast Stn1 and Ten1 form a complex indispensable for telomere protection. We have previously reported that stn1-1, a high-temperature sensitive mutant, rapidly loses telomere DNA at the restrictive temperature due to frequent failure of replication fork progression at telomeres and subtelomeres, both containing repetitive sequences. It is unclear, however, whether Stn1 is required for maintaining other repetitive DNAs such as ribosomal DNA. In this study, we have demonstrated that stn1-1 cells, even when grown at the permissive temperature, exhibited dynamic rearrangements in the telomere-proximal regions of subtelomere and ribosomal DNA repeats. Furthermore, Rad52 and γH2A accumulation was observed at ribosomal DNA repeats in the stn1-1 mutant. The phenotypes exhibited by the stn1-1 allele were largely suppressed in the absence of Reb1, a replication fork barrier-forming protein, suggesting that Stn1 is involved in the maintenance of the arrested replication forks. Collectively, we propose that Stn1 maintains the stability of repetitive DNAs at subtelomeres and rDNA regions.
Collapse
Affiliation(s)
- Io Yamamoto
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan.,Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Hidenori Nakaoka
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan.,Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Masahiro Takikawa
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Sanki Tashiro
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan.,Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Junko Kanoh
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Tomoichiro Miyoshi
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan.,Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Fuyuki Ishikawa
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan.,Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| |
Collapse
|
27
|
Spivakovsky-Gonzalez E, Polleys EJ, Masnovo C, Cebrian J, Molina-Vargas AM, Freudenreich CH, Mirkin SM. Rad9-mediated checkpoint activation is responsible for elevated expansions of GAA repeats in CST-deficient yeast. Genetics 2021; 219:6343461. [PMID: 34849883 DOI: 10.1093/genetics/iyab125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Large-scale expansion of (GAA)n repeats in the first intron of the FXN gene is responsible for the severe neurodegenerative disease, Friedreich's ataxia in humans. We have previously conducted an unbiased genetic screen for GAA repeat instability in a yeast experimental system. The majority of genes that came from this screen encoded the components of DNA replication machinery, strongly implying that replication irregularities are at the heart of GAA repeat expansions. This screen, however, also produced two unexpected hits: members of the CST complex, CDC13 and TEN1 genes, which are required for telomere maintenance. To understand how the CST complex could affect intra-chromosomal GAA repeats, we studied the well-characterized temperature-sensitive cdc13-1 mutation and its effects on GAA repeat instability in yeast. We found that in-line with the screen results, this mutation leads to ∼10-fold increase in the rate of large-scale expansions of the (GAA)100 repeat at semi-permissive temperature. Unexpectedly, the hyper-expansion phenotype of the cdc13-1 mutant largely depends on activation of the G2/M checkpoint, as deletions of individual genes RAD9, MEC1, RAD53, and EXO1 belonging to this pathway rescued the increased GAA expansions. Furthermore, the hyper-expansion phenotype of the cdc13-1 mutant depended on the subunit of DNA polymerase δ, Pol32. We hypothesize, therefore, that increased repeat expansions in the cdc13-1 mutant happen during post-replicative repair of nicks or small gaps within repetitive tracts during the G2 phase of the cell cycle upon activation of the G2/M checkpoint.
Collapse
Affiliation(s)
| | - Erica J Polleys
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Chiara Masnovo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Jorge Cebrian
- Department of Biology, Tufts University, Medford, MA 02155, USA.,Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, Madrid 28040, Spain
| | - Adrian M Molina-Vargas
- Department of Biology, Tufts University, Medford, MA 02155, USA.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
28
|
Complex Mechanisms of Antimony Genotoxicity in Budding Yeast Involves Replication and Topoisomerase I-Associated DNA Lesions, Telomere Dysfunction and Inhibition of DNA Repair. Int J Mol Sci 2021; 22:ijms22094510. [PMID: 33925940 PMCID: PMC8123508 DOI: 10.3390/ijms22094510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022] Open
Abstract
Antimony is a toxic metalloid with poorly understood mechanisms of toxicity and uncertain carcinogenic properties. By using a combination of genetic, biochemical and DNA damage assays, we investigated the genotoxic potential of trivalent antimony in the model organism Saccharomyces cerevisiae. We found that low doses of Sb(III) generate various forms of DNA damage including replication and topoisomerase I-dependent DNA lesions as well as oxidative stress and replication-independent DNA breaks accompanied by activation of DNA damage checkpoints and formation of recombination repair centers. At higher concentrations of Sb(III), moderately increased oxidative DNA damage is also observed. Consistently, base excision, DNA damage tolerance and homologous recombination repair pathways contribute to Sb(III) tolerance. In addition, we provided evidence suggesting that Sb(III) causes telomere dysfunction. Finally, we showed that Sb(III) negatively effects repair of double-strand DNA breaks and distorts actin and microtubule cytoskeleton. In sum, our results indicate that Sb(III) exhibits a significant genotoxic activity in budding yeast.
Collapse
|
29
|
Lin YY, Li MH, Chang YC, Fu PY, Ohniwa RL, Li HW, Lin JJ. Dynamic DNA Shortening by Telomere-Binding Protein Cdc13. J Am Chem Soc 2021; 143:5815-5825. [PMID: 33831300 DOI: 10.1021/jacs.1c00820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Telomeres are essential for chromosome maintenance. Cdc13 is a single-stranded telomeric DNA binding protein that caps telomeres and regulates telomerase function in yeast. Although specific binding of Cdc13 to telomeric DNA is critical for telomere protection, the detail mechanism how Cdc13-DNA complex protects telomere is unclear. Using two single-molecule methods, tethered particle motion and atomic force microscopy, we demonstrate that specific binding of Cdc13 on single-stranded telomeric DNA shortens duplex DNA into distinct states differed by ∼70-80 base pairs. DNA shortening by Cdc13 is dynamic and independent of duplex DNA sequences or length. Significantly, we found that Pif1 helicase is incapable of removing Cdc13 from the shortened DNA-Cdc13 complex, suggesting that Cdc13 forms structurally stable complex by shortening of the bound DNA. Together our data identified shortening of DNA by Cdc13 and provided an indication for efficient protection of telomere ends by the shortened DNA-Cdc13 complex.
Collapse
Affiliation(s)
- Yi-Yun Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan
| | - Min-Hsuan Li
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan
| | - Yen-Chan Chang
- Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Peng-Yu Fu
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan
| | - Ryosuke L Ohniwa
- Faculty of Medicine, University of Tsukuba, Ibaraki 305-8577, Japan.,Center for Biotechnology, National Taiwan University, Taipei City 10617, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan.,Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei City 112, Taiwan
| |
Collapse
|
30
|
Bonnell E, Pasquier E, Wellinger RJ. Telomere Replication: Solving Multiple End Replication Problems. Front Cell Dev Biol 2021; 9:668171. [PMID: 33869233 PMCID: PMC8047117 DOI: 10.3389/fcell.2021.668171] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic genomes are highly complex and divided into linear chromosomes that require end protection from unwarranted fusions, recombination, and degradation in order to maintain genomic stability. This is accomplished through the conserved specialized nucleoprotein structure of telomeres. Due to the repetitive nature of telomeric DNA, and the unusual terminal structure, namely a protruding single stranded 3' DNA end, completing telomeric DNA replication in a timely and efficient manner is a challenge. For example, the end replication problem causes a progressive shortening of telomeric DNA at each round of DNA replication, thus telomeres eventually lose their protective capacity. This phenomenon is counteracted by the recruitment and the activation at telomeres of the specialized reverse transcriptase telomerase. Despite the importance of telomerase in providing a mechanism for complete replication of telomeric ends, the majority of telomere replication is in fact carried out by the conventional DNA replication machinery. There is significant evidence demonstrating that progression of replication forks is hampered at chromosomal ends due to telomeric sequences prone to form secondary structures, tightly DNA-bound proteins, and the heterochromatic nature of telomeres. The telomeric loop (t-loop) formed by invasion of the 3'-end into telomeric duplex sequences may also impede the passage of replication fork. Replication fork stalling can lead to fork collapse and DNA breaks, a major cause of genomic instability triggered notably by unwanted repair events. Moreover, at chromosomal ends, unreplicated DNA distal to a stalled fork cannot be rescued by a fork coming from the opposite direction. This highlights the importance of the multiple mechanisms involved in overcoming fork progression obstacles at telomeres. Consequently, numerous factors participate in efficient telomeric DNA duplication by preventing replication fork stalling or promoting the restart of a stalled replication fork at telomeres. In this review, we will discuss difficulties associated with the passage of the replication fork through telomeres in both fission and budding yeasts as well as mammals, highlighting conserved mechanisms implicated in maintaining telomere integrity during replication, thus preserving a stable genome.
Collapse
Affiliation(s)
| | | | - Raymund J. Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
31
|
Hoerr RE, Ngo K, Friedman KL. When the Ends Justify the Means: Regulation of Telomere Addition at Double-Strand Breaks in Yeast. Front Cell Dev Biol 2021; 9:655377. [PMID: 33816507 PMCID: PMC8012806 DOI: 10.3389/fcell.2021.655377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/15/2021] [Indexed: 11/23/2022] Open
Abstract
Telomeres, repetitive sequences located at the ends of most eukaryotic chromosomes, provide a mechanism to replenish terminal sequences lost during DNA replication, limit nucleolytic resection, and protect chromosome ends from engaging in double-strand break (DSB) repair. The ribonucleoprotein telomerase contains an RNA subunit that serves as the template for the synthesis of telomeric DNA. While telomere elongation is typically primed by a 3′ overhang at existing chromosome ends, telomerase can act upon internal non-telomeric sequences. Such de novo telomere addition can be programmed (for example, during chromosome fragmentation in ciliated protozoa) or can occur spontaneously in response to a chromosome break. Telomerase action at a DSB can interfere with conservative mechanisms of DNA repair and results in loss of distal sequences but may prevent additional nucleolytic resection and/or chromosome rearrangement through formation of a functional telomere (termed “chromosome healing”). Here, we review studies of spontaneous and induced DSBs in the yeast Saccharomyces cerevisiae that shed light on mechanisms that negatively regulate de novo telomere addition, in particular how the cell prevents telomerase action at DSBs while facilitating elongation of critically short telomeres. Much of our understanding comes from the use of perfect artificial telomeric tracts to “seed” de novo telomere addition. However, endogenous sequences that are enriched in thymine and guanine nucleotides on one strand (TG-rich) but do not perfectly match the telomere consensus sequence can also stimulate unusually high frequencies of telomere formation following a DSB. These observations suggest that some internal sites may fully or partially escape mechanisms that normally negatively regulate de novo telomere addition.
Collapse
Affiliation(s)
- Remington E Hoerr
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Katrina Ngo
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Katherine L Friedman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
32
|
Grandin N, Gallego ME, White CI, Charbonneau M. Inhibition of the alternative lengthening of telomeres pathway by subtelomeric sequences in Saccharomyces cerevisiae. DNA Repair (Amst) 2020; 96:102996. [PMID: 33126043 DOI: 10.1016/j.dnarep.2020.102996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, telomerase is constitutively active and is essential for chromosome end protection and illimited proliferation of cell populations. However, upon inactivation of telomerase, alternative mechanims of telomere maintenance allow proliferation of only extremely rare survivors. S. cerevisiae type I and type II survivors differ by the nature of the donor sequences used for repair by homologous recombination of the uncapped terminal TG1-3 telomeric sequences. Type I amplifies the subtelomeric Y' sequences and is more efficient than type II, which amplifies the terminal TG1-3 repeats. However, type II survivors grow faster than type I survivors and can easily outgrow them in liquid cultures. The mechanistic interest of studying S. cerevisiae telomeric recombination is reinforced by the fact that type II recombination is the equivalent of the alternative lengthening of telomeres (ALT) pathway that is used by 5-15 % of cancer types as an alternative to telomerase reactivation. In budding yeast, only around half of the 32 telomeres harbor Y' subtelomeric elements. We report here that in strains harboring Y' elements on all telomeres, type II survivors are not observed, most likely due to an increase in the efficiency of type I recombination. However, in a temperature-sensitive cdc13-1 mutant grown at semi-permissive temperature, the increased amount of telomeric TG1-3 repeats could overcome type II inhibition by the subtelomeric Y' sequences. Strikingly, in the 100 % Y' strain the replicative senescence crisis normally provoked by inactivation of telomerase completely disappeared and the severity of the crisis was proportional to the percentage of chromosome-ends lacking Y' subtelomeric sequences. The present study highlights the fact that the nature of subtelomeric elements can influence the selection of the pathway of telomere maintenance by recombination, as well as the response of the cell to telomeric damage caused by telomerase inactivation.
Collapse
Affiliation(s)
- Nathalie Grandin
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| | - Maria Eugenia Gallego
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| | - Charles I White
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| | - Michel Charbonneau
- GReD Institute, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France.
| |
Collapse
|
33
|
Wu ZJ, Liu JC, Man X, Gu X, Li TY, Cai C, He MH, Shao Y, Lu N, Xue X, Qin Z, Zhou JQ. Cdc13 is predominant over Stn1 and Ten1 in preventing chromosome end fusions. eLife 2020; 9:53144. [PMID: 32755541 PMCID: PMC7406354 DOI: 10.7554/elife.53144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Telomeres define the natural ends of eukaryotic chromosomes and are crucial for chromosomal stability. The budding yeast Cdc13, Stn1 and Ten1 proteins form a heterotrimeric complex, and the inactivation of any of its subunits leads to a uniformly lethal phenotype due to telomere deprotection. Although Cdc13, Stn1 and Ten1 seem to belong to an epistasis group, it remains unclear whether they function differently in telomere protection. Here, we employed the single-linear-chromosome yeast SY14, and surprisingly found that the deletion of CDC13 leads to telomere erosion and intrachromosome end-to-end fusion, which depends on Rad52 but not Yku. Interestingly, the emergence frequency of survivors in the SY14 cdc13Δ mutant was ~29 fold higher than that in either the stn1Δ or ten1Δ mutant, demonstrating a predominant role of Cdc13 in inhibiting telomere fusion. Chromosomal fusion readily occurred in the telomerase-null SY14 strain, further verifying the default role of intact telomeres in inhibiting chromosome fusion.
Collapse
Affiliation(s)
- Zhi-Jing Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xin Man
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xin Gu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ting-Yi Li
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Chen Cai
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Yangyang Shao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Ning Lu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoli Xue
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
34
|
Structural insights into telomere protection and homeostasis regulation by yeast CST complex. Nat Struct Mol Biol 2020; 27:752-762. [PMID: 32661422 DOI: 10.1038/s41594-020-0459-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/22/2020] [Indexed: 01/29/2023]
Abstract
Budding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance. Despite extensive studies, only structural information of individual domains of CST is available; the architecture of CST still remains unclear. Here, we report crystal structures of Kluyveromyces lactis Cdc13-telomeric-DNA, Cdc13-Stn1 and Stn1-Ten1 complexes and propose an integrated model depicting how CST assembles and plays its roles at telomeres. Surprisingly, two oligonucleotide/oligosaccharide-binding (OB) folds of Cdc13 (OB2 and OB4), previously believed to mediate Cdc13 homodimerization, actually form a stable intramolecular interaction. This OB2-OB4 module of Cdc13 is required for the Cdc13-Stn1 interaction that assembles CST into an architecture with a central ring-like core and multiple peripheral modules in a 2:2:2 stoichiometry. Functional analyses indicate that this unique CST architecture is essential for both telomere capping and homeostasis regulation. Overall, our results provide fundamentally valuable structural information regarding the CST complex and its roles in telomere biology.
Collapse
|
35
|
Jurikova K, Gajarsky M, Hajikazemi M, Nosek J, Prochazkova K, Paeschke K, Trantirek L, Tomaska L. Role of folding kinetics of secondary structures in telomeric G-overhangs in the regulation of telomere maintenance in Saccharomyces cerevisiae. J Biol Chem 2020; 295:8958-8971. [PMID: 32385108 PMCID: PMC7335780 DOI: 10.1074/jbc.ra120.012914] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The ends of eukaryotic chromosomes typically contain a 3' ssDNA G-rich protrusion (G-overhang). This overhang must be protected against detrimental activities of nucleases and of the DNA damage response machinery and participates in the regulation of telomerase, a ribonucleoprotein complex that maintains telomere integrity. These functions are mediated by DNA-binding proteins, such as Cdc13 in Saccharomyces cerevisiae, and the propensity of G-rich sequences to form various non-B DNA structures. Using CD and NMR spectroscopies, we show here that G-overhangs of S. cerevisiae form distinct Hoogsteen pairing-based secondary structures, depending on their length. Whereas short telomeric oligonucleotides form a G-hairpin, their longer counterparts form parallel and/or antiparallel G-quadruplexes (G4s). Regardless of their topologies, non-B DNA structures exhibited impaired binding to Cdc13 in vitro as demonstrated by electrophoretic mobility shift assays. Importantly, whereas G4 structures formed relatively quickly, G-hairpins folded extremely slowly, indicating that short G-overhangs, which are typical for most of the cell cycle, are present predominantly as single-stranded oligonucleotides and are suitable substrates for Cdc13. Using ChIP, we show that the occurrence of G4 structures peaks at the late S phase, thus correlating with the accumulation of long G-overhangs. We present a model of how time- and length-dependent formation of non-B DNA structures at chromosomal termini participates in telomere maintenance.
Collapse
Affiliation(s)
- Katarina Jurikova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Martin Gajarsky
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Mona Hajikazemi
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarina Prochazkova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic.
| | - Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
36
|
Saini N, Gordenin DA. Hypermutation in single-stranded DNA. DNA Repair (Amst) 2020; 91-92:102868. [PMID: 32438271 PMCID: PMC7234795 DOI: 10.1016/j.dnarep.2020.102868] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Regions of genomic DNA can become single-stranded in the course of normal replication and transcription as well as during DNA repair. Abnormal repair and replication intermediates can contain large stretches of persistent single-stranded DNA, which is extremely vulnerable to DNA damaging agents and hypermutation. Since such single-stranded DNA spans only a fraction of the genome at a given instance, hypermutation in these regions leads to tightly-spaced mutation clusters. This phenomenon of hypermutation in single-stranded DNA has been documented in several experimental models as well as in cancer genomes. Recently, hypermutated single-stranded RNA viral genomes also have been documented. Moreover, indications of hypermutation in single-stranded DNA may also be found in the human germline. This review will summarize key current knowledge and the recent developments in understanding the diverse mechanisms and sources of ssDNA hypermutation.
Collapse
Affiliation(s)
- Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
37
|
Saccharomyces cerevisiae Mus81-Mms4 prevents accelerated senescence in telomerase-deficient cells. PLoS Genet 2020; 16:e1008816. [PMID: 32469862 PMCID: PMC7286520 DOI: 10.1371/journal.pgen.1008816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/10/2020] [Accepted: 04/30/2020] [Indexed: 01/31/2023] Open
Abstract
Alternative lengthening of telomeres (ALT) in human cells is a conserved process that is often activated in telomerase-deficient human cancers. This process exploits components of the recombination machinery to extend telomere ends, thus allowing for increased proliferative potential. Human MUS81 (Mus81 in Saccharomyces cerevisiae) is the catalytic subunit of structure-selective endonucleases involved in recombination and has been implicated in the ALT mechanism. However, it is unclear whether MUS81 activity at the telomere is specific to ALT cells or if it is required for more general aspects of telomere stability. In this study, we use S. cerevisiae to evaluate the contribution of the conserved Mus81-Mms4 endonuclease in telomerase-deficient yeast cells that maintain their telomeres by mechanisms akin to human ALT. Similar to human cells, we find that yeast Mus81 readily localizes to telomeres and its activity is important for viability after initial loss of telomerase. Interestingly, our analysis reveals that yeast Mus81 is not required for the survival of cells undergoing recombination-mediated telomere lengthening, i.e. for ALT itself. Rather we infer from genetic analysis that Mus81-Mms4 facilitates telomere replication during times of telomere instability. Furthermore, combining mus81 mutants with mutants of a yeast telomere replication factor, Rrm3, reveals that the two proteins function in parallel to promote normal growth during times of telomere stress. Combined with previous reports, our data can be interpreted in a consistent model in which both yeast and human MUS81-dependent nucleases participate in the recovery of stalled replication forks within telomeric DNA. Furthermore, this process becomes crucial under conditions of additional replication stress, such as telomere replication in telomerase-deficient cells. Cancer cell divisions require active chromosome lengthening through extension of their highly repetitive ends, called telomeres. This process is accomplished through two main mechanisms: the activity of an RNA-protein complex, telomerase, or through a telomerase-independent process termed alternative lengthening of telomeres (ALT). Human MUS81, the catalytic subunit of a set of structure-selective endonucleases, was found to be essential in human cells undergoing ALT and proposed to be directly involved in telomere lengthening. Using telomerase-deficient Saccharomyces cerevisiae cells as a model for ALT, we tested the hypothesis that Mus81-Mms4, the budding yeast homolog of human MUS81-dependent nucleases, is essential for telomere lengthening as proposed for human cells. Using genetic and molecular assays we confirm that Mus81-Mms4 is involved in telomere metabolism in yeast. However, to our surprise, we find that Mus81-Mms4 is not directly involved in recombination-based mechanisms of telomere lengthening. Rather it appears that Mus81-Mms4 is involved in resolving replication stress at telomeres, which is augmented in cells undergoing telomere instability. This model is consistent with observations in mammalian cells and suggest that cells undergoing telomere shortening experience replication stress at telomeres.
Collapse
|
38
|
Long-lived post-mitotic cell aging: is a telomere clock at play? Mech Ageing Dev 2020; 189:111256. [PMID: 32380018 DOI: 10.1016/j.mad.2020.111256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Senescence is a cellular response to stress for both dividing and post-mitotic cells. Noteworthy, long-lived post-mitotic cells (collectively named LLPMCs), which can live for decades in the organism, can exhibit a distinct type of cellular aging characterized by a progressive functional decline not associated to an overt senescence phenotype. The age-related drivers of senescence and aging in LLPMCs remain largely unknown. There is evidence that an increased production of reactive oxygen species (ROS) due to dysfunctional mitochondria, coupled with an inherent inability of cellular-degradation mechanisms to remove damaged molecules, is responsible for senescence and aging in LLPMC. Although telomeric DNA shortening, by nature linked to cell division, is generally not considered as a driver of LLPMC aging and senescence, we discuss recent reports revealing the existence of age-related telomere changes in LLPMC. These findings reveal unexpected roles for telomeres in LLPMC function and invite us to consider the hypothesis of a complex telomere clock involved in both dividing and non-dividing cell aging.
Collapse
|
39
|
Langston RE, Palazzola D, Bonnell E, Wellinger RJ, Weinert T. Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping. PLoS Genet 2020; 16:e1008733. [PMID: 32287268 PMCID: PMC7205313 DOI: 10.1371/journal.pgen.1008733] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/07/2020] [Accepted: 03/23/2020] [Indexed: 01/02/2023] Open
Abstract
In budding yeast, Cdc13, Stn1, and Ten1 form the telomere-binding heterotrimer CST complex. Here we investigate the role of Cdc13/CST in maintaining genome stability by using a Chr VII disome system that can generate recombinants, chromosome loss, and enigmatic unstable chromosomes. In cells expressing a temperature sensitive CDC13 allele, cdc13F684S, unstable chromosomes frequently arise from problems in or near a telomere. We found that, when Cdc13 is defective, passage through S phase causes Exo1-dependent ssDNA and unstable chromosomes that are then the source for additional chromosome instability events (e.g. recombinants, chromosome truncations, dicentrics, and/or chromosome loss). We observed that genome instability arises from a defect in Cdc13’s function during DNA replication, not Cdc13’s putative post-replication telomere capping function. The molecular nature of the initial unstable chromosomes formed by a Cdc13-defect involves ssDNA and does not involve homologous recombination nor non-homologous end joining; we speculate the original unstable chromosome may be a one-ended double strand break. This system defines a link between Cdc13’s function during DNA replication and genome stability in the form of unstable chromosomes, that then progress to form other chromosome changes. Eukaryotic chromosomes are linear molecules with specialized end structures called telomeres. Telomeres contain both unique repetitive DNA sequences and specialized proteins that solve several biological problems by differentiating chromosomal ends from internal breaks, thus preventing chromosome instability. When telomeres are defective, the entire chromosome can become unstable and change, causing mutations and pathology (cancer, aging, etc.). Here we study how a defect in specific telomere proteins causes chromosomal rearrangements, using the model organism Saccharomyces cerevisiae (budding or brewer’s yeast). We find that when specific telomere proteins are defective, errors in DNA replication generate a type of damage that likely involves extensive single-stranded DNA that forms inherently unstable chromosomes, subject to many subsequent instances of instability (e.g. allelic recombinants, chromosome loss, truncations, dicentrics). The telomere protein Cdc13 is part of a protein complex called CST that is conserved in most organisms including mammalian cells. The technical capacity of studies in budding yeast allow a detailed, real-time examination of how telomere defects compromise chromosome stability in a single cell cycle, generating lessons likely relevant to how human telomeres keep human chromosomes stable.
Collapse
Affiliation(s)
- Rachel E. Langston
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Dominic Palazzola
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Erin Bonnell
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Raymund J. Wellinger
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ted Weinert
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
40
|
Fernandes CAH, Morea EGO, Dos Santos GA, da Silva VL, Vieira MR, Viviescas MA, Chatain J, Vadel A, Saintomé C, Fontes MRM, Cano MIN. A multi-approach analysis highlights the relevance of RPA-1 as a telomere end-binding protein (TEBP) in Leishmania amazonensis. Biochim Biophys Acta Gen Subj 2020; 1864:129607. [PMID: 32222548 DOI: 10.1016/j.bbagen.2020.129607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/21/2020] [Accepted: 03/24/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Telomeres are chromosome end structures important in the maintenance of genome homeostasis. They are replenished by the action of telomerase and associated proteins, such as the OB (oligonucleotide/oligosaccharide-binding)-fold containing telomere-end binding proteins (TEBP) which plays an essential role in telomere maintenance and protection. The nature of TEBPs is well known in higher and some primitive eukaryotes, but it remains undetermined in trypanosomatids. Previous in silico searches have shown that there are no homologs of the classical TEPBs in trypanosomatids, including Leishmania sp. However, Replication Protein A subunit 1 (RPA-1), an OB-fold containing DNA-binding protein, was found co-localized with trypanosomatids telomeres and showed a high preference for the telomeric G-rich strand. METHODS AND RESULTS We predicted the absence of structural homologs of OB-fold containing TEBPs in the Leishmania sp. genome using structural comparisons. We demonstrated by molecular docking that the ssDNA binding mode of LaRPA-1 shares features with the higher eukaryotes POT1 and RPA-1 crystal structures ssDNA binding mode. Using fluorescence spectroscopy, protein-DNA interaction assays, and FRET, we respectively show that LaRPA-1 shares some telomeric functions with the classical TEBPs since it can bind at least one telomeric repeat, protect the telomeric G-rich DNA from 3'-5' Exonuclease I digestion, and unfold telomeric G-quadruplex. CONCLUSIONS Our results suggest that RPA-1 emerges as a TEBP in trypanosomatids, and in this context, we present two possible evolutionary landscapes of trypanosomatids RPA-1 that could reflect upon the evolution of OB-fold containing TEBPs from all eukaryotes.
Collapse
Affiliation(s)
- Carlos A H Fernandes
- Department of Biophysics and Pharmacology, Biosciences Institute, São Paulo State University (UNESP) - Botucatu, SP, Brazil; Laboratoire de Biologie et Pharmacologie Appliquée, École Normale Supérieure Paris-Saclay, Cachan, France
| | - Edna Gicela O Morea
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP) - Botucatu, SP, Brazil
| | - Gabriel A Dos Santos
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP) - Botucatu, SP, Brazil
| | - Vitor L da Silva
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP) - Botucatu, SP, Brazil
| | - Marina Roveri Vieira
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP) - Botucatu, SP, Brazil
| | - Maria Alejandra Viviescas
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP) - Botucatu, SP, Brazil
| | - Jean Chatain
- MNHN CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, 75005 Paris, France
| | - Aurélie Vadel
- MNHN CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, 75005 Paris, France
| | - Carole Saintomé
- MNHN CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, 75005 Paris, France; Sorbonne Université, UFR927, 4 place Jussieu, 75005 Paris, France
| | - Marcos Roberto M Fontes
- Department of Biophysics and Pharmacology, Biosciences Institute, São Paulo State University (UNESP) - Botucatu, SP, Brazil
| | - Maria Isabel Nogueira Cano
- Department of Chemical and Biological Sciences, São Paulo State University (UNESP) - Botucatu, SP, Brazil.
| |
Collapse
|
41
|
Abstract
Telomeres are special structures at the ends of chromosomes that play an
important role in the protection of the genetic material. Telomere composition
is very diverse; noticeable differences can often be observed even among
closely related species. Here, we identify the homolog of telomeric protein
Cdc13 in the thermotolerant yeast Hansenula polymorpha. We
show that it can specifically bind single-stranded telomeric DNA, as well as
interact with the Stn1 protein. In addition, we have uncovered an interaction
between Cdc13 and TERT (one of the core components of the telomerase complex),
which suggests that Cdc13 is potentially involved in telomerase recruitment to
telomeres in H. polymorpha.
Collapse
Affiliation(s)
- A. N. Malyavko
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russia
| | - O. A. Dontsova
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
42
|
Either Rap1 or Cdc13 can protect telomeric single-stranded 3' overhangs from degradation in vitro. Sci Rep 2019; 9:19181. [PMID: 31844093 PMCID: PMC6915718 DOI: 10.1038/s41598-019-55482-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/28/2019] [Indexed: 01/29/2023] Open
Abstract
Telomeres, the DNA-protein structures capping the ends of linear chromosomes, are important for regulating replicative senescence and maintaining genome stability. Telomeres consist of G-rich repetitive sequences that end in a G-rich single-stranded (ss) 3′ overhang, which is vital for telomere function. It is largely unknown how the 3′ overhang is protected against exonucleases. In budding yeast, double-stranded (ds) telomeric DNA is bound by Rap1, while ssDNA is bound by Cdc13. Here, we developed an in vitro DNA 3′end protection assay to gain mechanistic insight into how Naumovozyma castellii Cdc13 and Rap1 may protect against 3′ exonucleolytic degradation by Exonuclease T. Our results show that Cdc13 protects the 3′ overhang at least 5 nucleotides (nt) beyond its binding site, when bound directly adjacent to the ds-ss junction. Rap1 protects 1–2 nt of the 3′ overhang when bound to dsDNA adjacent to the ds-ss junction. Remarkably, when Rap1 is bound across the ds-ss junction, the protection of the 3′ overhang is extended to 6 nt. This shows that binding by either Cdc13 or Rap1 can protect telomeric overhangs from 3′ exonucleolytic degradation, and suggests a new important role for Rap1 in protecting short overhangs under circumstances when Cdc13 cannot bind the telomere.
Collapse
|
43
|
He MH, Liu JC, Lu YS, Wu ZJ, Liu YY, Wu Z, Peng J, Zhou JQ. KEOPS complex promotes homologous recombination via DNA resection. Nucleic Acids Res 2019; 47:5684-5697. [PMID: 30937455 PMCID: PMC6582355 DOI: 10.1093/nar/gkz228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 12/01/2022] Open
Abstract
KEOPS complex is one of the most conserved protein complexes in eukaryotes. It plays important roles in both telomere uncapping and tRNA N6-threonylcarbamoyladenosine (t6A) modification in budding yeast. But whether KEOPS complex plays any roles in DNA repair remains unknown. Here, we show that KEOPS complex plays positive roles in both DNA damage response and homologous recombination-mediated DNA repair independently of its t6A synthesis function. Additionally, KEOPS displays DNA binding activity in vitro, and is recruited to the chromatin at DNA breaks in vivo, suggesting a direct role of KEOPS in DSB repair. Mechanistically, KEOPS complex appears to promote DNA end resection through facilitating the association of Exo1 and Dna2 with DNA breaks. Interestingly, inactivation of both KEOPS and Mre11/Rad50/Xrs2 (MRX) complexes results in synergistic defect in DNA resection, revealing that KEOPS and MRX have some redundant functions in DNA resection. Thus we uncover a t6A-independent role of KEOPS complex in DNA resection, and propose that KEOPS might be a DSB sensor to assist cells in maintaining chromosome stability.
Collapse
Affiliation(s)
- Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yi-Si Lu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zhi-Jing Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ying-Ying Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201201, China
| | - Zhenfang Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jing Peng
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201201, China
| |
Collapse
|
44
|
Xu Z, Teixeira MT. The many types of heterogeneity in replicative senescence. Yeast 2019; 36:637-648. [PMID: 31306505 PMCID: PMC6900063 DOI: 10.1002/yea.3433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 11/10/2022] Open
Abstract
Replicative senescence, which is induced by telomere shortening, underlies the loss of regeneration capacity of organs and is ultimately detrimental to the organism. At the same time, it is required to protect organisms from unlimited cell proliferation that may arise from numerous stimuli or deregulations. One important feature of replicative senescence is its high level of heterogeneity and asynchrony, which promote genome instability and senescence escape. Characterizing this heterogeneity and investigating its sources are thus critical to understanding the robustness of replicative senescence. Here we review the different aspects of senescence driven by telomere attrition that are subject to variation in Saccharomyces cerevisiae, the current understanding of the molecular processes at play, and the consequences of heterogeneity in replicative senescence.
Collapse
Affiliation(s)
- Zhou Xu
- CNRS, UMR7238, Institut de Biologie Paris‐Seine, Laboratory of Computational and Quantitative BiologySorbonne UniversitéParisFrance
| | - Maria Teresa Teixeira
- CNRS, UMR8226, Institut de Biologie Physico‐Chimique, Laboratory of Molecular and Cell Biology of EukaryotesSorbonne Université, PSL Research UniversityParisFrance
| |
Collapse
|
45
|
Ueda S, Ozaki R, Kaneko A, Akizuki R, Katsuta H, Miura A, Matsuura A, Ushimaru T. TORC1, Tel1/Mec1, and Mpk1 regulate autophagy induction after DNA damage in budding yeast. Cell Signal 2019; 62:109344. [DOI: 10.1016/j.cellsig.2019.109344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
|
46
|
Menin L, Colombo CV, Maestrini G, Longhese MP, Clerici M. Tel1/ATM Signaling to the Checkpoint Contributes to Replicative Senescence in the Absence of Telomerase. Genetics 2019; 213:411-429. [PMID: 31391264 PMCID: PMC6781906 DOI: 10.1534/genetics.119.302391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/27/2019] [Indexed: 11/18/2022] Open
Abstract
Telomeres progressively shorten at every round of DNA replication in the absence of telomerase. When they become critically short, telomeres trigger replicative senescence by activating a DNA damage response that is governed by the Mec1/ATR and Tel1/ATM protein kinases. While Mec1/ATR is known to block cell division when extended single-stranded DNA (ssDNA) accumulates at eroded telomeres, the molecular mechanism by which Tel1/ATM promotes senescence is still unclear. By characterizing a Tel1-hy184 mutant variant that compensates for the lack of Mec1 functions, we provide evidence that Tel1 promotes senescence by signaling to a Rad9-dependent checkpoint. Tel1-hy184 anticipates senescence onset in telomerase-negative cells, while the lack of Tel1 or the expression of a kinase-defective (kd) Tel1 variant delays it. Both Tel1-hy184 and Tel1-kd do not alter ssDNA generation at telomeric DNA ends. Furthermore, Rad9 and (only partially) Mec1 are responsible for the precocious senescence promoted by Tel1-hy184. This precocious senescence is mainly caused by the F1751I, D1985N, and E2133K amino acid substitutions, which are located in the FRAP-ATM-TRAPP domain of Tel1 and also increase Tel1 binding to DNA ends. Altogether, these results indicate that Tel1 induces replicative senescence by directly signaling dysfunctional telomeres to the checkpoint machinery.
Collapse
Affiliation(s)
- Luca Menin
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano 20126, Italy
| | - Chiara Vittoria Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano 20126, Italy
| | - Giorgia Maestrini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano 20126, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano 20126, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano 20126, Italy
| |
Collapse
|
47
|
Miura A, Matsuura A. Phosphatase-dependent fluctuations in DNA-damage checkpoint activation at partially defective telomeres. Biochem Biophys Res Commun 2019; 516:133-137. [PMID: 31202459 DOI: 10.1016/j.bbrc.2019.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Telomeres protect the ends of eukaryotic chromosomes, and telomere shortening causes irreversible cell-cycle arrest through activation of the DNA-damage checkpoint. In this study, we found that deletion of PPH3, encoding a 2A-like protein phosphatase, accelerated telomere-shortening-mediated senescence without affecting normal telomere length or the telomere erosion rate in Saccharomyces cerevisiae. Moreover, the loss of PPH3 increased sensitivity to telomere dysfunction. The detection of telomere abnormalities by DNA-damage sensors was not an all-or-none response, implying that Pph3 helps determine the border between normal and dysfunctional telomeres by suppressing premature activation of the DNA-damage checkpoint.
Collapse
Affiliation(s)
- Atsuhiro Miura
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Chiba, 263-8522, Japan
| | - Akira Matsuura
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Chiba, 263-8522, Japan; Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan; Molecular Chirality Research Center, Chiba University, Chiba, 263-8522, Japan.
| |
Collapse
|
48
|
Mersaoui SY, Bonnell E, Wellinger RJ. Nuclear import of Cdc13 limits chromosomal capping. Nucleic Acids Res 2019; 46:2975-2989. [PMID: 29432594 PMCID: PMC5887288 DOI: 10.1093/nar/gky085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/30/2018] [Indexed: 12/15/2022] Open
Abstract
Cdc13 is an essential protein involved in telomere maintenance and chromosome capping. Individual domain analyses on Cdc13 suggest the presence of four distinct OB-fold domains and one recruitment domain. However, it remained unclear how these sub-domains function in the context of the whole protein in vivo. Here, we use individual single domain deletions to address their roles in telomere capping. We find that the OB2 domain contains a nuclear localization signal that is essential for nuclear import of Cdc13 and therefore is required for chromosome capping. The karyopherin Msn5 is important for nuclear localization, and retention of Cdc13 in the nucleus also requires its binding to telomeres. Moreover, Cdc13 homodimerization occurs even if the protein is not bound to DNA and is in the cytoplasm. Hence, Cdc13 abundance in the nucleus and, in consequence, its capping function is strongly affected by nucleo-cytoplasmic transport as well as nuclear retention by DNA binding.
Collapse
Affiliation(s)
- Sofiane Y Mersaoui
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Erin Bonnell
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
49
|
Shastrula PK, Rice CT, Wang Z, Lieberman PM, Skordalakes E. Structural and functional analysis of an OB-fold in human Ctc1 implicated in telomere maintenance and bone marrow syndromes. Nucleic Acids Res 2019; 46:972-984. [PMID: 29228254 PMCID: PMC5778599 DOI: 10.1093/nar/gkx1213] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/23/2017] [Indexed: 12/18/2022] Open
Abstract
The human CST (Ctc1, Stn1 and Ten1) complex binds the telomeric overhang and regulates telomere length by promoting C-strand replication and inhibiting telomerase-dependent G-strand synthesis. Structural and biochemical studies on the human Stn1 and Ten1 complex revealed its mechanism of assembly and nucleic acid binding. However, little is known about the structural organization of the multi-domain Ctc1 protein and how each of these domains contribute to telomere length regulation. Here, we report the structure of a central domain of human Ctc1. The structure reveals a canonical OB-fold with the two identified disease mutations (R840W and V871M) contributing to the fold of the protein. In vitro assays suggest that although this domain is not contributing directly to Ctc1’s substrate binding properties, it affects full-length Ctc1 localization to telomeres and Stn1-Ten1 binding. Moreover, functional assays show that deletion of the entire OB-fold domain leads to significant increase in telomere length, frequency of internal single G-strands and fragile telomeres. Our findings demonstrate that a previously unknown OB-fold domain contributes to efficient Ctc1 telomere localization and chromosome end maintenance.
Collapse
Affiliation(s)
- Prashanth K Shastrula
- The Wistar Institute, Gene expression and regulation program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Cory T Rice
- The Wistar Institute, Gene expression and regulation program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Zhuo Wang
- The Wistar Institute, Gene expression and regulation program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Paul M Lieberman
- The Wistar Institute, Gene expression and regulation program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Emmanuel Skordalakes
- The Wistar Institute, Gene expression and regulation program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
Calvo O, Grandin N, Jordán-Pla A, Miñambres E, González-Polo N, Pérez-Ortín JE, Charbonneau M. The telomeric Cdc13-Stn1-Ten1 complex regulates RNA polymerase II transcription. Nucleic Acids Res 2019; 47:6250-6268. [PMID: 31006804 PMCID: PMC6614848 DOI: 10.1093/nar/gkz279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/18/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Specialized telomeric proteins have an essential role in maintaining genome stability through chromosome end protection and telomere length regulation. In the yeast Saccharomyces cerevisiae, the evolutionary conserved CST complex, composed of the Cdc13, Stn1 and Ten1 proteins, largely contributes to these functions. Here, we report genetic interactions between TEN1 and several genes coding for transcription regulators. Molecular assays confirmed this novel function of Ten1 and further established that it regulates the occupancies of RNA polymerase II and the Spt5 elongation factor within transcribed genes. Since Ten1, but also Cdc13 and Stn1, were found to physically associate with Spt5, we propose that Spt5 represents the target of CST in transcription regulation. Moreover, CST physically associates with Hmo1, previously shown to mediate the architecture of S-phase transcribed genes. The fact that, genome-wide, the promoters of genes down-regulated in the ten1-31 mutant are prefentially bound by Hmo1, leads us to propose a potential role for CST in synchronizing transcription with replication fork progression following head-on collisions.
Collapse
Affiliation(s)
- Olga Calvo
- Instituto de Biología Funcional y Genómica, CSIC-USAL, Salamanca, Spain
| | - Nathalie Grandin
- GReD laboratory, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| | - Antonio Jordán-Pla
- ERI Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | | | | | - José E Pérez-Ortín
- ERI Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Michel Charbonneau
- GReD laboratory, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| |
Collapse
|