1
|
Porter JJ, Heil CS, Lueck JD. Therapeutic promise of engineered nonsense suppressor tRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1641. [PMID: 33567469 PMCID: PMC8244042 DOI: 10.1002/wrna.1641] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Nonsense mutations change an amino acid codon to a premature termination codon (PTC) generally through a single-nucleotide substitution. The generation of a PTC results in a defective truncated protein and often in severe forms of disease. Because of the exceedingly high prevalence of nonsense-associated diseases and a unifying mechanism, there has been a concerted effort to identify PTC therapeutics. Most clinical trials for PTC therapeutics have been conducted with small molecules that promote PTC read through and incorporation of a near-cognate amino acid. However, there is a need for PTC suppression agents that recode PTCs with the correct amino acid while being applicable to PTC mutations in many different genomic landscapes. With these characteristics, a single therapeutic will be able to treat several disease-causing PTCs. In this review, we will focus on the use of nonsense suppression technologies, in particular, suppressor tRNAs (sup-tRNAs), as possible therapeutics for correcting PTCs. Sup-tRNAs have many attractive qualities as possible therapeutic agents although there are knowledge gaps on their function in mammalian cells and technical hurdles that need to be overcome before their promise is realized. This article is categorized under: RNA Processing > tRNA Processing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Joseph J. Porter
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Christina S. Heil
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - John D. Lueck
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of NeurologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
2
|
Belinky F, Ganguly I, Poliakov E, Yurchenko V, Rogozin IB. Analysis of Stop Codons within Prokaryotic Protein-Coding Genes Suggests Frequent Readthrough Events. Int J Mol Sci 2021; 22:ijms22041876. [PMID: 33672790 PMCID: PMC7918605 DOI: 10.3390/ijms22041876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Nonsense mutations turn a coding (sense) codon into an in-frame stop codon that is assumed to result in a truncated protein product. Thus, nonsense substitutions are the hallmark of pseudogenes and are used to identify them. Here we show that in-frame stop codons within bacterial protein-coding genes are widespread. Their evolutionary conservation suggests that many of them are not pseudogenes, since they maintain dN/dS values (ratios of substitution rates at non-synonymous and synonymous sites) significantly lower than 1 (this is a signature of purifying selection in protein-coding regions). We also found that double substitutions in codons—where an intermediate step is a nonsense substitution—show a higher rate of evolution compared to null models, indicating that a stop codon was introduced and then changed back to sense via positive selection. This further supports the notion that nonsense substitutions in bacteria are relatively common and do not necessarily cause pseudogenization. In-frame stop codons may be an important mechanism of regulation: Such codons are likely to cause a substantial decrease of protein expression levels.
Collapse
Affiliation(s)
- Frida Belinky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
| | - Ishan Ganguly
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
| | - Eugenia Poliakov
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
- Correspondence: (V.Y.); (I.B.R.)
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
- Correspondence: (V.Y.); (I.B.R.)
| |
Collapse
|
3
|
Sagi D, Rak R, Gingold H, Adir I, Maayan G, Dahan O, Broday L, Pilpel Y, Rechavi O. Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes. PLoS Genet 2016; 12:e1006264. [PMID: 27560950 PMCID: PMC4999229 DOI: 10.1371/journal.pgen.1006264] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/27/2016] [Indexed: 11/18/2022] Open
Abstract
Codon usage bias affects protein translation because tRNAs that recognize synonymous codons differ in their abundance. Although the current dogma states that tRNA expression is exclusively regulated by intrinsic control elements (A- and B-box sequences), we revealed, using a reporter that monitors the levels of individual tRNA genes in Caenorhabditis elegans, that eight tryptophan tRNA genes, 100% identical in sequence, are expressed in different tissues and change their expression dynamically. Furthermore, the expression levels of the sup-7 tRNA gene at day 6 were found to predict the animal's lifespan. We discovered that the expression of tRNAs that reside within introns of protein-coding genes is affected by the host gene's promoter. Pairing between specific Pol II genes and the tRNAs that are contained in their introns is most likely adaptive, since a genome-wide analysis revealed that the presence of specific intronic tRNAs within specific orthologous genes is conserved across Caenorhabditis species.
Collapse
Affiliation(s)
- Dror Sagi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roni Rak
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gingold
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Idan Adir
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gadi Maayan
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orna Dahan
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Limor Broday
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Abstract
Genetic code expansion and reprogramming enable the site-specific incorporation of diverse designer amino acids into proteins produced in cells and animals. Recent advances are enhancing the efficiency of unnatural amino acid incorporation by creating and evolving orthogonal ribosomes and manipulating the genome. Increasing the number of distinct amino acids that can be site-specifically encoded has been facilitated by the evolution of orthogonal quadruplet decoding ribosomes and the discovery of mutually orthogonal synthetase/tRNA pairs. Rapid progress in moving genetic code expansion from bacteria to eukaryotic cells and animals (C. elegans and D. melanogaster) and the incorporation of useful unnatural amino acids has been aided by the development and application of the pyrrolysyl-transfer RNA (tRNA) synthetase/tRNA pair for unnatural amino acid incorporation. Combining chemoselective reactions with encoded amino acids has facilitated the installation of posttranslational modifications, as well as rapid derivatization with diverse fluorophores for imaging.
Collapse
Affiliation(s)
- Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 OQH, United Kingdom;
| |
Collapse
|
5
|
Koukuntla R, Ramsey WJ, Young WB, Link CJ. U6 promoter-enhanced GlnUAG suppressor tRNA has higher suppression efficacy and can be stably expressed in 293 cells. J Gene Med 2013; 15:93-101. [PMID: 23303531 DOI: 10.1002/jgm.2696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 11/17/2012] [Accepted: 01/02/2013] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Almost one-third of all human genetic diseases are the result of nonsense mutations that can result in truncated proteins. Nonsense suppressor tRNAs (NSTs) were proposed as valuable tools for gene therapy of genetic diseases caused by premature termination codons (PTCs). Although various strategies have been adapted aiming to increase NST expression and efficacy, low suppression efficacies of NSTs and toxicity associated with stable expression of suppressor tRNAs have hampered the development of NST-mediated gene therapy. METHODS We have employed the U6 promoter to enhance Gln-Amber suppressor tRNA (GlnUAG) expression and to increase PTC suppression in mammalian cells. In an attempt to study the toxic effects of NSTs, a stable 293 cell line constitutively expressing a U6 promoter-enhanced GlnUAG tRNA was established. To examine whether any proteomic changes occurred in cells that constitutively express suppressor tRNA, whole cell proteins from cells with and without any suppressor tRNA expression were analyzed. RESULTS The data obtained suggest that U6 promoter-enhanced GlnUAG tRNAs have higher suppression efficacies than multimers of the same suppressor tRNA without a U6 promoter. Proteomic analysis of cells constitutively expressing the GlnUAG suppressor tRNA indicates that stable expression of NSTs may not lead to significant read through of normal cellular proteins. CONCLUSIONS Because most tRNAs have cell-specific differential expression, this technique will enable the expression of different kinds of suppressor tRNAs in various cell types at high, functionally relevant levels. The techniques developed in the present study may contribute to the further development of suppressor tRNA-mediated gene therapy.
Collapse
Affiliation(s)
- Ramesh Koukuntla
- Genetics, Cellular and Developmental Biology, Iowa State University, Ames, IA, USA
| | | | | | | |
Collapse
|
6
|
Abstract
Genetic code expansion, for the site-specific incorporation of unnatural amino acids into proteins, is currently limited to cultured cells and unicellular organisms. Here we expand the genetic code of a multicellular animal, the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Sebastian Greiss
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, U.K
| | - Jason W. Chin
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, U.K
| |
Collapse
|
7
|
Li T, He H, Wang Y, Zheng H, Skogerbø G, Chen R. In vivo analysis of Caenorhabditis elegans noncoding RNA promoter motifs. BMC Mol Biol 2008; 9:71. [PMID: 18680611 PMCID: PMC2527325 DOI: 10.1186/1471-2199-9-71] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 08/05/2008] [Indexed: 03/09/2023] Open
Abstract
Background Noncoding RNAs (ncRNAs) play important roles in a variety of cellular processes. Characterizing the transcriptional activity of ncRNA promoters is therefore a critical step toward understanding the complex cellular roles of ncRNAs. Results Here we present an in vivo transcriptional analysis of three C. elegans ncRNA upstream motifs (UM1-3). Transcriptional activity of all three motifs has been demonstrated, and mutational analysis revealed differential contributions of different parts of each motif. We showed that upstream motif 1 (UM1) can drive the expression of green fluorescent protein (GFP), and utilized this for detailed analysis of temporal and spatial expression patterns of 5 SL2 RNAs. Upstream motifs 2 and 3 do not drive GFP expression, and termination at consecutive T runs suggests transcription by RNA polymerase III. The UM2 sequence resembles the tRNA promoter, and is actually embedded within its own short-lived, primary transcript. This is a structure which is also found at a few plant and yeast loci, and may indicate an evolutionarily very old dicistronic transcription pattern in which a tRNA serves as a promoter for an adjacent snoRNA. Conclusion The study has demonstrated that the three upstream motifs UM1-3 have promoter activity. The UM1 sequence can drive expression of GFP, which allows for the use of UM1::GFP fusion constructs to study temporal-spatial expression patterns of UM1 ncRNA loci. The UM1 loci appear to act in concert with other upstream sequences, whereas the transcriptional activities of the UM2 and UM3 are confined to the motifs themselves.
Collapse
Affiliation(s)
- Tiantian Li
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences Beijing 100101, PR China.
| | | | | | | | | | | |
Collapse
|
8
|
Branicky R, Nguyen PAT, Hekimi S. Uncoupling the pleiotropic phenotypes of clk-1 with tRNA missense suppressors in Caenorhabditis elegans. Mol Cell Biol 2006; 26:3976-85. [PMID: 16648490 PMCID: PMC1488993 DOI: 10.1128/mcb.26.10.3976-3985.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
clk-1 encodes a demethoxyubiquinone (DMQ) hydroxylase that is necessary for ubiquinone biosynthesis. When Caenorhabditis elegans clk-1 mutants are grown on bacteria that synthesize ubiquinone (UQ), they are viable but have a pleiotropic phenotype that includes slowed development, behaviors, and aging. However, when grown on UQ-deficient bacteria, the mutants arrest development transiently before growing up to become sterile adults. We identified nine suppressors of the missense mutation clk-1(e2519), which harbors a Glu-to-Lys substitution. All suppress the mutant phenotypes on both UQ-replete and UQ-deficient bacteria. However, each mutant suppresses a different subset of phenotypes, indicating that most phenotypes can be uncoupled from each other. In addition, all suppressors restore the ability to synthesize exceedingly small amounts of UQ, although they still accumulate the precursor DMQ, suggesting that the presence of DMQ is not responsible for the Clk-1 phenotypes. We cloned six of the suppressors, and all encode tRNA(Glu) genes whose anticodons are altered to read the substituted Lys codon of clk-1(e2519). To our knowledge, these suppressors represent the first missense suppressors identified in any metazoan. The pattern of suppression we observe suggests that the individual members of the tRNA(Glu) family are expressed in different tissues and at different levels.
Collapse
Affiliation(s)
- Robyn Branicky
- Department of Biology, McGill University, 1205 Ave. Docteur Penfield, Montreal, Quebec, Canada H3A 1B1
| | | | | |
Collapse
|
9
|
Martin MP, Gerlach VL, Brow DA. A novel upstream RNA polymerase III promoter element becomes essential when the chromatin structure of the yeast U6 RNA gene is altered. Mol Cell Biol 2001; 21:6429-39. [PMID: 11533232 PMCID: PMC99790 DOI: 10.1128/mcb.21.19.6429-6439.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae U6 RNA gene, SNR6, possesses upstream sequences that allow productive binding in vitro of the RNA polymerase III (Pol III) transcription initiation factor IIIB (TFIIIB) in the absence of TFIIIC or other assembly factors. TFIIIC-independent transcription of SNR6 in vitro is highly sensitive to point mutations in a consensus TATA box at position -30. In contrast, the TATA box is dispensable for SNR6 transcription in vivo, apparently because TFIIIC bound to the intragenic A block and downstream B block can recruit TFIIIB via protein-protein interactions. A mutant allele of SNR6 with decreased spacing between the A and B blocks, snr6-Delta42, exhibits increased dependence on the upstream sequences in vivo. Unexpectedly, we find that in vivo expression of snr6-Delta42 is much more sensitive to mutations in a (dT-dA)(7) tract between the TATA box and transcription start site than to mutations in the TATA box itself. Inversion of single base pairs in the center of the dT-dA tract nearly abolishes transcription of snr6-Delta42, yet inversion of all 7 base pairs has little effect on expression, indicating that the dA-dT tract is relatively orientation independent. Although it is within the TFIIIB footprint, point mutations in the dT-dA tract do not inhibit TFIIIB binding or TFIIIC-independent transcription of SNR6 in vitro. In the absence of the chromatin architectural protein Nhp6, dT-dA tract mutations are lethal even when A-to-B block spacing is wild type. We conclude that the (dT-dA)(7) tract and Nhp6 cooperate to direct productive transcription complex assembly on SNR6 in vivo.
Collapse
Affiliation(s)
- M P Martin
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin 53706-1532, USA
| | | | | |
Collapse
|
10
|
Affiliation(s)
- E P Geiduschek
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
11
|
Yukawa Y, Sugita M, Choisne N, Small I, Sugiura M. The TATA motif, the CAA motif and the poly(T) transcription termination motif are all important for transcription re-initiation on plant tRNA genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 22:439-47. [PMID: 10849359 DOI: 10.1046/j.1365-313x.2000.00752.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effect of alteration of 5' and 3' flanking sequences on the transcription of plant tRNA genes was analysed using an RNA polymerase III-dependent in vitro transcription system derived from nuclei of cultured tobacco cells. A TATA-like sequence and the CAA motif frequently observed upstream of plant tRNA genes, and the poly(T) stretch usually present downstream, were shown to be necessary for efficient re-initiation of transcription. The CAA motif was shown to be a transcription initiation site. Introduction of the CAA and TATA-like motifs into a gene naturally lacking them greatly enhanced transcription by promoting efficient re-initiation.
Collapse
Affiliation(s)
- Y Yukawa
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
12
|
Nelson DW, Linning RM, Davison PJ, Honda BM. 5'-flanking sequences required for efficient transcription in vitro of 5S RNA genes, in the related nematodes Caenorhabditis elegans and Caenorhabditis briggsae. Gene 1998; 218:9-16. [PMID: 9751797 DOI: 10.1016/s0378-1119(98)00392-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the nematode C. elegans, we had previously observed apparent species specificity in 5S RNA transcription. We have now undertaken a further study of 5S RNA gene transcription in this organism and in the related nematode, C. briggsae; the latter was chosen because it might show evolutionarily conserved, functionally important features. Deletion mutagenesis and transcription in vitro, followed by more precise replacements of short blocks of 5' sequence, show that a short, TATA-like sequence at -25 is essential for efficient transcription in vitro of the 1.0-kb C. elegans 5S DNA repeat, and of both C. briggsae 0.7- and 1.0-kb 5S DNA repeats. Internal sequences within the 5S RNA gene appear to be required and can compete for limiting transcription components, whereas 5' flanking sequences do not. These observations suggest that the process of 5S RNA transcription is similar in these nematodes and other higher eukaryotes.
Collapse
Affiliation(s)
- D W Nelson
- IMBB and Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | | | |
Collapse
|