1
|
Strecker J, Stinus S, Caballero MP, Szilard RK, Chang M, Durocher D. A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres. eLife 2017; 6:23783. [PMID: 28826474 PMCID: PMC5595431 DOI: 10.7554/elife.23783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) and short telomeres are structurally similar, yet they have diametrically opposed fates. Cells must repair DSBs while blocking the action of telomerase on these ends. Short telomeres must avoid recognition by the DNA damage response while promoting telomerase recruitment. In Saccharomyces cerevisiae, the Pif1 helicase, a telomerase inhibitor, lies at the interface of these end-fate decisions. Using Pif1 as a sensor, we uncover a transition point in which 34 bp of telomeric (TG1-3)n repeat sequence renders a DNA end insensitive to Pif1 action, thereby enabling extension by telomerase. A similar transition point exists at natural chromosome ends, where telomeres shorter than ~40 bp are inefficiently extended by telomerase. This phenomenon is not due to known Pif1 modifications and we instead propose that Cdc13 renders TG34+ ends insensitive to Pif1 action. We contend that the observed threshold of Pif1 activity defines a dividing line between DSBs and telomeres.
Collapse
Affiliation(s)
- Jonathan Strecker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mariana Pliego Caballero
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Rachel K Szilard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Endogenous Hot Spots of De Novo Telomere Addition in the Yeast Genome Contain Proximal Enhancers That Bind Cdc13. Mol Cell Biol 2016; 36:1750-63. [PMID: 27044869 DOI: 10.1128/mcb.00095-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022] Open
Abstract
DNA double-strand breaks (DSBs) pose a threat to genome stability and are repaired through multiple mechanisms. Rarely, telomerase, the enzyme that maintains telomeres, acts upon a DSB in a mutagenic process termed telomere healing. The probability of telomere addition is increased at specific genomic sequences termed sites of repair-associated telomere addition (SiRTAs). By monitoring repair of an induced DSB, we show that SiRTAs on chromosomes V and IX share a bipartite structure in which a core sequence (Core) is directly targeted by telomerase, while a proximal sequence (Stim) enhances the probability of de novo telomere formation. The Stim and Core sequences are sufficient to confer a high frequency of telomere addition to an ectopic site. Cdc13, a single-stranded DNA binding protein that recruits telomerase to endogenous telomeres, is known to stimulate de novo telomere addition when artificially recruited to an induced DSB. Here we show that the ability of the Stim sequence to enhance de novo telomere addition correlates with its ability to bind Cdc13, indicating that natural sites at which telomere addition occurs at high frequency require binding by Cdc13 to a sequence 20 to 100 bp internal from the site at which telomerase acts to initiate de novo telomere addition.
Collapse
|
3
|
Goto GH, Zencir S, Hirano Y, Ogi H, Ivessa A, Sugimoto K. Binding of Multiple Rap1 Proteins Stimulates Chromosome Breakage Induction during DNA Replication. PLoS Genet 2015; 11:e1005283. [PMID: 26263073 PMCID: PMC4532487 DOI: 10.1371/journal.pgen.1005283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 05/14/2015] [Indexed: 02/07/2023] Open
Abstract
Telomeres, the ends of linear eukaryotic chromosomes, have a specialized chromatin structure that provides a stable chromosomal terminus. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomere length. Here we show that binding of multiple Rap1 proteins stimulates DNA double-stranded break (DSB) induction at both telomeric and non-telomeric regions. Consistent with the role of DSB induction, Rap1 stimulates nearby recombination events in a dosage-dependent manner. Rap1 recruits Rif1 and Rif2 to telomeres, but neither Rif1 nor Rif2 is required for DSB induction. Rap1-mediated DSB induction involves replication fork progression but inactivation of checkpoint kinase Mec1 does not affect DSB induction. Rap1 tethering shortens artificially elongated telomeres in parallel with telomerase inhibition, and this telomere shortening does not require homologous recombination. These results suggest that Rap1 contributes to telomere homeostasis by promoting chromosome breakage. Telomere length is maintained primarily through equilibrium between telomerase-mediated lengthening and the loss of telomeric sequence through the end-replication problem. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomerase recruitment in a dosage-dependent manner. In this paper we provide evidence suggesting an alternative Rap1-dependent telomere shortening mechanism in which binding of multiple Rap1 proteins mediates DNA break induction during DNA replication. This process does not involve recombination events; therefore, it is distinct from loop-mediated telomere trimming.
Collapse
Affiliation(s)
- Greicy H. Goto
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Sevil Zencir
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Yukinori Hirano
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Hiroo Ogi
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Katsunori Sugimoto
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
4
|
Hass EP, Zappulla DC. The Ku subunit of telomerase binds Sir4 to recruit telomerase to lengthen telomeres in S. cerevisiae. eLife 2015. [PMID: 26218225 PMCID: PMC4547093 DOI: 10.7554/elife.07750] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Saccharomyces cerevisiae and in humans, the telomerase RNA subunit is bound by Ku, a ring-shaped protein heterodimer best known for its function in DNA repair. Ku binding to yeast telomerase RNA promotes telomere lengthening and telomerase recruitment to telomeres, but how this is achieved remains unknown. Using telomere-length analysis and chromatin immunoprecipitation, we show that Sir4 – a previously identified Ku-binding protein that is a component of telomeric silent chromatin – is required for Ku-mediated telomere lengthening and telomerase recruitment. We also find that specifically tethering Sir4 directly to Ku-binding-defective telomerase RNA restores otherwise-shortened telomeres to wild-type length. These findings suggest that Sir4 is the telomere-bound target of Ku-mediated telomerase recruitment and provide one mechanism for how the Sir4-competing Rif1 and Rif2 proteins negatively regulate telomere length in yeast. DOI:http://dx.doi.org/10.7554/eLife.07750.001 Inside a cell's nucleus, DNA is packaged into structures called chromosomes. The ends of every chromosome are capped by repeating sequences of DNA known as telomeres, which protect the chromosomes from damage. Every time a cell divides, the telomeres shorten. If telomere length falls below a critical level, the cell can die or enter a state in which it can no longer divide. During cell division, an enzyme called telomerase normally restores telomeres to their original length. Telomerase is made up of several proteins and an RNA molecule. In yeast and humans, a protein called Ku is one part of the telomerase enzyme. Ku binds to the RNA subunit of telomerase and helps the enzyme find and interact with the telomeres. Previous research has shown that Ku is unable to work alone to recruit telomerase to the chromosome. A protein called Sir4 binds to telomeres and cells lacking it have short telomeres, but the reason behind this was not known. Hass and Zappulla confirmed previous reports that Ku binds to Sir4 using a biochemical approach. Additional experiments provided genetic evidence that this binding interaction is important for telomerase to lengthen telomeres appropriately. Cells in which the RNA subunit of telomerase is unable to bind effectively to Ku have short telomeres. Hass and Zappulla directly tethered Sir4 to this defective RNA and found this restored the shortened telomeres to a normal length, indicating that Sir4 normally binds Ku to recruit telomerase. Discovering this mode of recruitment also helps to explain how two other telomeric proteins (Rif1 and 2) limit telomere lengthening; they compete with Ku-Sir4 recruitment to form a length-regulating system. Taken together, Hass and Zappulla's results provide strong evidence that Sir4 cooperates with Ku to control the lengthening of chromosome ends. Future research will hopefully reveal the precise space and time requirements for this telomerase-controlling system in yeast. Additionally, because Ku has been reported to be a subunit of human telomerase, future studies could also explore whether human cells use a similar strategy. DOI:http://dx.doi.org/10.7554/eLife.07750.002
Collapse
Affiliation(s)
- Evan P Hass
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
5
|
Lu J, Vallabhaneni H, Yin J, Liu Y. Deletion of the major peroxiredoxin Tsa1 alters telomere length homeostasis. Aging Cell 2013; 12:635-44. [PMID: 23590194 DOI: 10.1111/acel.12085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2013] [Indexed: 11/28/2022] Open
Abstract
Reactive oxygen species (ROS) are proposed to play a major role in telomere length alterations during aging. The mechanisms by which ROS disrupt telomeres remain unclear. In Saccharomyces cerevisiae, telomere DNA consists of TG(1-3) repeats, which are maintained primarily by telomerase. Telomere length maintenance can be modulated by the expression level of telomerase subunits and telomerase activity. Additionally, telomerase-mediated telomere repeat addition is negatively modulated by the levels of telomere-bound Rap1-Rif1-Rif2 protein complex. Using a yeast strain defective in the major peroxiredoxin Tsa1 that is involved in ROS neutralization, we have investigated the effect of defective ROS detoxification on telomere DNA, telomerase, telomere-binding proteins, and telomere length. Surprisingly, the tsa1 mutant does not show significant increase in steady-state levels of oxidative DNA lesions at telomeres. The tsa1 mutant displays abnormal telomere lengthening, and reduction in oxidative exposure alleviates this phenotype. The telomere lengthening in the tsa1 cells was abolished by disruption of Est2, subtelomeric DNA, Rap1 C-terminus, or Rif2, but not by Rif1 deletion. Although telomerase expression and activity are not altered, telomere-bound Est2 is increased, while telomere-bound Rap1 is reduced in the tsa1 mutant. We propose that defective ROS scavenging can interfere with pathways that are critical in controlling telomere length homeostasis.
Collapse
Affiliation(s)
- Jian Lu
- Laboratory of Molecular Gerontology National Institute on Aging National Institutes of Health 251 Bayview DriveBaltimore MD 21224‐6825USA
| | - Haritha Vallabhaneni
- Laboratory of Molecular Gerontology National Institute on Aging National Institutes of Health 251 Bayview DriveBaltimore MD 21224‐6825USA
| | - Jinhu Yin
- Laboratory of Molecular Gerontology National Institute on Aging National Institutes of Health 251 Bayview DriveBaltimore MD 21224‐6825USA
| | - Yie Liu
- Laboratory of Molecular Gerontology National Institute on Aging National Institutes of Health 251 Bayview DriveBaltimore MD 21224‐6825USA
| |
Collapse
|
6
|
Bianchi A, Shore D. How telomerase reaches its end: mechanism of telomerase regulation by the telomeric complex. Mol Cell 2008; 31:153-65. [PMID: 18657499 DOI: 10.1016/j.molcel.2008.06.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Indexed: 10/21/2022]
Abstract
The telomerase enzyme, which synthesizes telomeric DNA repeats, is regulated in cis at individual chromosome ends by the telomeric protein/DNA complex in a manner dependent on telomere repeat-array length. A dynamic interplay between telomerase-inhibiting factors bound at duplex DNA repeats and telomerase-promoting ones bound at single-stranded terminal DNA overhangs appears to modulate telomerase activity and to be directly related to the transient deprotection of telomeres. We discuss recent advances on the mechanism of telomerase regulation at chromosome ends in both yeast and mammalian systems.
Collapse
Affiliation(s)
- Alessandro Bianchi
- Department of Molecular Biology and NCCR Frontiers in Genetics Program, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Geneva, Switzerland
| | | |
Collapse
|
7
|
Harrington L. Making the most of a little: dosage effects in eukaryotic telomere length maintenance. Chromosome Res 2005; 13:493-504. [PMID: 16132814 DOI: 10.1007/s10577-005-0994-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Telomerase contains at least two essential components: the telomerase reverse transcriptase (TERT), and the telomerase RNA, which provides the template for the reverse transcription of new telomere DNA by TERT. Loss of telomerase enzymatic function leads to a progressive attrition of telomeric sequence over time, eventually resulting in the disappearance of detectable telomeric DNA and the emergence of chromosome end-to-end fusions, followed by growth arrest or cell death. Recently, the consequences of partial loss of telomerase function have revealed interesting dosage-dependent effects on telomere length and stability. In both mice and humans, hemizygosity for the telomerase RNA or TERT leads to an inability to maintain telomeres; in humans, this insufficiency can lead to diseases such as aplastic anaemia or dyskeratosis congenita. In the budding yeast S. cerevisiae, compound heterozygosity in different telomerase components also results in shortened telomeres. Thus, partial loss of telomerase function can result in a latent but measurable compromise in telomere length. These dosage-dependent effects illuminate a mechanism by which subtle heritable defects in genome integrity can eventually become pernicious.
Collapse
Affiliation(s)
- Lea Harrington
- Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, 620 University Avenue, Suite 706, Toronto, Ontario M5G 2C1, Canada.
| |
Collapse
|
8
|
Greenberg RA, Rudolph KL. Telomere structural dynamics in genome integrity control and carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:311-341. [PMID: 18727506 DOI: 10.1007/1-4020-3764-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Roger A Greenberg
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massasuchsetts 02115, USA
| | | |
Collapse
|
9
|
Abstract
Telomeres are essential for genome stability in all eukaryotes. Changes in telomere functions and the associated chromosomal abnormalities have been implicated in human aging and cancer. Telomeres are composed of repetitive sequences that can be maintained by telomerase, a complex containing a reverse transcriptase (hTERT in humans and Est2 in budding yeast), a template RNA (hTERC in humans and Tlc1 in yeast), and accessory factors (the Est1 proteins and dyskerin in humans and Est1, Est3, and Sm proteins in budding yeast). Telomerase is regulated in cis by proteins that bind to telomeric DNA. This regulation can take place at the telomere terminus, involving single-stranded DNA-binding proteins (POT1 in humans and Cdc13 in budding yeast), which have been proposed to contribute to the recruitment of telomerase and may also regulate the extent or frequency of elongation. In addition, proteins that bind along the length of the telomere (TRF1/TIN2/tankyrase in humans and Rap1/Rif1/Rif2 in budding yeast) are part of a negative feedback loop that regulates telomere length. Here we discuss the details of telomerase and its regulation by the telomere.
Collapse
|
10
|
Vega LR, Mateyak MK, Zakian VA. Getting to the end: telomerase access in yeast and humans. Nat Rev Mol Cell Biol 2004; 4:948-59. [PMID: 14685173 DOI: 10.1038/nrm1256] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Leticia R Vega
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
11
|
Abstract
The repressor activator protein 1 (RAP1) has many important functions in Saccharomyces cerevisiae. At the chromosome ends, it is a negative regulator of telomere length. Here, we show that Saccharomyces castellii/Saccharomyces dairensis telomeric sequences inserted into a S.cerevisiae telomere are counted as part of the telomere, consistent with the presence of high-affinity Rap1p binding sites within these sequences. We show that S.castellii Rap1p (scasRap1p) can regulate telomere length in a S.cerevisiae strain, albeit less stringently. Cloning of the S.dairensis RAP1 homologue (sdaiRAP1) revealed that it encodes the largest RAP1 protein identified to date. Despite its large size, binding analyses of the recombinant sdaiRap1p revealed that the protein binds with the same spacing and with similar affinity to yeast telomeric sequences, as the scer- and scasRAP1 proteins. According to the Rap1p counting model for telomere length regulation, a low density of Rap1p binding sites in a telomere would result in a longer telomere in S.cerevisiae. We have compared the lengths of two individual S.dairensis telomeres and find that their lengths are not regulated to give the same number of high-affinity binding sites. This may be due to other factors than Rap1p having influence on the telomere length regulation.
Collapse
Affiliation(s)
- Johan Wahlin
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, S-22362 Lund, Sweden
| | | | | |
Collapse
|
12
|
Abstract
Arthur Kornberg "never met a dull enzyme" (For the Love of Enzymes: The Odyssey of a Biochemist, Harvard University Press, 1989) and telomerase is no exception. Telomerase is a remarkable polymerase that uses an internal RNA template to reverse-transcribe telomere DNA, one nucleotide at a time, onto telomeric, G-rich single-stranded DNA. In the 17 years since its discovery, the characterization of telomerase enzyme components has uncovered a highly conserved family of telomerase reverse transcriptases that, together with the telomerase RNA, appear to comprise the enzymatic core of telomerase. While not as comprehensively understood as yet, some telomerase-associated proteins also serve crucial roles in telomerase function in vivo, such as telomerase ribonudeoprotein (RNP) assembly, recruitment to the telomere, and the coordination of DNA replication at the telomere. A selected overview of the biochemical properties of this unique enzyme, in vitro and in vivo, will be presented.
Collapse
|
13
|
Brevet V, Berthiau AS, Civitelli L, Donini P, Schramke V, Géli V, Ascenzioni F, Gilson E. The number of vertebrate repeats can be regulated at yeast telomeres by Rap1-independent mechanisms. EMBO J 2003; 22:1697-706. [PMID: 12660175 PMCID: PMC152899 DOI: 10.1093/emboj/cdg155] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The number of telomeric DNA repeats at chromosome ends is maintained around a mean value by a dynamic balance between elongation and shortening. In particular, proteins binding along the duplex part of telomeric DNA set the number of repeats by progressively limiting telomere growth. The paradigm of this counting mechanism is the Rap1 protein in Saccharomyces cerevisiae. We demonstrate here that a Rap1-independent mechanism regulates the number of yeast telomeric repeats (TG(1-3)) and of vertebrate repeats (T(2)AG(3)) when TEL1, a yeast ortholog of the human gene encoding the ATM kinase, is inactivated. In addition, we show that a T(2)AG(3)-only telomere can be formed and maintained in humanized yeast cells carrying a template mutation of the gene encoding the telomerase RNA, which leads to the synthesis of vertebrate instead of yeast repeats. Genetic and biochemical evidences indicate that this telomere is regulated in a Rap1-independent manner, both in TEL1 and in tel1Delta humanized yeast cells. Altogether, these findings shed light on multiple repeat-counting mechanisms, which may share critical features between lower and higher eukaryotes.
Collapse
Affiliation(s)
- Vanessa Brevet
- Laboratoire de Biologie Moléculaire de la Cellule, UMR5665, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Gunge N, Takata H, Matsuura A, Fukuda K. Progressive Rearrangement of Telomeric Sequences Added to Both the ITR Ends of the Yeast Linear pGKL Plasmid. Biol Proced Online 2003; 5:29-42. [PMID: 12734558 PMCID: PMC150389 DOI: 10.1251/bpo44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 12/06/2002] [Accepted: 01/15/2003] [Indexed: 11/23/2022] Open
Abstract
Relocation into the nucleus of the yeast cytoplasmic linear plasmids was studied using a monitor plasmid pCLU1. In Saccharomyces cerevisiae, the nuclearly-relocated pCLU1 replicated in a linear form (termed pTLU-type plasmid) which carried the host telomeric repeats TG(1-3) of 300-350 bp at both ends. The telomere sequences mainly consisted of a major motif TGTGTGGGTGTGG which was complementary to part of the RNA template of yeast telomerase and were directly added to the very end of the pCLU1-terminal element ITR (inverted terminal repeat), suggesting that the ITR end played a role as a substrate of telomerase. The telomere sequences varied among isolated pTLU-type plasmids, but the TG(1-3) organization was symmetrically identical on both ends of any one plasmid. During cell growth under non-selective condition, the telomeric repeat sequences were progressively rearranged on one side, but not on the opposite side of pTLU plasmid ends. This indicates that the mode of telomeric DNA replication or repair differed between both ends. Clonal analysis showed that the intense rearrangement of telomeric DNA was closely associated with extreme instability of pTLU plasmids.
Collapse
Affiliation(s)
- Norio Gunge
- Molecular Genetics, Applied Microbial Technology, Sojo University. Ikeda 4-22-1, Kumamoto, 860-0082. Japan. Phone: 096-326-3111 Fax: 096-323-1330
| | - Hideki Takata
- Department of Geriatric Research, National Institute for Longevity Sciences. Gengo 36-3, Morioka, Obu, 474-8522. Japan
| | - Akira Matsuura
- Department of Geriatric Research, National Institute for Longevity Sciences. Gengo 36-3, Morioka, Obu, 474-8522. Japan
| | - Kohsai Fukuda
- Molecular Genetics, Applied Microbial Technology, Sojo University. Ikeda 4-22-1, Kumamoto, 860-0082. Japan. Phone: 096-326-3111 Fax: 096-323-1330
| |
Collapse
|
15
|
Liu Y, Kha H, Ungrin M, Robinson MO, Harrington L. Preferential maintenance of critically short telomeres in mammalian cells heterozygous for mTert. Proc Natl Acad Sci U S A 2002; 99:3597-602. [PMID: 11904422 PMCID: PMC122569 DOI: 10.1073/pnas.062549199] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Prolonged growth of murine embryonic stem (ES) cells lacking the telomerase reverse transcriptase, mTert, results in a loss of telomere DNA and an increased incidence of end-to-end fusions and aneuploidy. Furthermore, loss of only one copy of mTert also results in telomere shortening intermediate between wild-type (wt) and mTert-null ES cells [Liu, Y., Snow, B. E., Hande, M. P., Yeung, D., Erdmann, N. J., Wakeham, A., Itie, A., Siderovski, D. P., Lansdorp, P. M., Robinson, M. O. & Harrington, L. (2000) Curr. Biol. 10, 1459-1462]. Unexpectedly, although average telomere length in mTert(+/-) ES cells declined to a similar level as mTert-null ES cells, mTert(+/-) ES cell lines retained a minimal telomeric DNA signal at all chromosome ends. Consequently, no end-to-end fusions and genome instability were observed in the latest passages of mTert(+/-) ES cell lines. These data uncover a functional distinction between the dosage-dependent function of telomerase in average telomere-length maintenance and the selective maintenance of critically short telomeres in cells heterozygous for mTert. In normal and tumor cells, we suggest that telomerase activity insufficient to maintain a given average telomere length may, nonetheless, provide a protective advantage from end-to-end fusion and genome instability.
Collapse
Affiliation(s)
- Yie Liu
- Ontario Cancer Institute/Amgen Research Institute, Department of Medical Biophysics, University of Toronto, 620 University Avenue, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
16
|
Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH, Miller P, Gerstein M, Roeder GS, Snyder M. Subcellular localization of the yeast proteome. Genes Dev 2002; 16:707-19. [PMID: 11914276 PMCID: PMC155358 DOI: 10.1101/gad.970902] [Citation(s) in RCA: 558] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein localization data are a valuable information resource helpful in elucidating eukaryotic protein function. Here, we report the first proteome-scale analysis of protein localization within any eukaryote. Using directed topoisomerase I-mediated cloning strategies and genome-wide transposon mutagenesis, we have epitope-tagged 60% of the Saccharomyces cerevisiae proteome. By high-throughput immunolocalization of tagged gene products, we have determined the subcellular localization of 2744 yeast proteins. Extrapolating these data through a computational algorithm employing Bayesian formalism, we define the yeast localizome (the subcellular distribution of all 6100 yeast proteins). We estimate the yeast proteome to encompass approximately 5100 soluble proteins and >1000 transmembrane proteins. Our results indicate that 47% of yeast proteins are cytoplasmic, 13% mitochondrial, 13% exocytic (including proteins of the endoplasmic reticulum and secretory vesicles), and 27% nuclear/nucleolar. A subset of nuclear proteins was further analyzed by immunolocalization using surface-spread preparations of meiotic chromosomes. Of these proteins, 38% were found associated with chromosomal DNA. As determined from phenotypic analyses of nuclear proteins, 34% are essential for spore viability--a percentage nearly twice as great as that observed for the proteome as a whole. In total, this study presents experimentally derived localization data for 955 proteins of previously unknown function: nearly half of all functionally uncharacterized proteins in yeast. To facilitate access to these data, we provide a searchable database featuring 2900 fluorescent micrographs at http://ygac.med.yale.edu.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Grossi S, Bianchi A, Damay P, Shore D. Telomere formation by rap1p binding site arrays reveals end-specific length regulation requirements and active telomeric recombination. Mol Cell Biol 2001; 21:8117-28. [PMID: 11689701 PMCID: PMC99977 DOI: 10.1128/mcb.21.23.8117-8128.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rap1p, the major telomere repeat binding protein in yeast, has been implicated in both de novo telomere formation and telomere length regulation. To characterize the role of Rap1p in these processes in more detail, we studied the generation of telomeres in vivo from linear DNA substrates containing defined arrays of Rap1p binding sites. Consistent with previous work, our results indicate that synthetic Rap1p binding sites within the internal half of a telomeric array are recognized as an integral part of the telomere complex in an orientation-independent manner that is largely insensitive to the precise spacing between adjacent sites. By extending the lengths of these constructs, we found that several different Rap1p site arrays could never be found at the very distal end of a telomere, even when correctly oriented. Instead, these synthetic arrays were always followed by a short ( approximately 100-bp) "cap" of genuine TG repeat sequence, indicating a remarkably strict sequence requirement for an end-specific function(s) of the telomere. Despite this fact, even misoriented Rap1p site arrays promote telomere formation when they are placed at the distal end of a telomere-healing substrate, provided that at least a single correctly oriented site is present within the array. Surprisingly, these heterogeneous arrays of Rap1p binding sites generate telomeres through a RAD52-dependent fusion resolution reaction that results in an inversion of the original array. Our results provide new insights into the nature of telomere end capping and reveal one way by which recombination can resolve a defect in this process.
Collapse
Affiliation(s)
- S Grossi
- Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
18
|
Ray A, Runge KW. Yeast telomerase appears to frequently copy the entire template in vivo. Nucleic Acids Res 2001; 29:2382-94. [PMID: 11376157 PMCID: PMC55706 DOI: 10.1093/nar/29.11.2382] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Telomeres derived from the same formation event in wild type strains of Saccharomyces cerevisiae possess the same, precise TG(1-3) sequence for the most internal approximately 100 bp of the 250-350 bp TG(1-3) repeats. The conservation of this internal domain is thought to reflect the fact that telomere lengthening and shortening, and thus alteration of the precise TG(1-3) sequence, is confined to the terminal region of the telomere. The internal domains of telomeres from yku70 and tel1 mutants, whose entire telomeres are only approximately 100 bp, were examined by analyzing 5.1 kb of cloned TG(1-3) sequences from telomeres formed during transformation of wild type, yku70 and tel1 cells. The internal domains were 97-137 bp in wild type cells, 27-36 bp in yku70 cells and 7-9 bp in tel1 cells. These data suggest that the majority of the tel1 cell TG(1-3) repeats may be resynthesized during shortening and lengthening reactions while a portion of the yku70 cell telomeres are protected. TG(1-3) sequences are synthesized by telomerase repeatedly copying an internal RNA template, which introduces a sequence bias into TG(1-3) repeats. Analysis of in vivo-derived telomeres revealed that of the many possible high affinity binding sites for the telomere protein Rap1p in TG(1-3) repeats, only those consistent with telomere hybridization to the ACACAC in the 3'-region of the telomerase RNA template followed by copying of most of the template were present. Copies of the telomerase RNA template made up 40-60% of the TG(1-3) sequences from each strain and could be found in long, tandem repeats. The data suggest that in vivo yeast telomerase frequently allows telomeres to hybridize to the 3'-region of RNA template and copy most of it prior to dissociation, or that in vivo telomere processing events result in the production of TG(1-3) sequences that mimic this process.
Collapse
Affiliation(s)
- A Ray
- The Lerner Research Institute, Cleveland Clinic Foundation, Department of Molecular Biology, NC20, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | |
Collapse
|
19
|
Takata H, Fukuda K, Meinhardt F, Gunge N. Telomere sequences attached to nuclearly migrated yeast linear plasmid. Plasmid 2000; 43:137-43. [PMID: 10686132 DOI: 10.1006/plas.1999.1454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast linear plasmid pCLU1, derived from pGKL1, has terminal proteins (TPs) covalently attached at the 5' ends of inverted terminal repeats (ITRs) and replicates in the cytoplasm, presumably using the TP as a primer for DNA synthesis. In Saccharomyces cerevisiae, under certain conditions, pCLU1 migrated into the nucleus and replicated in either linear or circular form. The linear-form plasmid lacked TPs; instead it carried host-telomere repeats at the ITR ends. The present study showed that (1) the added telomere was primarily composed of the repeated tracts of TGTGTGGGTGTGG, which was complementary to the RNA template of yeast telomerase, (2) the telomeric addition occurred at the very end of the ITRs, and (3) the sequence composition of the added telomeres was diverse among individual plasmids, but symmetrically identical at both ends of each plasmid. A similar mode of telomere addition was also observed in cells defective in the RAD52 gene.
Collapse
Affiliation(s)
- H Takata
- Kumamoto Institute of Technology, Ikeda 4-22-1, Kumamoto, 860-0082, Japan
| | | | | | | |
Collapse
|
20
|
Ray A, Runge KW. Varying the number of telomere-bound proteins does not alter telomere length in tel1Delta cells. Proc Natl Acad Sci U S A 1999; 96:15044-9. [PMID: 10611335 PMCID: PMC24770 DOI: 10.1073/pnas.96.26.15044] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yeast telomere DNA consists of a continuous, approximately 330-bp tract of the heterogeneous repeat TG(1-3) with irregularly spaced, high affinity sites for the protein Rap1p. Yeast monitor, or count, the number of telomeric Rap1p C termini in a negative feedback mechanism to modulate the length of the terminal TG(1-3) repeats, and synthetic telomeres that tether Rap1p molecules adjacent to the TG(1-3) tract cause wild-type cells to maintain a shorter TG(1-3) tract. To identify trans-acting proteins required to count Rap1p molecules, these same synthetic telomeres were placed in two short telomere mutants: yku70Delta (which lack the yeast Ku70 protein) and tel1Delta (which lack the yeast ortholog of ATM). Although both mutants maintain telomeres with approximately 100 bp of TG(1-3), only yku70Delta cells maintained shorter TG(1-3) repeats in response to internal Rap1p molecules. This distinct response to internal Rap1p molecules was not caused by a variation in Rap1p site density in the TG(1-3) repeats as sequencing of tel1Delta and yku70Delta telomeres showed that both strains have only five to six Rap1p sites per 100-bp telomere. In addition, the tel1Delta short telomere phenotype was epistatic to the unregulated telomere length caused by deletion of the Rap1p C-terminal domain. Thus, the length of the TG(1-3) repeats in tel1Delta cells was independent of the number of the Rap1p C termini at the telomere. These data indicate that tel1Delta cells use an alternative mechanism to regulate telomere length that is distinct from monitoring the number of telomere binding proteins.
Collapse
Affiliation(s)
- A Ray
- Lerner Research Institute, Cleveland Clinic Foundation, Department of Molecular Biology, NC20, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
21
|
Craven RJ, Petes TD. Dependence of the regulation of telomere length on the type of subtelomeric repeat in the yeast Saccharomyces cerevisiae. Genetics 1999; 152:1531-41. [PMID: 10430581 PMCID: PMC1460705 DOI: 10.1093/genetics/152.4.1531] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, chromosomes terminate with approximately 400 bp of a simple repeat poly(TG(1-3)). Based on the arrangement of subtelomeric X and Y' repeats, two types of yeast telomeres exist, those with both X and Y' (Y' telomeres) and those with only X (X telomeres). Mutations that result in abnormally short or abnormally long poly(TG(1-3)) tracts have been previously identified. In this study, we investigated telomere length in strains with two classes of mutations, one that resulted in short poly(TG(1-3)) tracts (tel1) and one that resulted in elongated tracts (pif1, rap1-17, rif1, or rif2). In the tel1 pif1 strain, Y' telomeres had about the same length as those in tel1 strains and X telomeres had lengths intermediate between those in tel1 and pif1 strains. Strains with either the tel1 rap1-17 or tel1 rif2 genotypes had short tracts for all chromosome ends examined, demonstrating that the telomere elongation characteristic of rap1-17 and rif2 strains is Tel1p-dependent. In strains of the tel1 rif1 or tel1 rif1 rif2 genotypes, telomeres with Y' repeats had short terminal tracts, whereas most of the X telomeres had long terminal tracts. These results demonstrate that the regulation of telomere length is different for X and Y' telomeres.
Collapse
Affiliation(s)
- R J Craven
- Department of Biology, Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | |
Collapse
|
22
|
Magnenat L, Tobler H, Müller F. Developmentally regulated telomerase activity is correlated with chromosomal healing during chromatin diminution in Ascaris suum. Mol Cell Biol 1999; 19:3457-65. [PMID: 10207069 PMCID: PMC84138 DOI: 10.1128/mcb.19.5.3457] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomerase is the ribonucleoprotein complex responsible for the maintenance of the physical ends, or telomeres, of most eukaryotic chromosomes. In this study, telomerase activity has been identified in cell extracts from the nematode Ascaris suum. This parasitic nematode is particularly suited as a model system for the study of telomerase, because it shows the phenomenon of chromatin diminution, consisting of developmentally programmed chromosomal breakage, DNA elimination, and new telomere formation. In vitro, the A. suum telomerase is capable of efficiently recognizing and elongating nontelomeric primers with nematode-specific telomere repeats by using limited homology at the 3' end of the DNA to anneal with the putative telomerase RNA template. The activity of this enzyme is developmentally regulated, and it correlates temporally with the phenomenon of chromatin diminution. It is up-regulated during the first two rounds of embryonic cell divisions, to reach a peak in 4-cell-stage embryos, when three presomatic blastomeres prepare for chromatin diminution. The activity remains high until the beginning of gastrulation, when the last of the presomatic cells undergoes chromatin diminution, and then constantly decreases during further development. In summary, our data strongly argue for a role of this enzyme in chromosome healing during the process of chromatin diminution.
Collapse
Affiliation(s)
- L Magnenat
- Institute of Zoology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | | | |
Collapse
|
23
|
Ray A, Runge KW. The yeast telomere length counting machinery is sensitive to sequences at the telomere-nontelomere junction. Mol Cell Biol 1999; 19:31-45. [PMID: 9858529 PMCID: PMC83863 DOI: 10.1128/mcb.19.1.31] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae telomeres consist of a continuous 325 +/- 75-bp tract of the heterogeneous repeat TG1-3 which contains irregularly spaced, high-affinity sites for the protein Rap1p. Yeast cells monitor or count the number of telomeric Rap1p molecules in a negative feedback mechanism which modulates telomere length. To investigate the mechanism by which Rap1p molecules are counted, the continuous telomeric TG1-3 sequences were divided into internal TG1-3 sequences and a terminal tract separated by nontelomeric spacers of different lengths. While all of the internal sequences were counted as part of the terminal tract across a 38-bp spacer, a 138-bp disruption completely prevented the internal TG1-3 sequences from being considered part of the telomere and defined the terminal tract as a discrete entity separate from the subtelomeric sequences. We also used regularly spaced arrays of six Rap1p sites internal to the terminal TG1-3 repeats to show that each Rap1p molecule was counted as about 19 bp of TG1-3 in vivo and that cells could count Rap1p molecules with different spacings between tandem sites. As previous in vitro experiments had shown that telomeric Rap1p sites occur about once every 18 bp, all Rap1p molecules at the junction of telomeric and nontelomeric chromatin (the telomere-nontelomere junction) must participate in telomere length measurement. The conserved arrangement of these six Rap1p molecules at the telomere-nontelomere junction in independent transformants also caused the elongated TG1-3 tracts to be maintained at nearly identical lengths, showing that sequences at the telomere-nontelomere junction had an effect on length regulation. These results can be explained by a model in which telomeres beyond a threshold length form a folded structure that links the chromosome terminus to the telomere-nontelomere junction and prevents telomere elongation.
Collapse
Affiliation(s)
- A Ray
- Department of Molecular Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
24
|
Abstract
The biology of telomeres and telomerase has been the subject of intensive investigative effort since it became evident that they play a significant role in two important biological processes, the loss of cellular replicative capacity inherent to organismal ageing and the unrestricted cell proliferation characteristic of carcinogenesis. Telomere shortening in normal cells is a result of DNA replication events, and reduction beyond a critical length is a signal for cellular senescence. One of the cellular mechanisms used to overcome proliferative restriction is the activation of the enzyme telomerase, which replaces the loss of telomeric DNA that occurs at each cell division. Studies have demonstrated that tumours have shorter telomeres than normal tissue and that telomerase is activated in up to 90% of all human cancers while it is present only in a limited range of normal adult tissues. The role of telomerase in the extension of the cellular replicative lifespan has recently been shown by ectopic expression of the enzyme, being consistent with the oncogenesis model whereby the acquisition of an 'immortal' phenotype is a requirement for advanced tumour progression. In this article we review the present knowledge of telomeres and telomerase in cancer and discuss the potential use of this enzyme as a diagnostic and prognostic tumour marker and as a target for cancer therapy.
Collapse
Affiliation(s)
- V Urquidi
- Cancer Center, University of California, San Diego, La Jolla 92093-0684, USA
| | | | | |
Collapse
|