1
|
Daniels MA, Teixeiro E. The NF-κB signaling network in the life of T cells. Front Immunol 2025; 16:1559494. [PMID: 40370445 PMCID: PMC12075310 DOI: 10.3389/fimmu.2025.1559494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
NF-κB is a crucial transcription factor in lymphocyte signaling. It is activated by environmental cues that drive lymphocyte differentiation to combat infections and cancer. As a key player in inflammation, NF-κB also significantly impacts autoimmunity and transplant rejection, making it an important therapeutic target. While the signaling molecules regulating this pathway are well-studied, the effect of changes in NF-κB signaling levels on T lymphocyte differentiation, fate, and function is not fully understood. Advances in computational biology and new NF-κB-inducible animal models are beginning to clarify these questions. In this review, we highlight recent findings related to T cells, focusing on how environmental cues affecting NF-κB signaling levels determine T cell fate and function.
Collapse
Affiliation(s)
- Mark A. Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Zhang Y, Zhu M, Dai Y, Gao L, Cheng L. Research Progress in Ulcerative Colitis: The Role of Traditional Chinese Medicine on Gut Microbiota and Signaling Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2277-2336. [PMID: 39756829 DOI: 10.1142/s0192415x24500885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Ulcerative colitis (UC), one among other refractory diseases worldwide, has shown an increasing trend of progression to colorectal cancer in recent years. In the treatment of UC, traditional Chinese medicine has demonstrated good efficacy, with a high cure rate, fewer adverse effects, great improvement in the quality of patient survival, and reduction in the tendency of cancerous transformation. It shows promise as a complementary and alternative therapy. This review aims to evaluate and discuss the current research on UC, signaling pathways, and gut microbiota. We also summarized the mechanisms of action of various Chinese medicines (active ingredients or extracts) and herbal formulas, through signaling pathways and gut microbiota, with the expectation that they can provide references and evidence for treating UC and preventing inflammation-associated colorectal cancer by traditional Chinese medicine. We illustrate that multiple signaling pathways, such as TLR4, STAT3, PI3K/Akt, NF-[Formula: see text]B, and Keap1/Nrf2, can be inhibited by Chinese herbal treatments through the combined regulation of signaling pathways and gut microbiota, which can act individually or synergistically to inhibit intestinal inflammatory cell infiltration, attenuate gut oxidative responses, and repair the intestinal barrier.
Collapse
Affiliation(s)
- Yuyi Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Mingfang Zhu
- Graduate School, Zunyi Medical University Zunyi, P. R. China
| | - Yueying Dai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Longying Gao
- Department of Anorectal, The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine Harbin, P. R. China
| | - Limin Cheng
- Department of Anorectal, The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine Harbin, P. R. China
| |
Collapse
|
3
|
Niu J, Wang S, Qiao X, Yu S, Yu Z, Jin Y, Huang M, Wang L, Song L. CgIκB2 negatively regulates the expression of interferon-like protein by Rel/NF-κB signal in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109853. [PMID: 39173983 DOI: 10.1016/j.fsi.2024.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Inhibitors of NF-κB (IκBs) have been implicated as major components of the Rel/NF-κB signaling pathway, playing an important negative regulatory role in host antiviral immunity such as in the activation of interferon (IFN) in vertebrates. In the present study, the immunomodulatory effect of IκB (CgIκB2) on the expression of interferon-like protein (CgIFNLP) was evaluated in Pacific oyster (Crassostrea gigas). After poly (I:C) stimulation, the mRNA expression level of CgIκB2 in haemocytes was significantly down-regulated at 3-12 h while up-regulated at 48-72 h. The mRNA expression of CgIκB2 in haemocytes was significantly up-regulated at 3 h after rCgIFNLP stimulation. In the CgIκB2-RNAi oysters, the mRNA expression of CgIFNLP, interferon regulatory factor-8 (CgIRF8) and NF-κB subunit (CgRel), the abundance of CgIFNLP and CgIRF8 protein in haemocytes, as well as the abundance of CgRel protein in nucleus were significantly increased after poly (I:C) stimulation. Immunofluorescence assay showed that nuclear translocation of CgIRF8 and CgRel protein was promoted in CgIκB2-RNAi oysters compared with that in EGFP-RNAi group. In the CgRel-RNAi oysters, the mRNA and protein expression level of CgIFNLP significantly down-regulated after poly (I:C) stimulation. The collective results indicated that CgIκB2 plays an important role in regulating CgIFNLP expression through its effects on Rel/NF-κB and IRF signaling pathways.
Collapse
Affiliation(s)
- Jixiang Niu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Sicong Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhuo Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Mengyue Huang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
4
|
Liang F, Jin J, Li Q, Duan J, Jiang A, Chen X, Geng H, Wu K, Yu F, Zhao X, Zhou Y, Hu D, Chen L. DOT1L/H3K79me2 represses HIV-1 reactivation via recruiting DCAF1. Cell Rep 2024; 43:114368. [PMID: 38905100 DOI: 10.1016/j.celrep.2024.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
DOT1L mediates the methylation of histone H3 at lysine 79 and, in turn, the transcriptional activation or repression in a context-dependent manner, yet the regulatory mechanisms and functions of DOT1L/H3K79me remain to be fully explored. Following peptide affinity purification and proteomic analysis, we identified that DCAF1-a component of the E3 ligase complex involved in HIV regulation-is associated with H3K79me2 and DOT1L. Interestingly, blocking the expression or catalytic activity of DOT1L or repressing the expression of DCAF1 significantly enhances the tumor necrosis factor alpha (TNF-α)/nuclear factor κB (NF-κB)-induced reactivation of the latent HIV-1 genome. Mechanistically, upon TNF-α/NF-κB activation, DCAF1 is recruited to the HIV-1 long terminal repeat (LTR) by DOT1L and H3K79me2. Recruited DCAF1 subsequently induces the ubiquitination of NF-κB and restricts its accumulation at the HIV-1 LTR. Altogether, our findings reveal a feedback modulation of HIV reactivation by DOT1L-mediated histone modification regulation and highlight the potential of targeting the DOT1L/DCAF1 axis as a therapeutic strategy for HIV treatment.
Collapse
Affiliation(s)
- Fenfei Liang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiaxing Jin
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qiming Li
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiangkai Duan
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ao Jiang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoqing Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huichao Geng
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kai Wu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fei Yu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaolu Zhao
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Zhou
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Deqing Hu
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Cancer Institute and Hospital of Tianjin Medical University, Tianjin 300060, China.
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
5
|
Ezhilarasan D, Shree Harini K, Karthick M, Selvaraj C. Ethyl gallate concurrent administration protects against acetaminophen-induced acute liver injury in mice: An in vivo and in silico approach. Chem Biol Drug Des 2024; 103:e14369. [PMID: 37817304 DOI: 10.1111/cbdd.14369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
Acetaminophen (APAP) in high doses causes acute liver injury and acute liver failure. Ethyl gallate (EG) is a natural polyphenol, possessing antioxidant, anti-inflammatory, and anti-microbial properties. Therefore, in this study, we evaluated the protective role of EG against APAP-induced acute liver injury in mice. Acute liver injury was induced by a single dose of APAP (400 mg/kg., i.p.). In separate groups, EG (10 mg/kg), EG (20 mg/kg), and N-acetylcysteine (NAC; 1200 mg/kg., i.p.) were administered concurrently with APAP. The mice were sacrificed after 24 h of treatment. Liver marker enzymes of hepatotoxicity, antioxidant markers, inflammatory markers, and histopathological studies were done. APAP administration caused a significant elevation of marker enzymes of hepatotoxicity and lipid peroxidation. APAP administration also decreased enzymic and nonenzymic antioxidants. Acute APAP intoxication induced nuclear factor κ B, tumor necrosis factor-α, interleukin-1, p65, and p52 and downregulated IκB gene expressions. Our histopathological studies have confirmed the presence of centrilobular necrosis, 24 h after APAP intoxication. All the above abnormalities were significantly inhibited in groups of mice that were concurrently administered with APAP + EG and APAP + NAC. Our in silico analysis further confirms that hydroxyl groups of EG interact with the above inflammatory proteins at the 3,4,5-trihydroxybenzoic acid region. These effects of EG against APAP-induced acute liver injury could be attributed to its antioxidative, free radical scavenging, and anti-inflammatory potentials. Therefore, this study suggests that EG can be an efficient therapeutic approach to protect the liver from APAP intoxication.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Karthik Shree Harini
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Munusamy Karthick
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Chandrabose Selvaraj
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Laboratory for Artificial Intelligence and Molecular Modelling, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
6
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
7
|
Lee HYJ, Meng M, Liu Y, Su T, Kwan HY. Medicinal herbs and bioactive compounds overcome the drug resistance to epidermal growth factor receptor inhibitors in non-small cell lung cancer. Oncol Lett 2021; 22:646. [PMID: 34386068 DOI: 10.3892/ol.2021.12907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases. Patients harboring epidermal growth factor receptor (EGFR) mutations usually develop resistance to treatment with frontline EGFR-tyrosine kinase inhibitors (EGFR-TKIs). The present review summarizes the current findings and delineates the molecular mechanism of action for the therapeutic effects of herbal extracts and phytochemicals in overcoming EGFR-TKI resistance in NSCLC. Novel molecular targets underlying EGFR-TKI resistance in NSCLC are also discussed. This review provides valuable information for the development of herbal bioactive compounds as alternative treatments for EGFR-TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Hiu Yan Jennifer Lee
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Mingjing Meng
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yulong Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| | - Tao Su
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P.R. China
| |
Collapse
|
8
|
Fu S, Zheng Y, Sun Y, Lai M, Qiu J, Gui F, Zeng Q, Liu F. Suppressing long noncoding RNA OGRU ameliorates diabetic retinopathy by inhibition of oxidative stress and inflammation via miR-320/USP14 axis. Free Radic Biol Med 2021; 169:361-381. [PMID: 33762162 DOI: 10.1016/j.freeradbiomed.2021.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are important regulators in various diseases including diabetic retinopathy (DR). In this study, DR patients exhibited significantly increased expression of serum LncRNA-OGRU compared with normal individuals. Streptozotocin (STZ)-challenged rats with DR also had higher OGRU expression in retinas than that of the control group, which was confirmed in Müller cells upon high glucose (HG) stimulation. OGRU knockdown remarkably decreased vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1) expression in HG-incubated Müller cells. HG-induced inflammatory response and oxidative stress in vitro were markedly mitigated by OGRU knockdown through restraining IκBɑ/nuclear factor kappa beta (NF-κB) and improving nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, respectively. Further studies indicated that OGRU suppression greatly restored miR-320 expression, and a negative correlation between them was detected in DR patients. We also found that miR-320 over-expression considerably restrained TGF-β1 signaling, and hindered inflammation and reactive oxygen species (ROS) production in HG-stimulated Müller cells. Additionally, OGRU knockdown or miR-320 over-expression could dramatically down-regulate ubiquitin-specific peptidase 14 (USP14) expression levels in HG-incubated Müller cells, and miR-320 could directly target USP14. Notably, OGRU/miR-320 axis-mediated TGF-β1 signaling, inflammation and ROS were largely dependent on USP14. Intriguingly, our results showed that USP14 directly interacted with transforming growth factor-beta type 1 receptor (TβR1), and impeded TβR1 ubiquitination and degradation. Furthermore, USP14 could also facilitate IκBɑ deubiquitination and degradation, exacerbating IκBɑ phosphorylation and NF-κB activation. Finally, our in vivo studies confirmed that OGRU knockdown considerably ameliorated DR progression in STZ-challenged rats through mediating the mechanisms observed in vitro. Collectively, these findings implicated that LncRNA-OGRU mediated DR progression through competing for miR-320 to regulate USP14 expression, and thus LncRNA-OGRU/miR-320/USP14 axis may be considered as a therapeutic target for DR treatment.
Collapse
Affiliation(s)
- Shuhua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China.
| | - Yunyao Zheng
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Yawen Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Meichen Lai
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Jingjing Qiu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Fu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Qinqin Zeng
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| | - Fei Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Minde Road, Nanchang, 330006, PR China
| |
Collapse
|
9
|
Veluthakal R, Oh E, Ahn M, Chatterjee Bhowmick D, Thurmond DC. Syntaxin 4 Mediates NF-κB Signaling and Chemokine Ligand Expression via Specific Interaction With IκBβ. Diabetes 2021; 70:889-902. [PMID: 33526588 PMCID: PMC7980198 DOI: 10.2337/db20-0868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
Enrichment of human islets with syntaxin 4 (STX4) improves functional β-cell mass through a nuclear factor-κB (NF-κB)-dependent mechanism. However, the detailed mechanisms underlying the protective effect of STX4 are unknown. For determination of the signaling events linking STX4 enrichment and downregulation of NF-κB activity, STX4 was overexpressed in human islets, EndoC-βH1 and INS-1 832/13 cells in culture, and the cells were challenged with the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α, and interferon-γ individually and in combination. STX4 expression suppressed cytokine-induced proteasomal degradation of IκBβ but not IκBα. Inhibition of IKKβ prevented IκBβ degradation, suggesting that IKKβ phosphorylates IκBβ. Moreover, the IKKβ inhibitor, as well as a proteosomal degradation inhibitor, prevented the loss of STX4 caused by cytokines. This suggests that STX4 may be phosphorylated by IKKβ in response to cytokines, targeting STX4 for proteosomal degradation. Expression of a stabilized form of STX4 further protected IκBβ from proteasomal degradation, and like wild-type STX4, stabilized STX4 coimmunoprecipitated with IκBβ and the p50-NF-κB. This work proposes a novel pathway wherein STX4 regulates cytokine-induced NF-κB signaling in β-cells via associating with and preventing IκBβ degradation, suppressing chemokine expression, and protecting islet β-cells from cytokine-mediated dysfunction and demise.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Diti Chatterjee Bhowmick
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| |
Collapse
|
10
|
Singh G, Segura BJ, Georgieff MK, Gisslen T. Fetal inflammation induces acute immune tolerance in the neonatal rat hippocampus. J Neuroinflammation 2021; 18:69. [PMID: 33706765 PMCID: PMC7953777 DOI: 10.1186/s12974-021-02119-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Infants born preterm due to chorioamnionitis are frequently affected by a fetal inflammatory response syndrome (FIRS) and then by subsequent postnatal infections. FIRS and postnatal systemic inflammatory events independently contribute to poor neurocognitive outcomes of preterm infants. Developmental integrity of the hippocampus is crucial for intact neurocognitive outcomes in preterms and hippocampally dependent behaviors are particularly vulnerable to preterm systemic inflammation. How FIRS modulates the hippocampal immune response to acute postnatal inflammatory events is not well understood. METHODS Prenatal LPS exposed (FIRS) and control neonatal rats received i.p. LPS or saline at postnatal day (P) 5. On P7, immune response was evaluated in the hippocampus of four treatment groups by measuring gene expression of inflammatory mediators and cytosolic and nuclear NFκB pathway proteins. Microglial activation was determined by CD11b+ and Iba1+ immunohistochemistry (IHC) and inflammatory gene expression of isolated microglia. Astrocyte reactivity was measured using Gfap+ IHC. RESULTS Postnatal LPS resulted in a robust hippocampal inflammatory response. In contrast, FIRS induced by prenatal LPS attenuated the response to postnatal LPS exposure, evidenced by decreased gene expression of inflammatory mediators, decreased nuclear NFκB p65 protein, and fewer activated CD11b+ and Iba1+ microglia. Isolated microglia demonstrated inflammatory gene upregulation to postnatal LPS without evidence of immune tolerance by prenatal LPS. CONCLUSION Prenatal LPS exposure induced immune tolerance to subsequent postnatal LPS exposure in the hippocampus. Microglia demonstrate a robust inflammatory response to postnatal LPS, but only a partial immune tolerance response.
Collapse
Affiliation(s)
- Garima Singh
- Division of Neonatology, Department of Pediatrics, University of Minnesota, East Building MB630, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - Bradley J Segura
- Division of Pediatric Surgery, Department of Surgery, University of Minnesota, East Building MB630, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, East Building MB630, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA
| | - Tate Gisslen
- Division of Neonatology, Department of Pediatrics, University of Minnesota, East Building MB630, 2450 Riverside Avenue, Minneapolis, MN, 55454, USA.
| |
Collapse
|
11
|
Heidari Z, Mohammadi M, Sahebkar A. Possible Mechanisms and Special Clinical Considerations of Curcumin Supplementation in Patients with COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:127-136. [PMID: 33861442 DOI: 10.1007/978-3-030-64872-5_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The novel coronavirus outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was recognized in late 2019 in Wuhan, China. Subsequently, the World Health Organization declared coronavirus disease 2019 (COVID-19) as a pandemic on 11 March 2020. The proportion of potentially fatal coronavirus infections may vary by location, age, and underlying risk factors. However, acute respiratory distress syndrome (ARDS) is the most frequent complication and leading cause of death in critically ill patients. Immunomodulatory and anti-inflammatory agents have received great attention as therapeutic strategies against COVID-19. Here, we review potential mechanisms and special clinical considerations of supplementation with curcumin as an anti-inflammatory and antioxidant compound in the setting of COVID-19 clinical research.
Collapse
Affiliation(s)
- Zinat Heidari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of Pharmaceutics, Faculty of pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
12
|
Murray KO, Brant JO, Iwaniec JD, Sheikh LH, de Carvalho L, Garcia CK, Robinson GP, Alzahrani JM, Riva A, Laitano O, Kladde MP, Clanton TL. Exertional heat stroke leads to concurrent long-term epigenetic memory, immunosuppression and altered heat shock response in female mice. J Physiol 2020; 599:119-141. [PMID: 33037634 DOI: 10.1113/jp280518] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Exposure to exertional heat stroke (EHS) has been linked to increased long-term decrements of health. Epigenetic reprogramming is involved in the response to heat acclimation; however, whether the long-term effects of EHS are mediated by epigenetic reprogramming is unknown. In female mice, we observed DNA methylation reprogramming in bone marrow-derived (BMD) monocytes as early as 4 days of recovery from EHS and as late as 30 days compared with sham exercise controls. Whole blood, collected after 30 days of recovery from EHS, exhibited an immunosuppressive phenotype when challenged in vitro by lipopolysaccharide. After 30 days of recovery from EHS, BMD monocytes exhibited an altered in vitro heat shock response. The location of differentially methylated CpGs are predictive of both the immunosuppressive phenotype and altered heat shock responses. ABSTRACT Exposure to exertional heat stroke (EHS) has been linked to increased susceptibility to a second heat stroke, infection and cardiovascular disease. Whether these clinical outcomes are mediated by an epigenetic memory is unknown. Using a preclinical mouse model of EHS, we investigated whether EHS exposure produces a lasting epigenetic memory in monocytes and whether there are phenotypic alterations that may be consistent with these epigenetic changes. Female mice underwent forced wheel running at 37.5°C/40% relative humidity until symptom limitation, characterized by CNS dysfunction. Results were compared with matched exercise controls at 22.5°C. Monocytes were isolated from bone marrow after 4 or 30 days of recovery to extract DNA and analyse methylation. Broad-ranging alterations to the DNA methylome were observed at both time points. At 30 days, very specific alterations were observed to the promoter regions of genes involved with immune responsiveness. To test whether these changes might be related to phenotype, whole blood at 30 days was challenged with lipopolysaccharide (LPS) to measure cytokine secretion; monocytes were also challenged with heat shock to quantify mRNA expression. Whole blood collected from EHS mice showed markedly attenuated inflammatory responses to LPS challenge. Furthermore, monocyte mRNA from EHS mice showed significantly altered responses to heat shock challenge. These results demonstrate that EHS leads to a unique DNA methylation pattern in monocytes and altered immune and heat shock responsiveness after 30 days. These data support the hypothesis that EHS exposure can induce long-term physiological changes that may be linked to altered epigenetic profiles.
Collapse
Affiliation(s)
- Kevin O Murray
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Jason O Brant
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - John D Iwaniec
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Laila H Sheikh
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Lucas de Carvalho
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Christian K Garcia
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Gerard P Robinson
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Jamal M Alzahrani
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Alberto Riva
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Michael P Kladde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Thomas L Clanton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Zhang B, Lai L, Tan Y, Liang Q, Bai F, Mai W, Huang Q, Ye Y. Hepatoprotective effect of total flavonoids of Mallotus apelta (Lour.) Muell.Arg. leaf against carbon tetrachloride-induced liver fibrosis in rats via modulation of TGF-β1/Smad and NF-κB signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112714. [PMID: 32105750 DOI: 10.1016/j.jep.2020.112714] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 10/06/2019] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Mallotus apelta (Lour.) Muell.Arg. is a well-known traditional Chinese medicine (TCM) used for anti-inflammatory, hemostasis and chronic hepatitis. AIM The purpose of this study was to explore the antifibrotic effect of total flavonoids of Mallotus apelta leaf (TFM) and its potential mechanism. METHODS Hepatic fibrosis was induced by carbon tetrachloride (CCl4) in rats. The CCl4-induced rats received intragastric administration of colchicine (0.2 mg/kg per day), TFM (25, 50, 100 mg/kg per day) and the equal vehicle was given to normal rats. Pathological evaluation in hepatic tissue were examined by hematoxylin and eosin (HE) staining. And the levels of serum biochemical parameters were detected by automatic biochemical analysis. Meanwhile, the collagen deposition in liver was observed by staining with Masson's trichrome. Collagenic parameters and inflammatory factors were measured by enzyme-linked immunosorbent assay (ELISA) kits. Additionally, corresponding assay kit was used to estimate the antioxidant enzyme and lipid peroxidation. In order to explore the potential mechanism of anti-fibrotic effects in TFM, the expressions of liver fibrosis related gene and protein were analyzed by real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot. RESULTS The CCl4-induced hepatic fibrosis were inhibited dose-dependently in rats by TFM. The results showed that the key hallmarks of liver injury including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), albumin (ALB) and total protein (TP) in the serum were reversed in CCl4-induced hepatic fibrosis rats which were treated by TFM. Furthermore, TFM significantly alleviates collagen accumulation and reduces the contents of hydroxyproline (Hyp), Type III precollagen (PC-III), collagen I (Col I), hyaluronic acid (HA) and laminin (LN). RT-PCR and Western blot results showed that TFM markedly inhibits liver fibrosis hallmark factor α-smooth muscle actin (α-SMA) expressions in CCl4-induced hepatic fibrosis rats. Moreover, TFM alleviated the oxidative stress and lipid peroxidation in rats induced by CCl4. TFM also attenuated the pro-inflammatory cytokines including interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) via inhibiting nuclear factor-κB (NF-κB) activation. Meanwhile, transforming growth factor-β1 (TGF-β1)/Smad signaling pathway was inhibited by TFM treatment. CONCLUSIONS TFM can alleviate CCl4-induced hepatic fibrosis in rats, which potential mechanism may be due to its ability of reducing ECM accumulation, improving antioxidant and regulating TGF-β1/Smad signaling pathways and NF-κB-dependent inflammatory response.
Collapse
Affiliation(s)
- Bo Zhang
- Guangxi Medical University, Guangxi, China.
| | - Ling Lai
- Guangxi Medical University, Guangxi, China.
| | - Yanjun Tan
- Guangxi Medical University, Guangxi, China.
| | | | | | | | - Qiujie Huang
- Guangxi University of Chinese Medicine, Guangxi, China.
| | - Yong Ye
- Guangxi Medical University, Guangxi, China.
| |
Collapse
|
14
|
De Dios R, Nguyen L, Ghosh S, McKenna S, Wright CJ. CpG-ODN-mediated TLR9 innate immune signalling and calcium dyshomeostasis converge on the NFκB inhibitory protein IκBβ to drive IL1α and IL1β expression. Immunology 2020; 160:64-77. [PMID: 32064589 DOI: 10.1111/imm.13182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
Sterile inflammation contributes to many pathological states associated with mitochondrial injury. Mitochondrial injury disrupts calcium homeostasis and results in the release of CpG-rich mitochondrial DNA. The role of CpG-stimulated TLR9 innate immune signalling and sterile inflammation is well studied; however, how calcium dyshomeostasis affects this signalling is unknown. Therefore, we interrogated the relationship beτween intracellular calcium and CpG-induced TLR9 signalling in murine macrophages. We found that CpG-ODN-induced NFκB-dependent IL1α and IL1β expression was significantly attenuated by both calcium chelation and calcineurin inhibition, a finding mediated by inhibition of degradation of the NFκB inhibitory protein IκBβ. In contrast, calcium ionophore exposure increased CpG-induced IκBβ degradation and IL1α and IL1β expression. These results demonstrate that through its effect on IκBβ degradation, increased intracellular Ca2+ drives a pro-inflammatory TLR9-mediated innate immune response. These results have implications for the study of innate immune signalling downstream of mitochondrial stress and injury.
Collapse
Affiliation(s)
- Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Leanna Nguyen
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sankar Ghosh
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
15
|
Wolter M, Santo DL, Herman P, Ballone A, Centorrino F, Obsil T, Ottmann C. Interaction of an IκBα Peptide with 14-3-3. ACS OMEGA 2020; 5:5380-5388. [PMID: 32201828 PMCID: PMC7081424 DOI: 10.1021/acsomega.9b04413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Inflammatory responses mediated by the transcription factor nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) play key roles in immunity, autoimmune diseases, and cancer. NF-κB is directly regulated through protein-protein interactions, including those with IκB and 14-3-3 proteins. These two important regulatory proteins have been reported to interact with each other, although little is known about this interaction. We analyzed the inhibitor of nuclear factor kappa B α (IκBα)/14-3-3σ interaction via a peptide/protein-based approach. Structural data were acquired via X-ray crystallography, while binding affinities were measured with fluorescence polarization assays and time-resolved tryptophan fluorescence. A high-resolution crystal structure (1.13 Å) of the uncommon 14-3-3 interaction motif of IκBα (IκBαpS63) in a complex with 14-3-3σ was evaluated. This motif harbors a tryptophan that makes this crystal structure the first one with such a residue visible in the electron density at that position. We used this tryptophan to determine the binding affinity of the unlabeled IκBα peptide to 14-3-3 via tryptophan fluorescence decay measurements.
Collapse
Affiliation(s)
- Madita Wolter
- Department
of Biomedical Engineering, Laboratory of Chemical Biology and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Domenico Lentini Santo
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Petr Herman
- Institute
of Physics, Faculty of Mathematics and Physics, Charles University, Prague 12116, Czech Republic
| | - Alice Ballone
- Department
of Biomedical Engineering, Laboratory of Chemical Biology and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Federica Centorrino
- Department
of Biomedical Engineering, Laboratory of Chemical Biology and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tomas Obsil
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Christian Ottmann
- Department
of Biomedical Engineering, Laboratory of Chemical Biology and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department
of Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
16
|
Shoji S, Hanada K, Takahashi M, Watanabe K, Yonemochi M, Tomabechi Y, Shirouzu M. The NF-κB regulator IκBβ exhibits different molecular interactivity and phosphorylation status from IκBα in an IKK2-catalysed reaction. FEBS Lett 2020; 594:1532-1549. [PMID: 32017069 DOI: 10.1002/1873-3468.13752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factor, a central player in immune response regulation, is based on phosphorylation of inhibitor of kappaB alpha (IκBα) by the Inhibitor of kappaB kinase (IKK) that triggers IκBα degradation. Although inhibitor of kappaB beta (IκBβ) is structurally similar to IκBα, its precise characteristics remain undefined. Herein, we report that the molecular interactivity of IκBβ with the kinase-active region of IKK subunit 2 (IKK2), as well as its phosphorylation status, differs markedly from those of IκBα. A mass spectrometry analysis revealed that IκBβ phosphorylation sites are distributed in its C-terminal region, whereas IκBα phosphorylation sites are located in the N-terminal region. Furthermore, IKK2 phosphorylation sites in IκBβ are found in a region distinct from typical degradation signals, such as phosphodegron and proline/glutamic acid/serine/threonine-rich sequence (PEST) motifs. Mutation of the IκBβ phosphorylation sites enhances its resistance to homeostatic proteasomal degradation. These findings contribute a novel concept in NF-κB/IKK signalling research.
Collapse
Affiliation(s)
- Shisako Shoji
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Kazuharu Hanada
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | | | | | | | - Yuri Tomabechi
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| |
Collapse
|
17
|
LaCanna R, Liccardo D, Zhang P, Tragesser L, Wang Y, Cao T, Chapman HA, Morrisey EE, Shen H, Koch WJ, Kosmider B, Wolfson MR, Tian Y. Yap/Taz regulate alveolar regeneration and resolution of lung inflammation. J Clin Invest 2019; 129:2107-2122. [PMID: 30985294 DOI: 10.1172/jci125014] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Alveolar epithelium plays a pivotal role in protecting the lungs from inhaled infectious agents. Therefore, the regenerative capacity of the alveolar epithelium is critical for recovery from these insults in order to rebuild the epithelial barrier and restore pulmonary functions. Here, we show that sublethal infection of mice with Streptococcus pneumoniae, the most common pathogen of community-acquired pneumonia, led to exclusive damage in lung alveoli, followed by alveolar epithelial regeneration and resolution of lung inflammation. We show that surfactant protein C-expressing (SPC-expressing) alveolar epithelial type II cells (AECIIs) underwent proliferation and differentiation after infection, which contributed to the newly formed alveolar epithelium. This increase in AECII activities was correlated with increased nuclear expression of Yap and Taz, the mediators of the Hippo pathway. Mice that lacked Yap/Taz in AECIIs exhibited prolonged inflammatory responses in the lung and were delayed in alveolar epithelial regeneration during bacterial pneumonia. This impaired alveolar epithelial regeneration was paralleled by a failure to upregulate IκBa, the molecule that terminates NF-κB-mediated inflammatory responses. These results demonstrate that signals governing resolution of lung inflammation were altered in Yap/Taz mutant mice, which prevented the development of a proper regenerative niche, delaying repair and regeneration of alveolar epithelium during bacterial pneumonia.
Collapse
Affiliation(s)
- Ryan LaCanna
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Daniela Liccardo
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peggy Zhang
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lauren Tragesser
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yan Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tongtong Cao
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Harold A Chapman
- Department of Medicine, Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Edward E Morrisey
- Department of Medicine, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Walter J Koch
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Beata Kosmider
- Department of Physiology, Department of Thoracic Medicine and Surgery, Center for Inflammation, Translational and Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marla R Wolfson
- Department of Physiology, Department of Thoracic Medicine and Surgery, Center for Inflammation, Translational and Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ying Tian
- Department of Pharmacology, Center for Translational Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Ramsey KM, Narang D, Komives EA. Prediction of the presence of a seventh ankyrin repeat in IκBε from homology modeling combined with hydrogen-deuterium exchange mass spectrometry (HDX-MS). Protein Sci 2018; 27:1624-1635. [PMID: 30133030 PMCID: PMC6194264 DOI: 10.1002/pro.3459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 02/02/2023]
Abstract
The ankyrin repeat (AR) structure is a common protein-protein interaction motif and ankyrin repeat proteins comprise a vast family across a large array of different taxa. Natural AR proteins adopt a conserved fold comprised of several repeats with the N- and C-terminal repeats generally being of more divergent sequences. Obtaining experimental crystal structures for natural ankyrin repeat domains (ARD) can be difficult and often requires complexation with a binding partner. Homology modeling is an attractive method for creating a model of AR proteins due to the highly conserved fold; however, modeling the divergent N- and C-terminal "capping" repeats remains a challenge. We show here that amide hydrogen/deuterium exchange mass spectrometry (HDX-MS), which reports on the presence of secondary structural elements and "foldedness," can aid in the refinement and selection of AR protein homology models when multiple templates are identified with variations between them localizing to these terminal repeats. We report a homology model for the AR protein IκBε from three different templates and use HDX-MS to establish the presence of a seventh AR at the C-terminus identified by only one of the three templates used for modeling.
Collapse
Affiliation(s)
- Kristen M. Ramsey
- Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego, La JollaCalifornia92092‐0378
| | - Dominic Narang
- Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego, La JollaCalifornia92092‐0378
| | - Elizabeth A. Komives
- Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego, La JollaCalifornia92092‐0378
| |
Collapse
|
19
|
Nikopoulou C, Panagopoulos G, Sianidis G, Psarra E, Ford E, Thanos D. The Transcription Factor ThPOK Orchestrates Stochastic Interchromosomal Interactions Required for IFNB1 Virus-Inducible Gene Expression. Mol Cell 2018; 71:352-361.e5. [PMID: 30017585 DOI: 10.1016/j.molcel.2018.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/30/2018] [Accepted: 06/07/2018] [Indexed: 02/01/2023]
Abstract
Virus infection induces stochastic activation of the interferon-β gene. Three previously identified Alu-like DNA elements called NRCs (NF-κB reception centers) function by capturing and delivering NF-κB to the IFNB1 enhancer via stochastic interchromosomal interactions. We show that the transcription factor ThPOK binds cooperatively with NF-κB to NRCs and mediates their physical proximity with the IFNB1 gene via its ability to oligomerize when bound to DNA. ThPOK knockdown significantly decreased the frequency of interchromosomal interactions, NF-κB DNA binding to the IFNB1 enhancer, and virus-induced IFNB1 gene activation. We also demonstrate that cooperative DNA binding between ThPOK and NF-κB on the same face of the double DNA helix is required for interchromosomal interactions and distinguishes NRCs from various other Alu elements bearing κB sites. These studies show how DNA binding cooperativity of stereospecifically aligned transcription factors provides the necessary ultrasensitivity for the all-or-none stochastic cell responses to virus infection.
Collapse
Affiliation(s)
- Chrysa Nikopoulou
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, Athens 11527, Greece
| | - Giorgos Panagopoulos
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, Athens 11527, Greece
| | - Georgios Sianidis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, Athens 11527, Greece
| | - Eleni Psarra
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, Athens 11527, Greece
| | - Ethan Ford
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, Athens 11527, Greece
| | - Dimitris Thanos
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, Athens 11527, Greece.
| |
Collapse
|
20
|
D’Auria F, Centurione L, Centurione MA, Angelini A, Di Pietro R. Regulation of Cancer Cell Responsiveness to Ionizing Radiation Treatment by Cyclic AMP Response Element Binding Nuclear Transcription Factor. Front Oncol 2017; 7:76. [PMID: 28529924 PMCID: PMC5418225 DOI: 10.3389/fonc.2017.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/07/2017] [Indexed: 02/05/2023] Open
Abstract
Cyclic AMP response element binding (CREB) protein is a member of the CREB/activating transcription factor (ATF) family of transcription factors that play an important role in the cell response to different environmental stimuli leading to proliferation, differentiation, apoptosis, and survival. A number of studies highlight the involvement of CREB in the resistance to ionizing radiation (IR) therapy, demonstrating a relationship between IR-induced CREB family members' activation and cell survival. Consistent with these observations, we have recently demonstrated that CREB and ATF-1 are expressed in leukemia cell lines and that low-dose radiation treatment can trigger CREB activation, leading to survival of erythro-leukemia cells (K562). On the other hand, a number of evidences highlight a proapoptotic role of CREB following IR treatment of cancer cells. Since the development of multiple mechanisms of resistance is one key problem of most malignancies, including those of hematological origin, it is highly desirable to identify biological markers of responsiveness/unresponsiveness useful to follow-up the individual response and to adjust anticancer treatments. Taking into account all these considerations, this mini-review will be focused on the involvement of CREB/ATF family members in response to IR therapy, to deepen our knowledge of this topic, and to pave the way to translation into a therapeutic context.
Collapse
Affiliation(s)
- Francesca D’Auria
- Department of Cardiac and Vascular Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University, Chieti, Italy
| | | | - Antonio Angelini
- Department of Medicine and Ageing Sciences, G. d’Annunzio University, Chieti, Italy
- Ageing Research Center, CeSI, G. d’Annunzio University Foundation, Chieti, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University, Chieti, Italy
| |
Collapse
|
21
|
Buendía P, Ramírez R, Aljama P, Carracedo J. Klotho Prevents Translocation of NFκB. VITAMINS AND HORMONES 2016; 101:119-50. [PMID: 27125740 DOI: 10.1016/bs.vh.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Klotho protein is a β-glucuronidase capable of hydrolyzing steroid β-glucuronides. Two molecules are produced by the Klotho gene, a membrane bound form and a circulating form. This protein is recognized as an antiaging gene with pleiotropic functions. The activation of cellular systems is associated with the pathogenesis of several chronic and degenerative diseases associated with an inflammatory state. Inflammation is characterized by an activation of NFκB. Klotho suppresses nuclear factor NFκB activation and the subsequent transcription of proinflammatory genes. This review focuses on the current understanding of Klotho protein function and its relationship with NFκB regulation, emphasizing its potential involvement in the pathophysiologic process.
Collapse
Affiliation(s)
- P Buendía
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - R Ramírez
- Alcalá de Henares University, Madrid, Spain
| | - P Aljama
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - J Carracedo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
22
|
NIK- and IKKβ-binding protein promotes colon cancer metastasis by activating the classical NF-κB pathway and MMPs. Tumour Biol 2015; 37:5979-90. [DOI: 10.1007/s13277-015-4433-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/11/2015] [Indexed: 12/11/2022] Open
|
23
|
McKenna S, Wright CJ. Inhibiting IκBβ-NFκB signaling attenuates the expression of select pro-inflammatory genes. J Cell Sci 2015; 128:2143-55. [PMID: 25908863 DOI: 10.1242/jcs.168351] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/13/2015] [Indexed: 12/26/2022] Open
Abstract
Multiple mediators of septic shock are regulated by the transcription factor nuclear factor κB (NFκB). However, complete NFκB inhibition can exacerbate disease, necessitating evaluation of targeted strategies to attenuate the pro-inflammatory response. Here, we demonstrate that in murine macrophages, low-dose NFκB inhibitors specifically attenuates lipopolysaccharide (LPS)-induced IκBβ degradation and the expression of a select subset of target genes (encoding IL1β, IL6, IL12β). Gain- and loss-of-function experiments demonstrate the necessary and sufficient role of inhibitor of NFκB family member IκBβ (also known as NFKBIB) in the expression of these genes. Furthermore, both fibroblasts and macrophages isolated from IκBβ overexpressing mice demonstrate attenuated LPS-induced IκBβ-NFκB signaling and IL1β, IL6 and IL12β expression. Further confirming the role of IκBβ and its NFκB subunit binding partner cRel in LPS-induced gene expression, pre-treatment of wild-type mouse embryonic fibroblasts with a cell-permeable peptide containing the cRel nuclear localization sequence attenuated IL6 expression. We prove that LPS-induced IκBβ-NFκB signaling can be selectively modulated to attenuate the expression of select pro-inflammatory target genes, thus providing therapeutic insights for patients exposed to systemic inflammatory stress.
Collapse
Affiliation(s)
- Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
24
|
O’Connell MD, Reeves GT. The presence of nuclear cactus in the early Drosophila embryo may extend the dynamic range of the dorsal gradient. PLoS Comput Biol 2015; 11:e1004159. [PMID: 25879657 PMCID: PMC4400154 DOI: 10.1371/journal.pcbi.1004159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/28/2015] [Indexed: 11/18/2022] Open
Abstract
In a developing embryo, the spatial distribution of a signaling molecule, or a morphogen gradient, has been hypothesized to carry positional information to pattern tissues. Recent measurements of morphogen distribution have allowed us to subject this hypothesis to rigorous physical testing. In the early Drosophila embryo, measurements of the morphogen Dorsal, which is a transcription factor responsible for initiating the earliest zygotic patterns along the dorsal-ventral axis, have revealed a gradient that is too narrow to pattern the entire axis. In this study, we use a mathematical model of Dorsal dynamics, fit to experimental data, to determine the ability of the Dorsal gradient to regulate gene expression across the entire dorsal-ventral axis. We found that two assumptions are required for the model to match experimental data in both Dorsal distribution and gene expression patterns. First, we assume that Cactus, an inhibitor that binds to Dorsal and prevents it from entering the nuclei, must itself be present in the nuclei. And second, we assume that fluorescence measurements of Dorsal reflect both free Dorsal and Cactus-bound Dorsal. Our model explains the dynamic behavior of the Dorsal gradient at lateral and dorsal positions of the embryo, the ability of Dorsal to regulate gene expression across the entire dorsal-ventral axis, and the robustness of gene expression to stochastic effects. Our results have a general implication for interpreting fluorescence-based measurements of signaling molecules.
Collapse
Affiliation(s)
- Michael D. O’Connell
- North Carolina State University Department of Chemical and Biomolecular Engineering, Raleigh, North Carolina, United States of America
| | - Gregory T. Reeves
- North Carolina State University Department of Chemical and Biomolecular Engineering, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
25
|
Ryu JH, Park HJ, Jeong YY, Han S, Shin JH, Lee SJ, Kang MJ, Sung NJ, Kang D. Aged red garlic extract suppresses nitric oxide production in lipopolysaccharide-treated RAW 264.7 macrophages through inhibition of NF-κB. J Med Food 2015; 18:439-45. [PMID: 25584924 DOI: 10.1089/jmf.2014.3214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Lipopolysaccharides (LPS) activate nuclear factor kappa B (NF-κB), a transcription factor that is involved in inflammatory response. The pathways that activate NF-κB can be modulated by phytochemicals derived from garlic. We recently demonstrated that aged red garlic extract (ARGE), a new formulation of garlic, decreases nitric oxide (NO) generation by upregulating of heme oxygenase-1 (HO-1) in RAW 264.7 cells activated by LPS. However, the effects of ARGE on LPS-induced NF-κB activation are unknown. This study was performed to evaluate whether ARGE regulates LPS-induced NO production by modulation of NF-κB activation in macrophages. The inhibition of NF-κB by Bay 11-7085, an inhibitor of NF-κB, decreased LPS-induced NO production. ARGE treatment markedly reduced LPS-induced NO production and NF-κB nuclear translocation. ARGE downregulated expression of inducible nitric oxide synthase (iNOS) and upregulated expression of HO-1, a cytoprotective and anti-inflammatory protein. However, Bay 11-7085 only reduced iNOS expression. The NO production and iNOS expressions upregulated by suppression of HO-1 were suppressed by treatment with ARGE and Bay 11-7085. These results show that ARGE reduces LPS-induced NO production in macrophages through inhibition of NF-κB nuclear translocation and HO-1 activation. Compared to Bay 11-7085, ARGE may enhance anti-inflammatory effects by controlling other anti-inflammatory signals as well as regulation of NF-κB.
Collapse
Affiliation(s)
- Ji Hyeon Ryu
- 1 Department of Physiology, Institute of Health Sciences, Gyeongsang National University School of Medicine , Jinju, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Oeckinghaus A, Postler TS, Rao P, Schmitt H, Schmitt V, Grinberg-Bleyer Y, Kühn LI, Gruber CW, Lienhard GE, Ghosh S. κB-Ras proteins regulate both NF-κB-dependent inflammation and Ral-dependent proliferation. Cell Rep 2014; 8:1793-1807. [PMID: 25220458 DOI: 10.1016/j.celrep.2014.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/19/2014] [Accepted: 08/06/2014] [Indexed: 02/01/2023] Open
Abstract
The transformation of cells generally involves multiple genetic lesions that undermine control of both cell death and proliferation. We now report that κB-Ras proteins act as regulators of NF-κB and Ral pathways, which control inflammation/cell death and proliferation, respectively. Cells lacking κB-Ras therefore not only show increased NF-κB activity, which results in increased expression of inflammatory mediators, but also exhibit elevated Ral activity, which leads to enhanced anchorage-independent proliferation (AIP). κB-Ras deficiency consequently leads to significantly increased tumor growth that can be dampened by inhibiting either Ral or NF-κB pathways, revealing the unique tumor-suppressive potential of κB-Ras proteins. Remarkably, numerous human tumors show reduced levels of κB-Ras, and increasing the level of κB-Ras in these tumor cells impairs their ability to undergo AIP, thereby implicating κB-Ras proteins in human disease.
Collapse
Affiliation(s)
- Andrea Oeckinghaus
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Thomas S Postler
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ping Rao
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Heike Schmitt
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Verena Schmitt
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yenkel Grinberg-Bleyer
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Lars I Kühn
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gustav E Lienhard
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
27
|
Alvira CM. Nuclear factor-kappa-B signaling in lung development and disease: one pathway, numerous functions. ACTA ACUST UNITED AC 2014; 100:202-16. [PMID: 24639404 PMCID: PMC4158903 DOI: 10.1002/bdra.23233] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 01/04/2023]
Abstract
In contrast to other organs, the lung completes a significant portion of its development after term birth. During this stage of alveolarization, division of the alveolar ducts into alveolar sacs by secondary septation, and expansion of the pulmonary vasculature by means of angiogenesis markedly increase the gas exchange surface area of the lung. However, postnatal completion of growth renders the lung highly susceptible to environmental insults such as inflammation that disrupt this developmental program. This is particularly evident in the setting of preterm birth, where impairment of alveolarization causes bronchopulmonary dysplasia, a chronic lung disease associated with significant morbidity. The nuclear factor κ-B (NFκB) family of transcription factors are ubiquitously expressed, and function to regulate diverse cellular processes including proliferation, survival, and immunity. Extensive evidence suggests that activation of NFκB is important in the regulation of inflammation and in the control of angiogenesis. Therefore, NFκB-mediated downstream effects likely influence the lung response to injury and may also mediate normal alveolar development. This review summarizes the main biologic functions of NFκB, and highlights the regulatory mechanisms that allow for diversity and specificity in downstream gene activation. This is followed by a description of the pro and anti-inflammatory functions of NFκB in the lung, and of NFκB-mediated angiogenic effects. Finally, this review summarizes the clinical and experimental data that support a role for NFκB in mediating postnatal angiogenesis and alveolarization, and discusses the challenges that remain in developing therapies that can selectively block the detrimental functions of NFκB yet preserve the beneficial effects.
Collapse
Affiliation(s)
- Cristina M Alvira
- Division of Critical Care Medicine Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
28
|
Liu M, Song S, Li H, Jiang X, Yin P, Wan C, Liu X, Liu F, Xu J. The protective effect of caffeic acid against inflammation injury of primary bovine mammary epithelial cells induced by lipopolysaccharide. J Dairy Sci 2014; 97:2856-65. [PMID: 24612802 DOI: 10.3168/jds.2013-7600] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/21/2014] [Indexed: 01/03/2023]
Abstract
Caffeic acid possesses multiple biological effects, such as antibacterial, antioxidant, antiinflammatory, and anticancer growth; however, what effects it has on bovine mastitis have not been investigated. The aim of this study was to verify the antiinflammatory properties of caffeic acid on the inflammatory response of primary bovine mammary epithelial cells (bMEC) induced by lipopolysaccharide (LPS), and to clarify the possible underlying mechanism. Bovine mammary epithelial cells were treated with various concentrations (10, 50, 100, and 200 μg/mL) of LPS for 3, 6, 12, and 18 h; the results showed that LPS significantly inhibited cell viability in a time- and dose-dependent manner. When cells were treated with LPS (50 μg/mL) for 12h, the cell membrane permeability significantly increased, which promoted cell apoptosis. Various concentrations (10, 25, and 50 μg/mL) of caffeic acid could weaken the inflammation injury of bMEC induced by LPS without cytotoxicity. Proinflammatory cytokines (IL-8, IL-1β, IL-6, and tumor necrosis factor α) from bMEC were decreased. Nuclear transcription factor κB activity was weakened via blocking κB inhibitor α degradation and p65 phosphorylation. All these showed that the protective effect of caffeic acid on LPS-induced inflammation injury in bMEC was at least partly achieved by the decreased production of proinflammatory cytokines mediated by the effect of reducing the κB inhibitor α degradation and p65 phosphorylation in the nuclear transcription factor κB pathway. The use of caffeic acid would be beneficial in dairy cows during Escherichia coli mastitis as a safe and natural antiinflammatory drug.
Collapse
Affiliation(s)
- Mingjiang Liu
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, P. R. China
| | - Shixiu Song
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, P. R. China
| | - Huanrong Li
- College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing 102206, P. R. China
| | - Xiaoyu Jiang
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, P. R. China
| | - Peng Yin
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, P. R. China
| | - Changrong Wan
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, P. R. China
| | - Xiaoxi Liu
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, P. R. China
| | - Fenghua Liu
- College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing 102206, P. R. China.
| | - Jianqin Xu
- College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, P. R. China.
| |
Collapse
|
29
|
Alves BN, Tsui R, Almaden J, Shokhirev MN, Davis-Turak J, Fujimoto J, Birnbaum H, Ponomarenko J, Hoffmann A. IκBε is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner. THE JOURNAL OF IMMUNOLOGY 2014; 192:3121-32. [PMID: 24591377 DOI: 10.4049/jimmunol.1302351] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The transcription factor NF-κB is a regulator of inflammatory and adaptive immune responses, yet only IκBα was shown to limit NF-κB activation and inflammatory responses. We investigated another negative feedback regulator, IκBε, in the regulation of B cell proliferation and survival. Loss of IκBε resulted in increased B cell proliferation and survival in response to both antigenic and innate stimulation. NF-κB activity was elevated during late-phase activation, but the dimer composition was stimulus specific. In response to IgM, cRel dimers were elevated in IκBε-deficient cells, yet in response to LPS, RelA dimers also were elevated. The corresponding dimer-specific sequences were found in the promoters of hyperactivated genes. Using a mathematical model of the NF-κB-signaling system in B cells, we demonstrated that kinetic considerations of IκB kinase-signaling input and IκBε's interactions with RelA- and cRel-specific dimers could account for this stimulus specificity. cRel is known to be the key regulator of B cell expansion. We found that the RelA-specific phenotype in LPS-stimulated cells was physiologically relevant: unbiased transcriptome profiling revealed that the inflammatory cytokine IL-6 was hyperactivated in IκBε(-/-) B cells. When IL-6R was blocked, LPS-responsive IκBε(-/-) B cell proliferation was reduced to near wild-type levels. Our results provide novel evidence for a critical role for immune-response functions of IκBε in B cells; it regulates proliferative capacity via at least two mechanisms involving cRel- and RelA-containing NF-κB dimers. This study illustrates the importance of kinetic considerations in understanding the functional specificity of negative-feedback regulators.
Collapse
Affiliation(s)
- Bryce N Alves
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tang JR, Michaelis KA, Nozik-Grayck E, Seedorf GJ, Hartman-Filson M, Abman SH, Wright CJ. The NF-κB inhibitory proteins IκBα and IκBβ mediate disparate responses to inflammation in fetal pulmonary endothelial cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:2913-23. [PMID: 23418625 DOI: 10.4049/jimmunol.1202670] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exposure to intrauterine inflammation impairs lung growth but paradoxically protects the neonatal pulmonary vasculature from hyperoxic injury. The mechanisms mediating these contradictory effects are unknown. The objective is to identify the role of NF-κB in mediating cytoprotective and proinflammatory responses to inflammation in the fetal pulmonary endothelium. In newborn rats exposed to intra-amniotic LPS, we found increased expression of the NF-κB target gene manganese superoxide dismutase (MnSOD) in the pulmonary endothelium. Supporting these in vivo findings, LPS induced NF-κB activation and MnSOD expression in isolated fetal pulmonary arterial endothelial cells. In addition, LPS exposure caused apoptosis and suppressed cellular growth and induced P-selectin expression. LPS-induced NF-κB activation that proceeded through specific isoforms of the inhibitory protein IκB mediated these diverse responses; NF-κB signaling through IκBα degradation resulted in MnSOD upregulation and preserved cell growth, whereas NF-κB signaling through IκBβ degradation mediated apoptosis and P-selectin expression. These findings suggest that selective inhibition of NF-κB activation that results from IκBβ degradation preserves the enhanced antioxidant defense and protects the developing pulmonary vascular endothelium from ongoing inflammatory injury.
Collapse
Affiliation(s)
- Jen-Ruey Tang
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Targeting IκB proteins for HIV latency activation: the role of individual IκB and NF-κB proteins. J Virol 2013; 87:3966-78. [PMID: 23365428 DOI: 10.1128/jvi.03251-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Latently infected cell reservoirs represent the main barrier to HIV eradication. Combination antiretroviral therapy (cART) effectively blocks viral replication but cannot purge latent provirus. One approach to HIV eradication could include cART to block new infections plus an agent to activate latent provirus. NF-κB activation induces HIV expression, ending latency. Before activation, IκB proteins sequester NF-κB dimers in the cytoplasm. Three canonical IκBs, IκBα, IκBβ, and IκBε, exist, but the IκB proteins' role in HIV activation regulation is not fully understood. We studied the effects on HIV activation of targeting IκBs by single and pairwise small interfering RNA (siRNA) knockdown. After determining the relative abundance of the IκBs, the relative abundance of NF-κB subunits held by the IκBs, and the kinetics of IκB degradation and resynthesis following knockdown, we studied HIV activation by IκB knockdown, in comparison with those of known HIV activators, tumor necrosis factor alpha (TNF-α), tetradecanoyl phorbol acetate (TPA), and trichostatin A (TSA), in U1 monocytic and J-Lat 10.6 lymphocytic latently infected cells. We found that IκBα knockdown activated HIV in both U1 and J-Lat 10.6 cells, IκBβ knockdown did not activate HIV, and, surprisingly, IκBε knockdown produced the most HIV activation, comparable to TSA activation. Our data show that HIV reactivation can be triggered by targeting two different IκB proteins and that IκBε may be an effective target for HIV latency reactivation in T-cell and macrophage lineages. IκBε knockdown may offer attractive therapeutic advantages for HIV activation because it is not essential for mammalian growth and development and because new siRNA delivery strategies may target siRNAs to HIV latently infected cells.
Collapse
|
32
|
Abstract
The nuclear factor-kappa B (NF-κB) pathways play important roles in innate immune responses. IκB is the main cytoplasmic inhibitor of NF-κB. In this study, we identified the LvCactus gene from Litopenaeus vannamei, which is the first cloned IκB homologue in subphylum Crustacea. LvCactus contains six predicted ankyrin repeats, which show similarities to those of Cactus proteins from insects. LvCactus localizes in cytoplasm and interacts with LvDorsal, an L. vannamei homologue to Drosophila melanogaster Dorsal belonging to class II NF-κB family, to prevent its nuclear translocation. Contrary to that of LvDorsal, over-expression of LvCactus down-regulates the activities of shrimp antimicrobial peptides promoters, suggesting LvCactus is an inhibitor of LvDorsal. The promoter of LvCactus was predicted to contain five putative NF-κB binding motifs, among which four were proved to be bound by LvDorsal by chromatin immunoprecipitation assays. Dual-luciferase reporter assays also showed that transcription of LvCactus was promoted by LvDorsal but inhibited by LvCactus itself, indicating a feedback regulatory pathway between LvCactus and LvDorsal. Expression of LvCactus was up-regulated after Lipopolysaccharides, poly (I:C), Vibrio parahaemolyticus, and Staphylococcus aureus injections, suggesting an activation response of LvCactus to bacterial and immune stimulant challenges. Differently, the LvCactus expression levels obviously decreased during white spot syndrome virus (WSSV) infection, indicating the feedback regulatory pathway of LvCactus/LvDorsal could be modified by WSSV.
Collapse
|
33
|
Hinz M, Arslan SÇ, Scheidereit C. It takes two to tango: IκBs, the multifunctional partners of NF-κB. Immunol Rev 2012; 246:59-76. [PMID: 22435547 DOI: 10.1111/j.1600-065x.2012.01102.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibitory IκB proteins have been discovered as fundamental regulators of the inducible transcription factor nuclear factor-κB (NF-κB). As a generally excepted model, stimulus-dependent destruction of inhibitory IκBs and processing of precursor molecules, both promoted by components of the signal integrating IκB kinase complex, are the key events for the release of various NF-κB/Rel dimers and subsequent transcriptional activation. Intense research of more than 20 years provides evidence that the extending family of IκBs act not simply as reversible inhibitors of NF-κB activation but rather as a complex regulatory module, which assures feedback regulation of the NF-κB system and either can inhibit or promote transcriptional activity in a stimulus-dependent manner. Thus, IκB and NF-κB/Rel family proteins establish a complex interrelationship that allows modulated NF-κB-dependent transcription, tailored to the physiological environment.
Collapse
Affiliation(s)
- Michael Hinz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|
34
|
Polydnavirus Ank proteins bind NF-κB homodimers and inhibit processing of Relish. PLoS Pathog 2012; 8:e1002722. [PMID: 22654665 PMCID: PMC3359993 DOI: 10.1371/journal.ppat.1002722] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/12/2012] [Indexed: 12/25/2022] Open
Abstract
Recent studies have greatly increased understanding of how the immune system of insects responds to infection, whereas much less is known about how pathogens subvert immune defenses. Key regulators of the insect immune system are Rel proteins that form Nuclear Factor-κB (NF-κB) transcription factors, and inhibitor κB (IκB) proteins that complex with and regulate NF-κBs. Major mortality agents of insects are parasitoid wasps that carry immunosuppressive polydnaviruses (PDVs). Most PDVs encode ank genes that share features with IκBs, while our own prior studies suggested that two ank family members from Microplitis demolitor bracovirus (MdBV) (Ank-H4 and Ank-N5) behave as IκB mimics. However, the binding affinities of these viral mimics for Rel proteins relative to endogenous IκBs remained unclear. Surface plasmon resonance (SPR) and co-immunoprecipitation assays showed that the IκB Cactus from Drosophila bound Dif and Dorsal homodimers more strongly than Relish homodimers. Ank-H4 and –N5 bound Dif, Dorsal and Relish homodimers with higher affinity than the IκB domain of Relish (Rel-49), and also bound Relish homodimers more strongly than Cactus. Ank-H4 and –N5 inhibited processing of compound Relish and reduced the expression of several antimicrobial peptide genes regulated by the Imd signaling pathway in Drosophila mbn2 cells. Studies conducted in the natural host Pseudoplusia includens suggested that parasitism by M. demolitor also activates NF-κB signaling and that MdBV inhibits this response. Overall, our data provide the first quantitative measures of insect and viral IκB binding affinities, while also showing that viral mimics disable Relish processing. Central to the study of host-pathogen interactions is understanding how the immune system of hosts responds to infection, and reciprocally how pathogens subvert host defenses. In the case of insects, understanding of how the immune system responds to infection greatly exceeds understanding of pathogen counterstrategies. Parasitoid wasps are key mortality agents of insects. Thousands of wasp species have also evolved a symbiotic relationship with large DNA viruses in the family Polydnaviridae whose primary function is to deliver immunosuppressive virulence genes to the insect hosts that wasps parasitize. The function of most PDV-encoded virulence genes, however, remains unknown. In this article, we investigated the function of two ank gene family members from Microplitis demolitor bracovirus (MdBV). Our results indicate that Ank-H4 and Ank-N5 function as mimics of IκB proteins, which regulate a family of transcription factors called NF-κBs that control many genes of the insect immune system. IκBs and NF-κBs also function as key regulators of the mammalian immune system. Our results thus suggest that viral Ank proteins subvert the immune system of host insects by targeting conserved signaling pathways used by a diversity of organisms.
Collapse
|
35
|
Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012; 26:203-34. [PMID: 22302935 DOI: 10.1101/gad.183434.111] [Citation(s) in RCA: 1348] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to sense and adjust to the environment is crucial to life. For multicellular organisms, the ability to respond to external changes is essential not only for survival but also for normal development and physiology. Although signaling events can directly modify cellular function, typically signaling acts to alter transcriptional responses to generate both transient and sustained changes. Rapid, but transient, changes in gene expression are mediated by inducible transcription factors such as NF-κB. For the past 25 years, NF-κB has served as a paradigm for inducible transcription factors and has provided numerous insights into how signaling events influence gene expression and physiology. Since its discovery as a regulator of expression of the κ light chain gene in B cells, research on NF-κB continues to yield new insights into fundamental cellular processes. Advances in understanding the mechanisms that regulate NF-κB have been accompanied by progress in elucidating the biological significance of this transcription factor in various physiological processes. NF-κB likely plays the most prominent role in the development and function of the immune system and, not surprisingly, when dysregulated, contributes to the pathophysiology of inflammatory disease. As our appreciation of the fundamental role of inflammation in disease pathogenesis has increased, so too has the importance of NF-κB as a key regulatory molecule gained progressively greater significance. However, despite the tremendous progress that has been made in understanding the regulation of NF-κB, there is much that remains to be understood. In this review, we highlight both the progress that has been made and the fundamental questions that remain unanswered after 25 years of study.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
36
|
Wright CJ, Agboke F, Muthu M, Michaelis KA, Mundy MA, La P, Yang G, Dennery PA. Nuclear factor-κB (NF-κB) inhibitory protein IκBβ determines apoptotic cell death following exposure to oxidative stress. J Biol Chem 2012; 287:6230-9. [PMID: 22223647 DOI: 10.1074/jbc.m111.318246] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The transcription factor NF-κB regulates the cellular response to inflammatory and oxidant stress. Although many studies have evaluated NF-κB activity following exposure to oxidative stress, the role of the IκB family of inhibitory proteins in modulating this activity remains unclear. Specifically, the function of IκBβ in mediating the cellular response to oxidative stress has not been evaluated. We hypothesized that blocking oxidative stress-induced NF-κB signaling through IκBβ would prevent apoptotic cell death. Using IκBβ knock-in mice (AKBI), in which the IκBα gene is replaced with the IκBβ cDNA, we show that IκBβ overexpression prevented oxidative stress-induced apoptotic cell death. This was associated with retention of NF-κB subunits in the nucleus and maintenance of NF-κB activity. Furthermore, the up-regulation of pro-apoptotic genes in WT murine embryonic fibroblasts (MEFs) exposed to serum starvation was abrogated in AKBI MEFs. Inhibition of apoptosis was observed in WT MEFs overexpressing IκBβ with simultaneous IκBα knockdown, whereas IκBβ overexpression alone did not produce this effect. These findings represent a necessary but not sufficient role of IκBβ in preventing oxidant stress-induced cell death.
Collapse
Affiliation(s)
- Clyde J Wright
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Inhibitor of kappa B epsilon (IκBε) is a non-redundant regulator of c-Rel-dependent gene expression in murine T and B cells. PLoS One 2011; 6:e24504. [PMID: 21915344 PMCID: PMC3167847 DOI: 10.1371/journal.pone.0024504] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 08/12/2011] [Indexed: 01/03/2023] Open
Abstract
Inhibitors of kappa B (IκBs) -α, -β and -ε effect selective regulation of specific nuclear factor of kappa B (NF-κB) dimers according to cell lineage, differentiation state or stimulus, in a manner that is not yet precisely defined. Lymphocyte antigen receptor ligation leads to degradation of all three IκBs but activation only of subsets of NF-κB-dependent genes, including those regulated by c-Rel, such as anti-apoptotic CD40 and BAFF-R on B cells, and interleukin-2 (IL-2) in T cells. We report that pre-culture of a mouse T cell line with tumour necrosis factor-α (TNF) inhibits IL-2 gene expression at the level of transcription through suppressive effects on NF-κB, AP-1 and NFAT transcription factor expression and function. Selective upregulation of IκBε and suppressed nuclear translocation of c-Rel were very marked in TNF-treated, compared to control cells, whether activated via T cell receptor (TCR) pathway or TNF receptor. IκBε associated with newly synthesised c-Rel in activated cells and, in contrast to IκBα and -β, showed enhanced association with p65/c-Rel in TNF-treated cells relative to controls. Studies in IκBε-deficient mice revealed that basal nuclear expression and nuclear translocation of c-Rel at early time-points of receptor ligation were higher in IκBε-/- T and B cells, compared to wild-type. IκBε-/- mice exhibited increased lymph node cellularity and enhanced basal thymidine incorporation by lymphoid cells ex vivo. IκBε-/- T cell blasts were primed for IL-2 expression, relative to wild-type. IκBε-/- splenic B cells showed enhanced survival ex vivo, compared to wild-type, and survival correlated with basal expression of CD40 and induced expression of CD40 and BAFF-R. Enhanced basal nuclear translocation of c-Rel, and upregulation of BAFF-R and CD40 occurred despite increased IκBα expression in IκBε-/- B cells. The data imply that regulation of these c-Rel-dependent lymphoid responses is a non-redundant function of IκBε.
Collapse
|
38
|
Chen P, Migita S, Kanehira K, Sonezaki S, Taniguchi A. Development of sensor cells using NF-κB pathway activation for detection of nanoparticle-induced inflammation. SENSORS (BASEL, SWITZERLAND) 2011; 11:7219-30. [PMID: 22164013 PMCID: PMC3231678 DOI: 10.3390/s110707219] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/08/2011] [Accepted: 07/12/2011] [Indexed: 02/06/2023]
Abstract
The increasing use of nanomaterials in consumer and industrial products has aroused concerns regarding their fate in biological systems. An effective detection method to evaluate the safety of bio-nanomaterials is therefore very important. Titanium dioxide (TiO(2)), which is manufactured worldwide in large quantities for use in a wide range of applications, including pigment and cosmetic manufacturing, was once thought to be an inert material, but recently, more and more studies have indicated that TiO(2) nanoparticles (TiO(2) NPs) can cause inflammation and be harmful to humans by causing lung and brain problems. In order to evaluate the safety of TiO(2) NPs for the environment and for humans, sensor cells for inflammation detection were developed, and these were transfected with the Toll-like receptor 4 (TLR4) gene and Nuclear Factor Kappa B (NF-κB) reporter gene. NF-κB as a primary cause of inflammation has received a lot of attention, and it can be activated by a wide variety of external stimuli. Our data show that TiO(2) NPs-induced inflammation can be detected by our sensor cells through NF-κB pathway activation. This may lead to our sensor cells being used for bio-nanomaterial safety evaluation.
Collapse
Affiliation(s)
- Peng Chen
- Cell-Materials Interaction Group, Biomaterials Unit, Nano-Bio Field, National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki, 305-0044, Japan; E-Mails: (P.C.); (S.M.)
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Satoshi Migita
- Cell-Materials Interaction Group, Biomaterials Unit, Nano-Bio Field, National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki, 305-0044, Japan; E-Mails: (P.C.); (S.M.)
| | - Koki Kanehira
- TOTO Ltd. Research Institute, Nakashima 2-1-1, Kokurakita, Kitakyushu, 802-8601, Japan; E-Mails: (K.K.); (S.S.)
| | - Shuji Sonezaki
- TOTO Ltd. Research Institute, Nakashima 2-1-1, Kokurakita, Kitakyushu, 802-8601, Japan; E-Mails: (K.K.); (S.S.)
| | - Akiyoshi Taniguchi
- Cell-Materials Interaction Group, Biomaterials Unit, Nano-Bio Field, National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki, 305-0044, Japan; E-Mails: (P.C.); (S.M.)
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
39
|
Espinosa L, Bigas A, Mulero MC. Alternative nuclear functions for NF-κB family members. Am J Cancer Res 2011; 1:446-59. [PMID: 21984965 PMCID: PMC3186045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/10/2011] [Indexed: 05/31/2023] Open
Abstract
The NF-κB signalling pathway regulates many different biological processes from the cellular level to the whole organism. The majority of these functions are completely dependent on the activation of the cytoplasmic IKK kinase complex that leads to IκB degradation and results in the nuclear translocation of specific NF-κB dimers, which, in general, act as transcription factors. Although this is a well-established mechanism of action, several publications have now demonstrated that some members of this pathway display additional functions in the nucleus as regulators of NF-κB-dependent and independent gene expression. In this review, we compiled and put in context most of the data concerning specific nuclear roles for IKK and IκB proteins.
Collapse
Affiliation(s)
- Lluís Espinosa
- Program in Cancer Research, IMIM-Hospital del Mar Barcelona, Spain
| | | | | |
Collapse
|
40
|
Scheibel M, Klein B, Merkle H, Schulz M, Fritsch R, Greten FR, Arkan MC, Schneider G, Schmid RM. IkappaBbeta is an essential co-activator for LPS-induced IL-1beta transcription in vivo. ACTA ACUST UNITED AC 2010; 207:2621-30. [PMID: 20975042 PMCID: PMC2989768 DOI: 10.1084/jem.20100864] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IkBβ forms a complex with the NF-κB subunits RelA and c-Rel that inhibits the transcription of IL-1β and other genes. Mice lacking IkBβ are protected against LPS-induced shock. Inhibitor of κB (IκB) β (IκBβ) represents one of the major primary regulators of NF-κB in mammals. In contrast to the defined regulatory interplay between NF-κB and IκBα, much less is known about the biological function of IκBβ. To elucidate the physiological role of IκBβ in NF-κB signaling in vivo, we generated IκBβ-deficient mice. These animals proved to be highly refractory to LPS-induced lethality, accompanied by a strong reduction in sepsis-associated cytokine production. In response to LPS, IκBβ is recruited to the IL-1β promoter forming a complex with the NF-κB subunits RelA/c-Rel required for IL-1β transcription. Further transcriptome analysis of LPS-stimulated wild-type and IκBβ-deficient BM-derived macrophages revealed several other genes with known regulatory functions in innate immunity arguing that a subset of NF-κB target genes is under control of IκBβ. Collectively, these findings provide an essential proinflammatory role for IκBβ in vivo, and establish a critical function for IκBβ as a transcriptional coactivator under inflammatory conditions.
Collapse
Affiliation(s)
- Melanie Scheibel
- II. Medizinische Klinik, Technische Universität München, 81675 München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sperone A, Dryden NH, Birdsey GM, Madden L, Johns M, Evans PC, Mason JC, Haskard DO, Boyle JJ, Paleolog EM, Randi AM. The transcription factor Erg inhibits vascular inflammation by repressing NF-kappaB activation and proinflammatory gene expression in endothelial cells. Arterioscler Thromb Vasc Biol 2010; 31:142-50. [PMID: 20966395 DOI: 10.1161/atvbaha.110.216473] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To test whether ETS-related gene (Erg) inhibits tumor necrosis factor (TNF)-α-dependent endothelial activation and inflammation. METHODS AND RESULTS Endothelial activation underlies many vascular diseases, including atherosclerosis. Endothelial activation by proinflammatory cytokines decreases expression of the ETS transcription factor Erg. By using human umbilical vein endothelial cells (HUVECs), we showed that Erg overexpression by adenovirus (AdErg) repressed basal and TNF-α-induced expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule (VCAM), and interleukin 8 (IL-8). Erg inhibited TNF-α-dependent activation of the ICAM-1 promoter, nuclear factor (NF)-κB activity, and NF-κB p65 phosphorylation. Basal NF-κB activity was also inhibited by Erg overexpression. Chromatin immunoprecipitation showed that Erg binds to the ICAM-1 proximal promoter region, which contains 7 putative ETS binding sites. To test the anti-inflammatory role of Erg in vivo, we used a murine model of TNF-α-dependent acute inflammation. The injection of AdErg into the paw decreased TNF-α-induced inflammation compared with control. Finally, staining of human coronary plaques showed loss of Erg expression from the endothelium overlaying active plaque shoulders. CONCLUSIONS We have identified a novel physiological anti-inflammatory pathway under the control of the transcription factor Erg; this pathway inhibits NF-κB-dependent transcription and TNF-α-induced inflammation in vivo. These results suggest a novel approach to anti-inflammatory therapies.
Collapse
Affiliation(s)
- Andrea Sperone
- Imperial College London, Hammersmith Hospital, London W12 0NN, England
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
IkappaBbeta acts to inhibit and activate gene expression during the inflammatory response. Nature 2010; 466:1115-9. [PMID: 20740013 PMCID: PMC2946371 DOI: 10.1038/nature09283] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 06/11/2010] [Indexed: 01/17/2023]
Abstract
The activation of pro-inflammatory gene programs by nuclear factor-kappaB (NF-kappaB) is primarily regulated through cytoplasmic sequestration of NF-kappaB by the inhibitor of kappaB (IkappaB) family of proteins. IkappaBbeta, a major isoform of IkappaB, can sequester NF-kappaB in the cytoplasm, although its biological role remains unclear. Although cells lacking IkappaBbeta have been reported, in vivo studies have been limited and suggested redundancy between IkappaBalpha and IkappaBbeta. Like IkappaBalpha, IkappaBbeta is also inducibly degraded; however, upon stimulation by lipopolysaccharide (LPS), it is degraded slowly and re-synthesized as a hypophosphorylated form that can be detected in the nucleus. The crystal structure of IkappaBbeta bound to p65 suggested this complex might bind DNA. In vitro, hypophosphorylated IkappaBbeta can bind DNA with p65 and c-Rel, and the DNA-bound NF-kappaB:IkappaBbeta complexes are resistant to IkappaBalpha, suggesting hypophosphorylated, nuclear IkappaBbeta may prolong the expression of certain genes. Here we report that in vivo IkappaBbeta serves both to inhibit and facilitate the inflammatory response. IkappaBbeta degradation releases NF-kappaB dimers which upregulate pro-inflammatory target genes such as tumour necrosis factor-alpha (TNF-alpha). Surprisingly, absence of IkappaBbeta results in a dramatic reduction of TNF-alpha in response to LPS even though activation of NF-kappaB is normal. The inhibition of TNF-alpha messenger RNA (mRNA) expression correlates with the absence of nuclear, hypophosphorylated-IkappaBbeta bound to p65:c-Rel heterodimers at a specific kappaB site on the TNF-alpha promoter. Therefore IkappaBbeta acts through p65:c-Rel dimers to maintain prolonged expression of TNF-alpha. As a result, IkappaBbeta(-/-) mice are resistant to LPS-induced septic shock and collagen-induced arthritis. Blocking IkappaBbeta might be a promising new strategy for selectively inhibiting the chronic phase of TNF-alpha production during the inflammatory response.
Collapse
|
43
|
Costantini TW, Deree J, Martins J, Putnam JG, de Campos T, Coimbra R. A novel fluid resuscitation strategy modulates pulmonary transcription factor activation in a murine model of hemorrhagic shock. Clinics (Sao Paulo) 2010; 65:621-8. [PMID: 20613939 PMCID: PMC2898548 DOI: 10.1590/s1807-59322010000600010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/11/2010] [Accepted: 03/02/2010] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Combining the hemodynamic and immune benefits of hypertonic saline with the anti-inflammatory effects of the phosphodiesterase inhibitor pentoxifylline (HSPTX) as a hemorrhagic shock resuscitation strategy reduces lung injury when compared with the effects of Ringer's lactate (RL). We hypothesized that HSPTX exerts its anti-inflammatory effects by interfering with nuclear factor kappa B/cAMP response element-binding protein (NF-kappaB-CREB) competition for the coactivator CREB-binding protein (CBP) in lung tissue, thus affecting pro-inflammatory mediator production. METHODS Male Sprague-Dawley rats underwent 60 minutes of hemorrhagic shock to reach a mean arterial blood pressure of 35 mmHg followed by resuscitation with either RL or HSPTX (7.5% HS + 25 mg/kg PTX). After four hours, lung samples were collected. NF-kappaB activation was assessed by measuring the levels of phosphorylated cytoplasmic inhibitor of kappa B (I-kappaB) and nuclear NF-kappaB p65 by western blot. NF-kappaB and CREB DNA-binding activity were measured by electrophoretic mobility shift assay (EMSA). Competition between NF-kappaB and CREB for the coactivator CBP was determined by immunoprecipitation. Interleukin-8 (IL-8) levels in the lung were measured by ELISA. RESULTS RL resuscitation produced significantly higher levels of lung IL-8 levels, I-kappaB phosphorylation, p65 phosphorylation, and NF-kappaB DNA binding compared with HSPTX. NF-kappaB-CBP-binding activity was similar in both groups, whereas CREB-CBP-binding activity was significantly increased with HSPTX. CREB-DNA binding-activity increased to a greater level with HSPTX compared with RL. DISCUSSION HSPTX decreases lung inflammation following hemorrhagic shock compared with conventional resuscitation using RL through attenuation of NF-kappaB signaling and increased CREB-DNA binding activity. HSPTX may have therapeutic potential in the attenuation of ischemia-reperfusion injury observed after severe hemorrhagic shock.
Collapse
|
44
|
Strell C, Sievers A, Bastian P, Lang K, Niggemann B, Zänker KS, Entschladen F. Divergent effects of norepinephrine, dopamine and substance P on the activation, differentiation and effector functions of human cytotoxic T lymphocytes. BMC Immunol 2009; 10:62. [PMID: 19968887 PMCID: PMC2794263 DOI: 10.1186/1471-2172-10-62] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 12/08/2009] [Indexed: 02/06/2023] Open
Abstract
Background Neurotransmitters are important regulators of the immune system, with very distinct and varying effects on different leukocyte subsets. So far little is known about the impact of signals mediated by neurotransmitters on the function of CD8+ T lymphocytes. Therefore, we investigated the influence of norepinephrine, dopamine and substance P on the key tasks of CD8+ T lymphocytes: activation, migration, extravasation and cytotoxicity. Results The activation of naïve CD8+ T lymphocytes by CD3/CD28 cross-linking was inhibited by norepinephrine and dopamine, which was caused by a downregulation of interleukin (IL)-2 expression via Erk1/2 and NF-κB inhibition. Furthermore, all of the investigated neurotransmitters increased the spontaneous migratory activity of naïve CD8+ T lymphocytes with dopamine being the strongest inducer. In contrast, activated CD8+ T lymphocytes showed a reduced migratory activity in the presence of norepinephrine and substance P. With regard to extravasation we found norepinephrine to induce adhesion of activated CD8+ T cells: norepinephrine increased the interleukin-8 release from endothelium, which in turn had effect on the activated CXCR1+ CD8+ T cells. At last, release of cytotoxic granules from activated cells in response to CD3 cross-linking was not influenced by any of the investigated neurotransmitters, as we have analyzed by measuring the β-hexosamidase release. Conclusion Neurotransmitters are specific modulators of CD8+ T lymphocytes not by inducing any new functions, but by fine-tuning their key tasks. The effect can be either stimulatory or suppressive depending on the activation status of the cells.
Collapse
Affiliation(s)
- Carina Strell
- Institute of Immunology, Witten/Herdecke University, 58448 Witten, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Nitric oxide synthase 1 and cyclooxygenase-2 enzymes are targets of muscarinic activation in normal and inflamed NIH3T3 cells. Inflamm Res 2009; 59:227-38. [PMID: 19823767 DOI: 10.1007/s00011-009-0097-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 09/10/2009] [Accepted: 09/15/2009] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Fibroblasts are sentinel cells that could serve as intermediaries in the immune reaction in the inflammatory process. In this work, we investigate the action of the muscarinic agonist carbachol (CARB) on the expression and function of nitric oxide synthase (NOS) and cyclooxygenase (COX) in fibroblasts under normal or inflammatory conditions. METHODS The normal fibroblast cell line, 3T3, from NIH swiss mouse embryo, was used. The inflammatory milieu was mimicked with lipopolysaccharide (LPS) (10 ng/ml) plus interferon gamma (IFNgamma) (0.5 ng/ml). Nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production were measured by Griess reagent and radioimmunoassay, respectively. NOS, COX, and nuclear transcription factor kappa B (NF-kappaB) were studied by Western blot. RESULTS CARB increased NO synthesis by 57 +/- 5%, while a 150 +/- 10% increase in NO liberation was triggered by LPS plus IFNgamma treatment. CARB added to LPS plus IFNgamma potentiated NO synthesis by 227 +/- 19%. CARB also upregulated NOS1 protein expression via NF-kappaB activation. In addition CARB and LPS plus IFNgamma stimulated PGE(2) synthesis by 72 +/- 9 and 42 +/- 4%, respectively, while CARB added to LPS plus IFNgamma treated cells produced a synergism in PGE(2) liberation (130 +/- 12%) via COX-2. CONCLUSION Activation of muscarinic acetylcholine receptors can mimic mild inflammatory conditions or can deepen pre-existing inflammation, establishing a fine-tuned set-up on fibroblasts that in turn could be alerting the immune system.
Collapse
|
46
|
Yang J, Park Y, Zhang H, Xu X, Laine GA, Dellsperger KC, Zhang C. Feed-forward signaling of TNF-alpha and NF-kappaB via IKK-beta pathway contributes to insulin resistance and coronary arteriolar dysfunction in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 2009; 296:H1850-8. [PMID: 19363130 DOI: 10.1152/ajpheart.01199.2008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We hypothesized that the interaction between tumor necrosis factor-alpha (TNF-alpha)/nuclear factor-kappaB (NF-kappaB) via the activation of IKK-beta may amplify one another, resulting in the evolution of vascular disease and insulin resistance associated with diabetes. To test this hypothesis, endothelium-dependent (ACh) and -independent (sodium nitroprusside) vasodilation of isolated, pressurized coronary arterioles from mLepr(db) (heterozygote, normal), Lepr(db) (homozygote, diabetic), and Lepr(db) mice null for TNF-alpha (db(TNF-)/db(TNF-)) were examined. Although the dilation of vessels to sodium nitroprusside was not different between Lepr(db) and mLepr(db) mice, the dilation to ACh was reduced in Lepr(db) mice. The NF-kappaB antagonist MG-132 or the IKK-beta inhibitor sodium salicylate (NaSal) partially restored nitric oxide-mediated endothelium-dependent coronary arteriolar dilation in Lepr(db) mice, but the responses in mLepr(db) mice were unaffected. The protein expression of IKK-alpha and IKK-beta were higher in Lepr(db) than in mLepr(db) mice; the expression of IKK-beta, but not the expression of IKK-alpha, was attenuated by MG-132, the antioxidant apocynin, or the genetic deletion of TNF-alpha in diabetic mice. Lepr(db) mice showed an increased insulin resistance, but NaSal improved insulin sensitivity. The protein expression of TNF-alpha and NF-kappaB and the protein modification of phosphorylated (p)-IKK-beta and p-JNK were greater in Lepr(db) mice, but NaSal attenuated TNF-alpha, NF-kappaB, p-IKK-beta, and p-JNK in Lepr(db) mice. The ratio of p-insulin receptor substrate (IRS)-1 at Ser307 to IRS-1 was elevated in Lepr(db) compared with mLepr(db) mice; both NaSal and the JNK inhibitor SP-600125 reduced the p-IRS-1-to-IRS-1 ratio in Lepr(db) mice. MG-132 or the neutralization of TNF-alpha reduced superoxide production in Lepr(db) mice. In conclusion, our results indicate that the interaction between NF-kappaB and TNF-alpha signaling induces the activation of IKK-beta and amplifies oxidative stress, leading to endothelial dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Jiyeon Yang
- Michael E. DeBakey Institute, Texas A&M University, College Station, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Healthy vascular function is primarily regulated by several factors including EDRF (endothelium-dependent relaxing factor), EDCF (endothelium-dependent contracting factor) and EDHF (endothelium-dependent hyperpolarizing factor). Vascular dysfunction or injury induced by aging, smoking, inflammation, trauma, hyperlipidaemia and hyperglycaemia are among a myriad of risk factors that may contribute to the pathogenesis of many cardiovascular diseases, such as hypertension, diabetes and atherosclerosis. However, the exact mechanisms underlying the impaired vascular activity remain unresolved and there is no current scientific consensus. Accumulating evidence suggests that the inflammatory cytokine TNF (tumour necrosis factor)-α plays a pivotal role in the disruption of macrovascular and microvascular circulation both in vivo and in vitro. AGEs (advanced glycation end-products)/RAGE (receptor for AGEs), LOX-1 [lectin-like oxidized low-density lipoprotein receptor-1) and NF-κB (nuclear factor κB) signalling play key roles in TNF-α expression through an increase in circulating and/or local vascular TNF-α production. The increase in TNF-α expression induces the production of ROS (reactive oxygen species), resulting in endothelial dysfunction in many pathophysiological conditions. Lipid metabolism, dietary supplements and physical activity affect TNF-α expression. The interaction between TNF-α and stem cells is also important in terms of vascular repair or regeneration. Careful scrutiny of these factors may help elucidate the mechanisms that induce vascular dysfunction. The focus of the present review is to summarize recent evidence showing the role of TNF-α in vascular dysfunction in cardiovascular disease. We believe these findings may prompt new directions for targeting inflammation in future therapies.
Collapse
|
48
|
King KE, Ponnamperuma RM, Allen C, Lu H, Duggal P, Chen Z, Van Waes C, Weinberg WC. The p53 homologue DeltaNp63alpha interacts with the nuclear factor-kappaB pathway to modulate epithelial cell growth. Cancer Res 2008; 68:5122-31. [PMID: 18593911 DOI: 10.1158/0008-5472.can-07-6123] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The p53 homologue DeltaNp63alpha is overexpressed and inhibits apoptosis in a subset of human squamous cell carcinomas (SCC). Here, we report that in normal keratinocytes overexpressing DeltaNp63alpha and in human squamous carcinoma cells, DeltaNp63alpha physically associates with phosphorylated, transcriptionally active nuclear c-Rel, a nuclear factor-kappaB family member, resulting in increased c-Rel nuclear accumulation. This accumulation and the associated enhanced proliferation driven by elevated DeltaNp63alpha are attenuated by c-Rel small interfering RNA or overexpression of mutant IkappaBalphaM, indicating that c-Rel-containing complex formation is critical to the ability of elevated DeltaNp63alpha to maintain proliferation in the presence of growth arresting signals. Consistent with a role in growth regulation, DeltaNp63alpha-c-Rel complexes bind a promoter motif and repress the cyclin-dependent kinase inhibitor p21WAF1 in both human squamous carcinoma cells and normal keratinocytes overexpressing DeltaNp63alpha. The relationship between DeltaNp63alpha and activated c-Rel is reflected in their strong nuclear staining in the proliferating compartment of primary head and neck SCC. This is the first report indicating that high levels of DeltaNp63alpha interact with activated c-Rel in keratinocytes and SCC, thereby promoting uncontrolled proliferation, a key alteration in the pathogenesis of cancers.
Collapse
Affiliation(s)
- Kathryn E King
- Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
A nuclear role for Kaposi's sarcoma-associated herpesvirus-encoded K13 protein in gene regulation. Oncogene 2008; 27:5243-53. [PMID: 18469854 DOI: 10.1038/onc.2008.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded viral FLICE inhibitory protein K13 interacts with a cytosolic IkappaB kinase (IKK) complex to activate nuclear factor-kappaB (NF-kappaB). We recently reported that K13 antagonizes KSHV lytic regulator RTA (replication and transcription activator) and blocks lytic replication, but spares RTA-induced viral interleukin-6 (vIL6). Here we report that K13 is also present in the nuclear compartment, a property not shared by its structural homologs. K13 interacts with and activates the nuclear IKK complex, and binds to the IkappaBalpha promoter. K13 mutants that are retained in the cytosol lack NF-kappaB activity. However, neither the IKKs nor NF-kappaB activation is required for nuclear localization of K13. Instead, this ability is dependent on a nuclear localization signal located in its N-terminal 40 amino acids. Finally, K13, along with p65/RelA, binds to the promoters of a number of KSHV lytic genes, including RTA, ORF57 and vGPCR, but not to the promoter of the vIL6 gene. Thus, K13 has an unexpected nuclear role in viral and cellular gene regulation and its differential binding to the promoters of lytic genes may not only contribute to the inhibition of KSHV lytic replication, but may also account for the escape of vIL6 from K13-induced transcriptional suppression.
Collapse
|
50
|
Li X, He D, Zhang L, Xue Y, Cheng X, Luo Y. Pyrrolidine dithiocarbamate attenuate shock wave induced MDCK cells injury via inhibiting nuclear factor-kappa B activation. ACTA ACUST UNITED AC 2007; 35:193-9. [PMID: 17562036 DOI: 10.1007/s00240-007-0105-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 05/17/2007] [Indexed: 01/12/2023]
Abstract
Shock wave lithotripsy (SWL)-induced renal damage appears to be multifactorial. Recent data indicated that the mechanism of renal tissue damage secondary to SWL is similar to that of ischemia reperfusion injury. Nuclear factor-kappa B (NFkappaB) and its target genes, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), have been demonstrated to play a very important role in a variety of cells or tissues ischemia reperfusion injuries. Thus in the present study, using an in vitro model MDCK cells, we investigated the role of NFkappaB and its target cytotoxic enzyme in shock wave-induced renal cellular damage. We also examined whether inhibition this pathway by pyrrolidine dithiocarbamate (PDTC) is contributed to alleviate SWL-caused cell damage. Suspensions of MDCK cells were placed in containers for shock wave exposure. Three groups of six containers each were examined: control group, no shock wave treatment and SWL group, which received 100 shocks at 18 kV; 3 SWL + PDTC group. PDTC were added to the suspensions before shock wave exposure. After shock wave 0, 2, 4, 6 and 8 h, respectively, the cell supernatants were detected for the level of MDA and release of LDH. At post-shock wave 8 h, cells were harvested to detect the nuclear translocation of NFkappaBp65 by immunofluorescence staining. Degradation of IkappaB-a (an inhibitor protein of NFkappaB) and expression of iNOS and COX-2 were also examined by western blotting. Our results indicated that shock wave initiated the apparent activation of NFkappaB, which in turn induced high expression of iNOS and COX-2. Blocking degradation of IkappaB-a by PDTC was contributed to decrease the expression of iNOS. And the level of MDA and the release of LDH were also significantly reduced by using PDTC. However, the degree of COX-2 expression does not differ significantly between SWL and SWL + PDTC groups. Activation of NFkappaB and subsequent expression of its target cytotoxic enzyme have been demonstrated to be a potential and crucial mechanism in SWL-induced renal cell damage. Blocking this pathway by PDTC is contributed to protect against cellular damage from shock wave.
Collapse
Affiliation(s)
- Xiang Li
- Department of Urology, No. 1 Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | | | | | | | | | | |
Collapse
|