1
|
Behle A, Dietsch M, Goldschmidt L, Murugathas W, Berwanger L, Burmester J, Yao L, Brandt D, Busche T, Kalinowski J, Hudson E, Ebenhöh O, Axmann I, Machné R. Manipulation of topoisomerase expression inhibits cell division but not growth and reveals a distinctive promoter structure in Synechocystis. Nucleic Acids Res 2022; 50:12790-12808. [PMID: 36533444 PMCID: PMC9825172 DOI: 10.1093/nar/gkac1132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
In cyanobacteria DNA supercoiling varies over the diurnal cycle and is integrated with temporal programs of transcription and replication. We manipulated DNA supercoiling in Synechocystis sp. PCC 6803 by CRISPRi-based knockdown of gyrase subunits and overexpression of topoisomerase I (TopoI). Cell division was blocked but cell growth continued in all strains. The small endogenous plasmids were only transiently relaxed, then became strongly supercoiled in the TopoI overexpression strain. Transcript abundances showed a pronounced 5'/3' gradient along transcription units, incl. the rRNA genes, in the gyrase knockdown strains. These observations are consistent with the basic tenets of the homeostasis and twin-domain models of supercoiling in bacteria. TopoI induction initially led to downregulation of G+C-rich and upregulation of A+T-rich genes. The transcriptional response quickly bifurcated into six groups which overlap with diurnally co-expressed gene groups. Each group shows distinct deviations from a common core promoter structure, where helically phased A-tracts are in phase with the transcription start site. Together, our data show that major co-expression groups (regulons) in Synechocystis all respond differentially to DNA supercoiling, and suggest to re-evaluate the long-standing question of the role of A-tracts in bacterial promoters.
Collapse
Affiliation(s)
| | | | - Louis Goldschmidt
- Institut f. Quantitative u. Theoretische Biologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Wandana Murugathas
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz C Berwanger
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Jonas Burmester
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lun Yao
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - David Brandt
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Tobias Busche
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Oliver Ebenhöh
- Institut f. Quantitative u. Theoretische Biologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ilka M Axmann
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Rainer Machné
- To whom correspondence should be addressed. Tel: +49 211 81 12923;
| |
Collapse
|
2
|
Pacheco-Bernal I, Becerril-Pérez F, Aguilar-Arnal L. Circadian rhythms in the three-dimensional genome: implications of chromatin interactions for cyclic transcription. Clin Epigenetics 2019; 11:79. [PMID: 31092281 PMCID: PMC6521413 DOI: 10.1186/s13148-019-0677-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Circadian rhythms orchestrate crucial physiological functions and behavioral aspects around a day in almost all living forms. The circadian clock is a time tracking system that permits organisms to predict and anticipate periodic environmental fluctuations. The circadian system is hierarchically organized, and a master pacemaker located in the brain synchronizes subsidiary clocks in the rest of the organism. Adequate synchrony between central and peripheral clocks ensures fitness and potentiates a healthy state. Conversely, disruption of circadian rhythmicity is associated with metabolic diseases, psychiatric disorders, or cancer, amongst other pathologies. Remarkably, the molecular machinery directing circadian rhythms consists of an intricate network of feedback loops in transcription and translation which impose 24-h cycles in gene expression across all tissues. Interestingly, the molecular clock collaborates with multitude of epigenetic remodelers to fine tune transcriptional rhythms in a tissue-specific manner. Very exciting research demonstrate that three-dimensional properties of the genome have a regulatory role on circadian transcriptional rhythmicity, from bacteria to mammals. Unexpectedly, highly dynamic long-range chromatin interactions have been revealed during the circadian cycle in mammalian cells, where thousands of regulatory elements physically interact with promoter regions every 24 h. Molecular mechanisms directing circadian dynamics on chromatin folding are emerging, and the coordinated action between the core clock and epigenetic remodelers appears to be essential for these movements. These evidences reveal a critical epigenetic regulatory layer for circadian rhythms and pave the way to uncover molecular mechanisms triggering pathological states associated to circadian misalignment.
Collapse
Affiliation(s)
- Ignacio Pacheco-Bernal
- Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lorena Aguilar-Arnal
- Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
3
|
Muskhelishvili G, Travers A. The regulatory role of DNA supercoiling in nucleoprotein complex assembly and genetic activity. Biophys Rev 2016; 8:5-22. [PMID: 28510220 PMCID: PMC5425797 DOI: 10.1007/s12551-016-0237-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/21/2016] [Indexed: 01/06/2023] Open
Abstract
We argue that dynamic changes in DNA supercoiling in vivo determine both how DNA is packaged and how it is accessed for transcription and for other manipulations such as recombination. In both bacteria and eukaryotes, the principal generators of DNA superhelicity are DNA translocases, supplemented in bacteria by DNA gyrase. By generating gradients of superhelicity upstream and downstream of their site of activity, translocases enable the differential binding of proteins which preferentially interact with respectively more untwisted or more writhed DNA. Such preferences enable, in principle, the sequential binding of different classes of protein and so constitute an essential driver of chromatin organization.
Collapse
Affiliation(s)
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
4
|
Iwasaki H, Kondo T. Circadian Timing Mechanism in the Prokaryotic Clock System of Cyanobacteria. J Biol Rhythms 2016; 19:436-44. [PMID: 15534323 DOI: 10.1177/0748730404269060] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyanobacteria are the simplest organisms known to exhibit circadian rhythms and have provided experimental model systems for the dissection of basic properties of circadian organization at the molecular, physiological, and ecological levels. This review focuses on the molecular and genetic mechanisms of circadian rhythm generation in cyanobacteria. Recent analyses have revealed the existence of multiple feedback processes in the prokaryotic circadian system and have led to a novel molecular oscillator model. Here, the authors summarize current understanding of, and open questions about, the cyanobacterial oscillator.
Collapse
Affiliation(s)
- Hideo Iwasaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan.
| | | |
Collapse
|
5
|
Multifunctionality of plastid nucleoids as revealed by proteome analyses. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1016-38. [PMID: 26987276 DOI: 10.1016/j.bbapap.2016.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/25/2016] [Accepted: 03/09/2016] [Indexed: 01/08/2023]
Abstract
Protocols aimed at the isolation of nucleoids and transcriptionally active chromosomes (TACs) from plastids of higher plants have been established already decades ago, but only recent improvements in the mass spectrometry methods enabled detailed proteomic characterization of their components. Here we present a comprehensive analysis of the protein compositions obtained from two proteomic studies of TAC fractions isolated from Arabidopsis/mustard and spinach chloroplasts, respectively, as well as nucleoid fractions from Arabidopsis, maize and pea. Interestingly, different approaches as well as the use of diverse starting materials resulted in the detection of varying protein catalogues with a number of shared proteins. Possible reasons for the discrepancies between the protein repertoires and for missing out some of the nucleoid proteins that have been identified previously by other means than mass spectrometry as well as the repeated identification of "unexpected" proteins indicating potential links between DNA/RNA-associated nucleoid core functions and energy metabolism as well as biosynthetic activities of plastids will be discussed. In accordance with the nucleoid association of proteins involved in key functions of plastids including photosynthesis, the phenotypes of mutants lacking one or the other plastid nucleoid-associated protein (ptNAP) show the importance of nucleoid proteins for overall plant development and growth. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
|
6
|
Idoine AD, Boulouis A, Rupprecht J, Bock R. The diurnal logic of the expression of the chloroplast genome in Chlamydomonas reinhardtii. PLoS One 2014; 9:e108760. [PMID: 25272288 PMCID: PMC4182738 DOI: 10.1371/journal.pone.0108760] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/04/2014] [Indexed: 12/01/2022] Open
Abstract
Chloroplasts are derived from cyanobacteria and have retained a bacterial-type genome and gene expression machinery. The chloroplast genome encodes many of the core components of the photosynthetic apparatus in the thylakoid membranes. To avoid photooxidative damage and production of harmful reactive oxygen species (ROS) by incompletely assembled thylakoid protein complexes, chloroplast gene expression must be tightly regulated and co-ordinated with gene expression in the nucleus. Little is known about the control of chloroplast gene expression at the genome-wide level in response to internal rhythms and external cues. To obtain a comprehensive picture of organelle transcript levels in the unicellular model alga Chlamydomonas reinhardtii in diurnal conditions, a qRT-PCR platform was developed and used to quantify 68 chloroplast, 21 mitochondrial as well as 71 nuclear transcripts in cells grown in highly controlled 12 h light/12 h dark cycles. Interestingly, in anticipation of dusk, chloroplast transcripts from genes involved in transcription reached peak levels first, followed by transcripts from genes involved in translation, and finally photosynthesis gene transcripts. This pattern matches perfectly the theoretical demands of a cell “waking up” from the night. A similar trend was observed in the nuclear transcripts. These results suggest a striking internal logic in the expression of the chloroplast genome and a previously unappreciated complexity in the regulation of chloroplast genes.
Collapse
Affiliation(s)
- Adam D. Idoine
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, Germany
| | - Alix Boulouis
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, Germany
| | - Jens Rupprecht
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, Germany
- * E-mail:
| |
Collapse
|
7
|
Dodd AN, Kusakina J, Hall A, Gould PD, Hanaoka M. The circadian regulation of photosynthesis. PHOTOSYNTHESIS RESEARCH 2014; 119:181-90. [PMID: 23529849 DOI: 10.1007/s11120-013-9811-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/08/2013] [Indexed: 05/25/2023]
Abstract
Correct circadian regulation increases plant productivity, and photosynthesis is circadian-regulated. Here, we discuss the regulatory basis for the circadian control of photosynthesis. We discuss candidate mechanisms underpinning circadian oscillations of light harvesting and consider how the circadian clock modulates CO2 fixation by Rubisco. We show that new techniques may provide a platform to better understand the signalling pathways that couple the circadian clock with the photosynthetic apparatus. Finally, we discuss how understanding circadian regulation in model systems is underpinning research into the impact of circadian regulation in crop species.
Collapse
Affiliation(s)
- Antony N Dodd
- School of Biological Sciences, University of Bristol, Bristol, BS8 1UG, UK,
| | | | | | | | | |
Collapse
|
8
|
Powikrowska M, Oetke S, Jensen PE, Krupinska K. Dynamic composition, shaping and organization of plastid nucleoids. FRONTIERS IN PLANT SCIENCE 2014; 5:424. [PMID: 25237313 PMCID: PMC4154389 DOI: 10.3389/fpls.2014.00424] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/08/2014] [Indexed: 05/18/2023]
Abstract
In this article recent progress on the elucidation of the dynamic composition and structure of plastid nucleoids is reviewed from a structural perspective. Plastid nucleoids are compact structures of multiple copies of different forms of ptDNA, RNA, enzymes for replication and gene expression as well as DNA binding proteins. Although early electron microscopy suggested that plastid DNA is almost free of proteins, it is now well established that the DNA in nucleoids similarly as in the nuclear chromatin is associated with basic proteins playing key roles in organization of the DNA architecture and in regulation of DNA associated enzymatic activities involved in transcription, replication, and recombination. This group of DNA binding proteins has been named plastid nucleoid associated proteins (ptNAPs). Plastid nucleoids are unique with respect to their variable number, genome copy content and dynamic distribution within different types of plastids. The mechanisms underlying the shaping and reorganization of plastid nucleoids during chloroplast development and in response to environmental conditions involve posttranslational modifications of ptNAPs, similarly to those changes known for histones in the eukaryotic chromatin, as well as changes in the repertoire of ptNAPs, as known for nucleoids of bacteria. Attachment of plastid nucleoids to membranes is proposed to be important not only for regulation of DNA availability for replication and transcription, but also for the coordination of photosynthesis and plastid gene expression.
Collapse
Affiliation(s)
- Marta Powikrowska
- Department of Plant and Environmental Sciences, VILLUM Research Centre for Plant Plasticity and Copenhagen Plant Science Centre, University of CopenhagenCopenhagen, Denmark
| | - Svenja Oetke
- Plant Cell Biology, Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
| | - Poul E. Jensen
- Department of Plant and Environmental Sciences, VILLUM Research Centre for Plant Plasticity and Copenhagen Plant Science Centre, University of CopenhagenCopenhagen, Denmark
| | - Karin Krupinska
- Plant Cell Biology, Institute of Botany, Christian-Albrechts-University of KielKiel, Germany
- *Correspondence: Karin Krupinska, Plant Cell Biology, Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany e-mail:
| |
Collapse
|
9
|
Kawazoe R, Mahan KM, Venghaus BE, Carter ML, Herrin DL. Circadian regulation of chloroplast transcription in Chlamydomonas is accompanied by little or no fluctuation in RPOD levels or core RNAP activity. Mol Biol Rep 2012; 39:10565-71. [DOI: 10.1007/s11033-012-1942-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
|
10
|
Onishi Y, Kawano Y. Rhythmic binding of Topoisomerase I impacts on the transcription of Bmal1 and circadian period. Nucleic Acids Res 2012; 40:9482-92. [PMID: 22904072 PMCID: PMC3479213 DOI: 10.1093/nar/gks779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Bmal1 gene is essential for the circadian system, and its promoter has a unique open chromatin structure. We examined the mechanism of topoisomerase I (Top1) to understand the role of the unique chromatin structure in Bmal1 gene regulation. Camptothecin, a Top1 inhibitor, and Top1 small interfering RNA (siRNA) enhanced Baml1 transcription and lengthened its circadian period. Top1 is located at an intermediate region between two ROREs that are critical cis-elements of circadian transcription and the profile of Top1 binding indicated anti-phase circadian oscillation of Bmal1 transcription. Promoter assays showed that the Top1-binding site is required for transcriptional suppression and that it functions cooperatively with the distal RORE, supporting that Bmal1 transcription is upregulated by Top1 inhibition. A DNA fragment between the ROREs, where the Top1-binding site is located, behaved like a right-handed superhelical twist, and modulation of Top1 activity by camptothecin and Top1 siRNA altered the footprint profile, indicating modulation of the chromatin structure. These data indicate that Top1 modulates the chromatin structure of the Bmal1 promoter, regulates Bmal1 transcription and influences the circadian period.
Collapse
Affiliation(s)
- Yoshiaki Onishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Tsukuba 305-8566, Japan.
| | | |
Collapse
|
11
|
Melonek J, Matros A, Trösch M, Mock HP, Krupinska K. The core of chloroplast nucleoids contains architectural SWIB domain proteins. THE PLANT CELL 2012; 24:3060-73. [PMID: 22797472 PMCID: PMC3426132 DOI: 10.1105/tpc.112.099721] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/14/2012] [Accepted: 06/26/2012] [Indexed: 05/04/2023]
Abstract
A highly enriched fraction of the transcriptionally active chromosome from chloroplasts of spinach (Spinacia oleracea) was analyzed by two-dimensional gel electrophoresis and mass spectrometry to identify proteins involved in structuring of the nucleoid core. Among such plastid nucleoid-associated candidate proteins a 12-kD SWIB (SWI/SNF complex B) domain-containing protein was identified. It belongs to a subgroup of low molecular mass SWIB domain proteins, which in Arabidopsis thaliana has six members (SWIB-1 to SWIB-6) with predictions for localization in the two DNA-containing organelles. Green/red fluorescent protein fusions of four of them were shown to be targeted to chloroplasts, where they colocalize with each other as well as with the plastid envelope DNA binding protein in structures corresponding to plastid nucleoids. For SWIB-6 and SWIB-4, a second localization in mitochondria and nucleus, respectively, could be observed. SWIB-4 has a histone H1 motif next to the SWIB domain and was shown to bind to DNA. Moreover, the recombinant SWIB-4 protein was shown to induce compaction and condensation of nucleoids and to functionally complement a mutant of Escherichia coli lacking the histone-like nucleoid structuring protein H-NS.
Collapse
Affiliation(s)
- Joanna Melonek
- Institute of Botany, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| | - Mirl Trösch
- Institute of Botany, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany
| |
Collapse
|
12
|
Liere K, Weihe A, Börner T. The transcription machineries of plant mitochondria and chloroplasts: Composition, function, and regulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1345-60. [PMID: 21316793 DOI: 10.1016/j.jplph.2011.01.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 05/04/2023]
Abstract
Although genomes of mitochondria and plastids are very small compared to those of their bacterial ancestors, the transcription machineries of these organelles are of surprising complexity. With respect to the number of different RNA polymerases per organelle, the extremes are represented on one hand by chloroplasts of eudicots which use one bacterial-type RNA polymerase and two phage-type RNA polymerases to transcribe their genes, and on the other hand by Physcomitrella possessing three mitochondrial RNA polymerases of the phage type. Transcription of genes/operons is often driven by multiple promoters in both organelles. This review describes the principle components of the transcription machineries (RNA polymerases, transcription factors, promoters) and the division of labor between the different RNA polymerases. While regulation of transcription in mitochondria seems to be only of limited importance, the plastid genes of higher plants respond to exogenous and endogenous cues rather individually by altering their transcriptional activities.
Collapse
Affiliation(s)
- Karsten Liere
- Institut für Biologie/Genetik, Humboldt-Universität zu Berlin, Chausseestrasse 117, Berlin, Germany
| | | | | |
Collapse
|
13
|
Matsuo T, Ishiura M. Chlamydomonas reinhardtiias a new model system for studying the molecular basis of the circadian clock. FEBS Lett 2011; 585:1495-502. [DOI: 10.1016/j.febslet.2011.02.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 01/31/2011] [Accepted: 02/21/2011] [Indexed: 12/31/2022]
|
14
|
Schulze T, Prager K, Dathe H, Kelm J, Kiessling P, Mittag M. How the green alga Chlamydomonas reinhardtii keeps time. PROTOPLASMA 2010; 244:3-14. [PMID: 20174954 DOI: 10.1007/s00709-010-0113-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 01/18/2010] [Indexed: 05/10/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has two flagella and a primitive visual system, the eyespot apparatus, which allows the cell to phototax. About 40 years ago, it was shown that the circadian clock controls its phototactic movement. Since then, several circadian rhythms such as chemotaxis, cell division, UV sensitivity, adherence to glass, or starch metabolism have been characterized. The availability of its entire genome sequence along with homology studies and the analysis of several sub-proteomes render C. reinhardtii as an excellent eukaryotic model organism to study its circadian clock at different levels of organization. Previous studies point to several potential photoreceptors that may be involved in forwarding light information to entrain its clock. However, experimental data are still missing toward this end. In the past years, several components have been functionally characterized that are likely to be part of the oscillatory machinery of C. reinhardtii since alterations in their expression levels or insertional mutagenesis of the genes resulted in defects in phase, period, or amplitude of at least two independent measured rhythms. These include several RHYTHM OF CHLOROPLAST (ROC) proteins, a CONSTANS protein (CrCO) that is involved in parallel in photoperiodic control, as well as the two subunits of the circadian RNA-binding protein CHLAMY1. The latter is also tightly connected to circadian output processes. Several candidates including a significant number of ROCs, CrCO, and CASEIN KINASE1 whose alterations of expression affect the circadian clock have in parallel severe effects on the release of daughter cells, flagellar formation, and/or movement, indicating that these processes are interconnected in C. reinhardtii. The challenging task for the future will be to get insights into the clock network and to find out how the clock-related factors are functionally connected. In this respect, system biology approaches will certainly contribute in the future to improve our understanding of the C. reinhardtii clock machinery.
Collapse
Affiliation(s)
- Thomas Schulze
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University, Am Planetarium 1, 07743, Jena, Germany
| | | | | | | | | | | |
Collapse
|
15
|
New Insights into the Circadian Clock in Chlamydomonas. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:281-314. [DOI: 10.1016/s1937-6448(10)80006-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Abstract
Although Bmal1 is a key component of the mammalian clock system, little is understood about the actual mechanism of circadian Bmal1 gene transcription, particularly at the chromatin level. Here we discovered a unique chromatin structure within the Bmal1 promoter. The RORE region, which is a critical cis element for the circadian regulation of the Bmal1 gene, is comprised of GC-rich open chromatin. The 3'-flanking region of the promoter inhibited rhythmic transcription in the reporter gene assay in vitro even in the presence of RORalpha and REV-ERBalpha. We also found that the nuclear matrix protein SAF-A binds to the 3'-flanking region with circadian timing, which was correlated with Bmal1 expression by footprinting in vivo. These results suggest that the unique chromatin structure containing SAF-A is required for the circadian transcriptional regulation of the Bmal1 gene in cells.
Collapse
|
17
|
Abstract
This review examines the connections between circadian and metabolic rhythms. Examples from a wide variety of well-studied organisms are used to illustrate some of the genetic and molecular pathways linking circadian timekeeping to metabolism. The principles underlying biological timekeeping by intrinsic circadian clocks are discussed briefly. Genetic and molecular studies have unambiguously identified the importance of gene expression feedback circuits to the generation of overt circadian rhythms. This is illustrated particularly well by the results of genome-wide expression studies, which have uncovered hundreds of clock-controlled genes in cyanobacteria, fungi, plants, and animals. The potential connections between circadian oscillations in gene expression and circadian oscillations in metabolic activity are a major focus of this review.
Collapse
Affiliation(s)
- Herman Wijnen
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904-4328, USA.
| | | |
Collapse
|
18
|
|
19
|
Abstract
Prokaryotic cyanobacteria express robust circadian (daily) rhythms under the control of a clock system that appears to be similar to those of eukaryotes in many ways. On the other hand, the KaiABC-based core cyanobacterial clockwork is clearly different from the transcription-translation feedback loop model of eukaryotic clocks in that the cyanobacterial clock system regulates gene expression patterns globally, and specific clock gene promoters are not essential in mediating the circadian feedback loop. A novel model, the oscilloid model, proposes that the KaiABC oscillator ultimately mediates rhythmic changes in the status of the cyanobacterial chromosome, and these topological changes underlie the global rhythms of transcription. The authors suggest that this model represents one of several possible modes of regulating gene expression by circadian clocks, even those of eukaryotes.
Collapse
Affiliation(s)
| | - Carl Hirschie Johnson
- To whom all correspondence should be addressed: Carl Johnson, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235;
| |
Collapse
|
20
|
Bock R. Structure, function, and inheritance of plastid genomes. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0223] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Transcription and transcriptional regulation in plastids. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0232] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Smith RM, Williams SB. Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci U S A 2006; 103:8564-9. [PMID: 16707582 PMCID: PMC1482530 DOI: 10.1073/pnas.0508696103] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the cyanobacterium Synechococcus elongatus (PCC 7942) the kai genes A, B, and C and the sasA gene encode the functional protein core of the timing mechanism essential for circadian clock regulation of global gene expression. The Kai proteins comprise the central timing mechanism, and the sensor kinase SasA is a primary transducer of temporal information. We demonstrate that the circadian clock also regulates a chromosome compaction rhythm. This chromosome compaction rhythm is both circadian clock-controlled and kai-dependent. Although sasA is required for global gene expression rhythmicity, it is not required for these chromosome compaction rhythms. We also demonstrate direct control by the Kai proteins on the rate at which the SasA protein autophosphorylates. Thus, to generate and maintain circadian rhythms in gene expression, the Kai proteins keep relative time, communicate temporal information to SasA, and may control access to promoter elements by imparting rhythmic chromosome compaction.
Collapse
Affiliation(s)
- Rachelle M. Smith
- Department of Biology, Life Science Building, University of Utah, Salt Lake City, UT 84112
| | - Stanly B. Williams
- Department of Biology, Life Science Building, University of Utah, Salt Lake City, UT 84112
- *To whom correspondence should be addressed at:
Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840. E-mail:
| |
Collapse
|
23
|
Wijnen H, Naef F, Boothroyd C, Claridge-Chang A, Young MW. Control of daily transcript oscillations in Drosophila by light and the circadian clock. PLoS Genet 2006; 2:e39. [PMID: 16565745 PMCID: PMC1413497 DOI: 10.1371/journal.pgen.0020039] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 02/03/2006] [Indexed: 11/19/2022] Open
Abstract
The transcriptional circuits of circadian clocks control physiological and behavioral rhythms. Light may affect such overt rhythms in two ways: (1) by entraining the clock circuits and (2) via clock-independent molecular pathways. In this study we examine the relationship between autonomous transcript oscillations and light-driven transcript responses. Transcript profiles of wild-type and arrhythmic mutant Drosophila were recorded both in the presence of an environmental photocycle and in constant darkness. Systematic autonomous oscillations in the 12- to 48-h period range were detectable only in wild-type flies and occurred preferentially at the circadian period length. However, an extensive program of light-driven expression was confirmed in arrhythmic mutant flies. Many light-responsive transcripts are preferentially expressed in the compound eyes and the phospholipase C component of phototransduction, NORPA (no receptor potential), is required for their light-dependent regulation. Although there is evidence for the existence of multiple molecular clock circuits in cyanobacteria, protists, plants, and fungi, Drosophila appears to possess only one such system. The sustained photic expression responses identified here are partially coupled to the circadian clock and may reflect a mechanism for flies to modulate functions such as visual sensitivity and synaptic transmission in response to seasonal changes in photoperiod.
Collapse
Affiliation(s)
- Herman Wijnen
- Laboratory of Genetics, The Rockefeller University, New York, New York, United States of America
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Felix Naef
- Laboratory of Mathematical Physics, The Rockefeller University, New York, New York, United States of America
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Catharine Boothroyd
- Laboratory of Genetics, The Rockefeller University, New York, New York, United States of America
| | - Adam Claridge-Chang
- Laboratory of Genetics, The Rockefeller University, New York, New York, United States of America
| | - Michael W Young
- Laboratory of Genetics, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
24
|
Abstract
Cyanobacteria such as Synechococcus elongatus PCC 7942, Thermosynechococcus elongatus BP-1, and Synechocystis species strain PCC 6803 have an endogenous timing mechanism that can generate and maintain a 24 h (circadian) periodicity to global (whole genome) gene expression patterns. This rhythmicity extends to many other physiological functions, including chromosome compaction. These rhythmic patterns seem to reflect the periodicity of availability of the primary energy source for these photoautotrophic organisms, the Sun. Presumably, eons of environmentally derived rhythmicity--light/dark cycles--have simply been mechanistically incorporated into the regulatory networks of these cyanobacteria. Genetic and biochemical experimentation over the last 15 years has identified many key components of the primary timing mechanism that generates rhythmicity, the input pathways that synchronize endogenous rhythms to exogenous rhythms, and the output pathways that transduce temporal information from the timekeeper to the regulators of gene expression and function. Amazingly, the primary timing mechanism has evidently been extracted from S. elongatus PCC 7942 and can also keep time in vitro. Mixing the circadian clock proteins KaiA, KaiB, and KaiC from S. elongatus PCC 7942 in vitro and adding ATP results in a circadian rhythm in the KaiC protein phosphorylation state. Nonetheless, many questions still loom regarding how this circadian clock mechanism works, how it communicates with the environment and how it regulates temporal patterns of gene expression. Many details regarding structure and function of the individual clock-related proteins are provided here as a basis to discuss these questions. A strong, data-intensive foundation has been developed to support the working model for the cyanobacterial circadian regulatory system. The eventual addition to that model of the metabolic parameters participating in the command and control of this circadian global regulatory system will ultimately allow a fascinating look into whole-cell physiology and metabolism and the consequential organization of global gene expression patterns.
Collapse
Affiliation(s)
- Stanly B Williams
- Department of Biology, Life Science Building, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
25
|
Kucho KI, Okamoto K, Tsuchiya Y, Nomura S, Nango M, Kanehisa M, Ishiura M. Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2005; 187:2190-9. [PMID: 15743968 PMCID: PMC1064041 DOI: 10.1128/jb.187.6.2190-2199.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are the only bacterial species found to have a circadian clock. We used DNA microarrays to examine circadian expression patterns in the cyanobacterium Synechocystis sp. strain PCC 6803. Our analysis identified 54 (2%) and 237 (9%) genes that exhibited circadian rhythms under stringent and relaxed filtering conditions, respectively. The expression of most cycling genes peaked around the time of transition from subjective day to night, suggesting that the main role of the circadian clock in Synechocystis is to adjust the physiological state of the cell to the upcoming night environment. There were several chromosomal regions where neighboring genes were expressed with similar circadian patterns. The physiological functions of the cycling genes were diverse and included a wide variety of metabolic pathways, membrane transport, and signal transduction. Genes involved in respiration and poly(3-hydroxyalkanoate) synthesis showed coordinated circadian expression, suggesting that the regulation is important for the supply of energy and carbon source in the night. Genes involved in transcription and translation also followed circadian cycling patterns. These genes may be important for output of the rhythmic information generated by the circadian clock. Our findings provided critical insights into the importance of the circadian clock on cellular physiology and the mechanism of clock-controlled gene regulation.
Collapse
Affiliation(s)
- Ken-ichi Kucho
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Mittag M, Kiaulehn S, Johnson CH. The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? PLANT PHYSIOLOGY 2005; 137:399-409. [PMID: 15710681 PMCID: PMC1065344 DOI: 10.1104/pp.104.052415] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 10/04/2004] [Accepted: 10/07/2004] [Indexed: 05/17/2023]
Affiliation(s)
- Maria Mittag
- Institut für Allgemeine Botanik, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
27
|
Shiina T, Tsunoyama Y, Nakahira Y, Khan MS. Plastid RNA polymerases, promoters, and transcription regulators in higher plants. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:1-68. [PMID: 16157177 DOI: 10.1016/s0074-7696(05)44001-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plastids are semiautonomous plant organelles exhibiting their own transcription-translation systems that originated from a cyanobacteria-related endosymbiotic prokaryote. As a consequence of massive gene transfer to nuclei and gene disappearance during evolution, the extant plastid genome is a small circular DNA encoding only ca. 120 genes (less than 5% of cyanobacterial genes). Therefore, it was assumed that plastids have a simple transcription-regulatory system. Later, however, it was revealed that plastid transcription is a multistep gene regulation system and plays a crucial role in developmental and environmental regulation of plastid gene expression. Recent molecular and genetic approaches have identified several new players involved in transcriptional regulation in plastids, such as multiple RNA polymerases, plastid sigma factors, transcription regulators, nucleoid proteins, and various signaling factors. They have provided novel insights into the molecular basis of plastid transcription in higher plants. This review summarizes state-of-the-art knowledge of molecular mechanisms that regulate plastid transcription in higher plants.
Collapse
Affiliation(s)
- Takashi Shiina
- Faculty of Human Environment, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | | | | | | |
Collapse
|
28
|
Stauber EJ, Hippler M. Chlamydomonas reinhardtii proteomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:989-1001. [PMID: 15707836 DOI: 10.1016/j.plaphy.2004.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 09/27/2004] [Indexed: 05/01/2023]
Abstract
Proteomics, based on the expanding genomic resources, has begun to reveal new details of Chlamydomonas reinhardtii biology. In particular, analyses focusing on subproteomes have already provided new insight into the dynamics and composition of the photosynthetic apparatus, the chloroplast ribosome, the oxidative phosphorylation machinery of the mitochondria, and the flagellum. It assisted to discovered putative new components of the circadian clockwork as well as shed a light on thioredoxin protein-protein interactions. In the future, quantitative techniques may allow large scale comparison of protein expression levels. Advances in software algorithms will likely improve the use of genomic databases for mass spectrometry (MS) based protein identification and validation of gene models that have been predicted from the genomic DNA sequences. Although proteomics has only been recently applied for exploring C. reinhardtii biology, it will likely be utilized extensively in the near future due to the already existing genetic, genomic, and biochemical tools.
Collapse
Affiliation(s)
- Einar J Stauber
- Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller Universität Jena, Dornburger Street 159, 07743 Jena, Germany
| | | |
Collapse
|
29
|
Min H, Liu Y, Johnson CH, Golden SS. Phase determination of circadian gene expression in Synechococcus elongatus PCC 7942. J Biol Rhythms 2004; 19:103-12. [PMID: 15038850 DOI: 10.1177/0748730403262056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The authors analyzed the upstream regulatory region of purF, a gene that is expressed in a minority phase that peaks at dawn (class 2 circadian phasing) in Synechococcus elongatus, to determine whether specific cis elements are responsible for this characteristic expression pattern. Fusions of various promoter-bearing fragments to luciferase reporter genes showed that normal class 2 phasing of purF expression was correlated with promoter strength. No specific cis element that is separable from the promoter was responsible for determining phase. Very weak promoter activity of unstable phasing was mapped to a 50-bp segment. Inclusion of sequences that flank this minimal promoter either upstream or downstream increased the promoter strength and stabilized the phase in class 2, but neither segment was individually necessary. Because the data suggested a role for the overall promoter context rather than a specific "phase element," the authors proposed that DNA topology is important in the phase determination of circadian gene expression in S. elongatus. To test this hypothesis, they fused the well-characterized DNA topology-dependent Escherichia coli fis promoter to luciferase and showed that it acts as a class 2 promoter in S. elongatus.
Collapse
Affiliation(s)
- Hongtao Min
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
Recent studies shed light on the mechanisms governing circadian rhythms in cyanobacteria and highlight key differences between prokaryotic and eukaryotic clocks. Prokaryotic cyanobacteria express robust circadian (daily) rhythms under the control of a central clock. Recent studies shed light on the mechanisms governing circadian rhythms in cyanobacteria and highlight key differences between prokaryotic and eukaryotic clocks.
Collapse
|
31
|
Nakahira Y, Katayama M, Miyashita H, Kutsuna S, Iwasaki H, Oyama T, Kondo T. Global gene repression by KaiC as a master process of prokaryotic circadian system. Proc Natl Acad Sci U S A 2004; 101:881-5. [PMID: 14709675 PMCID: PMC321775 DOI: 10.1073/pnas.0307411100] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2003] [Indexed: 11/18/2022] Open
Abstract
A kaiABC clock gene cluster was previously identified from cyanobacterium Synechococcus elongatus PCC 7942, and the feedback regulation of kai genes was proposed as the core mechanism generating circadian oscillation. In this study, we confirmed that the Kai-based oscillator is the dominant circadian oscillator functioning in cyanobacteria. We probed the nature of this regulation and found that excess KaiC represses not only kaiBC but also the rhythmic components of all genes in the genome. This result strongly suggests that the KaiC protein primarily coordinates genomewide gene expression, including its own expression. We also found that a promoter derived from E. coli is feedback controlled by KaiC and restores the complete circadian rhythm in kaiBC-inactivated arrhythmic mutants, provided it can express kaiB and kaiC genes at an appropriate level. Unlike eukaryotic models, specific regulation of the kaiBC promoter is not essential for cyanobacterial circadian oscillations.
Collapse
Affiliation(s)
- Yoichi Nakahira
- Division of Biological Science, Graduate School of Science, Nagoya University, and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Carter ML, Smith AC, Kobayashi H, Purton S, Herrin DL. Structure, circadian regulation and bioinformatic analysis of the unique sigma factor gene in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2004; 82:339-49. [PMID: 16143845 DOI: 10.1007/s11120-004-4213-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Accepted: 07/19/2004] [Indexed: 05/04/2023]
Abstract
In higher plants, the transcription of plastid genes is mediated by at least two types of RNA polymerase (RNAP); a plastid-encoded bacterial RNAP in which promoter specificity is conferred by nuclear-encoded sigma factors, and a nuclear-encoded phage-like RNAP. Green algae, however, appear to possess only the bacterial enzyme. Since transcription of much, if not most, of the chloroplast genome in Chlamydomonas reinhardtii is regulated by the circadian clock and the nucleus, we sought to identify sigma factor genes that might be responsible for this regulation. We describe a nuclear gene (RPOD) that is predicted to encode an 80 kDa protein that, in addition to a predicted chloroplast transit peptide at the N-terminus, has the conserved motifs (2.1- 4.2) diagnostic of bacterial sigma-70 factors. We also identified two motifs not previously recognized for sigma factors, adjacent PEST sequences and a leucine zipper, both suggested to be involved in protein-protein interactions. PEST sequences were also found in approximately 40% of sigma factors examined, indicating they may be of general significance. Southern blot hybridization and BLAST searches of the genome and EST databases suggest that RPODmay be the only sigma factor gene in C. reinhardtii. The levels of RPODmRNA increased 2- 3-fold in the mid-to-late dark period of light-dark cycling cells, just prior to, or coincident with, the peak in chloroplast transcription. Also, the dark-period peak in RPOD mRNA persisted in cells shifted to continuous light or continuous dark for at least one cycle, indicating that RPODis under circadian clock control. These results suggest that regulation of RPODexpression contributes to the circadian clock's control of chloroplast transcription.
Collapse
Affiliation(s)
- Matthew L Carter
- Section Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A6700, Austin, TX, 78712, USA,
| | | | | | | | | |
Collapse
|
33
|
Mittag M. The function of circadian RNA-binding proteins and their cis-acting elements in microalgae. Chronobiol Int 2003; 20:529-41. [PMID: 12916711 DOI: 10.1081/cbi-120022411] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An endogenous clock regulates the temporal expression of genes/mRNAs that are involved in the circadian output pathway. In the bioluminescent dinoflagellate Gonyaulax polyedra circadian expression of the luciferin-binding protein (LBP) is controlled at the translational level. Thereby, a clock-controlled RNA-binding protein, called circadian controlled translational regulator (CCTR), interacts specifically with an UG-repeat, which is situated in the lbp 3' UTR. Its binding activity correlates negatively with the amount of LBP during a circadian cycle. In the green alga Chlamydomonas reinhardtii, a clock-controlled RNA-binding protein (CHLAMY 1) was identified, which represents an analog of the CCTR from the phylogenetically diverse alga G. polyedra. CHLAMY 1 binds specifically to the 3' UTRs of several mRNAs and recognizes them all via a common cis-acting element, composed of at least seven UG-repeats. The binding strength of CHLAMY 1 is strongest to mRNAs, whose products are key components of nitrogen metabolism resulting in arginine biosynthesis as well as of CO2 metabolism. Since temporal activities of processes involved in nitrogen metabolism have an opposite phase than CHLAMY 1 binding activity, the protein might repress the translation of the cognate mRNAs.
Collapse
Affiliation(s)
- Maria Mittag
- Institut für Allgemeine Botanik, Friedrich-Schiller--Universität-Jena, Jena, Germany.
| |
Collapse
|
34
|
Michael TP, McClung CR. Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. PLANT PHYSIOLOGY 2003; 132:629-39. [PMID: 12805593 PMCID: PMC167003 DOI: 10.1104/pp.021006] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2003] [Revised: 02/21/2003] [Accepted: 03/01/2003] [Indexed: 05/18/2023]
Abstract
The circadian clock synchronizes the internal biology of an organism with the environment and has been shown to be widespread among organisms. Microarray experiments have shown that the circadian clock regulates mRNA abundance of about 10% of the transcriptome in plants, invertebrates, and mammals. In contrast, the circadian clock regulates the transcription of the virtually all cyanobacterial genes. To determine the extent to which the circadian clock controls transcription in Arabidopsis, we used in vivo enhancer trapping. We found that 36% of our enhancer trap lines display circadian-regulated transcription, which is much higher than estimates of circadian regulation based on analysis of steady-state mRNA abundance. Individual lines identified by enhancer trapping exhibit peak transcription rates at circadian phases spanning the complete circadian cycle. Flanking genomic sequence was identified for 23 enhancer trap lines to identify clock-controlled genes (CCG-ETs). Promoter analysis of CCG-ETs failed to predict new circadian clock response elements (CCREs), although previously defined CCREs, the CCA1-binding site, and the evening element were identified. However, many CCGs lack either the CCA1-binding site or the evening element; therefore, the presence of these CCREs is insufficient to confer circadian regulation, and it is clear that additional elements play critical roles.
Collapse
Affiliation(s)
- Todd P Michael
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
35
|
Abstract
Chlamydomonas reinhardtii has been used as an experimental model organism for circadian rhythm research for more than 30 yr. Some of the physiological rhythms of this alga are well established, and several clock mutants have been isolated. The cloning of clock genes from these mutant strains by positional cloning is under way and should give new insights into the mechanism of the circadian clock. In a spectacular space experiment, the question of the existence of an endogenous clock vs. an exogenous mechanism has been studied in this organism. With the emergence of molecular analysis of circadian rhythms in plants in 1985, a circadian gene expression pattern of several nuclear and chloroplast genes was detected. Evidence is now accumulating that shows circadian control at the translational level. In addition, the gating of the cell cycle by the circadian clock has been analyzed. This review focuses on the different aspects of circadian rhythm research in C. reinhardtii over the past 30 yr. The suitability of Chlamydomonas as a model system in chronobiology research and the adaptive significance of the observed rhythms will be discussed.
Collapse
Affiliation(s)
- Ralf Werner
- University of Hamburg, Institute for General Botany and Botanical Garden, Department of Cell Biology, Germany.
| |
Collapse
|
36
|
Abstract
Circadian rhythms have been described in a variety of microalgae. In each group, some model organisms arose and most detailed studies have been done with them. They include the cyanobacterium ("blue-green alga") Synechococcus and eukaryotic microalgae Gonyaulax polyedra (Dinophyta), Chlamydomonas reinhardtii (Chlorophyta), and Euglena gracilis (Euglenophyta). This review focuses on recent approaches to depict molecular components of the circadian system and the mechanisms of regulation in these organisms. In Synechococcus, the identification of the kailocus, which represents a central part of its oscillatory system, is discussed, as well as diverse approaches based on a luminescent reporter gene, which is driven by a clock-controlled cyanobacterial promoter. In eukaryotic microalgae, the diversity of genes/proteins that are controlled by the circadian clock is described and the kind of regulation (transcriptional and translational control) is emphasized. The role and function of conserved clock-controlled RNA-binding proteins such as CCTR from Gonyaulaxor Chlamy 1 from Chlamydomonas are discussed.
Collapse
Affiliation(s)
- M Mittag
- Botanisches Institut, Ludwig-Maximilians-Universität-München, Germany
| |
Collapse
|
37
|
Abstract
Prokaryotic cyanobacteria express robust circadian (daily) rhythms under the control of a timing mechanism that is independent of the cell division cycle. This biological clock orchestrates global regulation of gene expression. Competition experiments demonstrate that fitness is enhanced when the circadian period is consonant with the period of the environmental cycle. Mutational analyses have identified three clock genes in the organism, one of which is related to DNA recombinases and helicases. We propose a new model for the core 'clockwork' that implicates rhythmic changes in the status of the chromosome that underly the rhythms of gene expression.
Collapse
Affiliation(s)
- T Mori
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
38
|
McClung CR. CIRCADIAN RHYTHMS IN PLANTS. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:139-162. [PMID: 11337395 DOI: 10.1146/annurev.arplant.52.1.139] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Circadian rhythms, endogenous rhythms with periods of approximately 24 h, are widespread in nature. Although plants have provided many examples of rhythmic outputs and our understanding of photoreceptors of circadian input pathways is well advanced, studies with plants have lagged in the identification of components of the central circadian oscillator. Nonetheless, genetic and molecular biological studies, primarily in Arabidopsis, have begun to identify the components of plant circadian systems at an accelerating pace. There also is accumulating evidence that plants and other organisms house multiple circadian clocks both in different tissues and, quite probably, within individual cells, providing unanticipated complexity in circadian systems.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755-3576; e-mail:
| |
Collapse
|
39
|
Kawazoe R, Hwang S, Herrin DL. Requirement for cytoplasmic protein synthesis during circadian peaks of transcription of chloroplast-encoded genes in Chlamydomonas. PLANT MOLECULAR BIOLOGY 2000; 44:699-709. [PMID: 11202433 DOI: 10.1023/a:1026519718992] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cycloheximide, an inhibitor of cytoplasmic translation, induced a rapid reduction of 70-80% in levels of mRNA for the chloroplast elongation factor Tu (tufA) in asynchronously growing Chlamydomonas. This effect was shown to be mainly transcriptional, and not restricted to tufA, as transcription of other chloroplast-encoded genes were cycloheximide-sensitive, although not all equally (psbA showed no more than 40% inhibition). Confirmatory evidence that the inhibition of chloroplast transcription was mainly due to blocking cytoplasmic translation was obtained with the cycloheximide-resistant mutant act1, and by using another translation inhibitor, anisomycin. In synchronously growing Chlamydomonas, chloroplast transcription is regulated by the circadian clock, with the daily peak occurring during the early light period. When cycloheximide was added during this period, transcription was inhibited, but not when it was added during the trough period (late light to early dark). Moreover, in synchronized cells switched to continuous light, the drug blocked the scheduled increase in tufA mRNA, but did not remove the pre-existing mRNA. These experiments define two functionally different types of chloroplast transcription in Chlamydomonas, basal (cycloheximide-insensitive) and clock-induced (cycloheximide-sensitive), and indicate that the relative contribution of each type to the overall transcription of a given gene are not identical for all genes. The results also provide evidence for nuclear regulation of chloroplast transcription, thereby obviating the need for an organellar clock, at least for these rhythms.
Collapse
Affiliation(s)
- R Kawazoe
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, 78712, USA
| | | | | |
Collapse
|