1
|
Klusza S, Novak A, Figueroa S, Palmer W, Deng WM. Prp22 and spliceosome components regulate chromatin dynamics in germ-line polyploid cells. PLoS One 2013; 8:e79048. [PMID: 24244416 PMCID: PMC3820692 DOI: 10.1371/journal.pone.0079048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/18/2013] [Indexed: 12/15/2022] Open
Abstract
During Drosophila oogenesis, the endopolyploid nuclei of germ-line nurse cells undergo a dramatic shift in morphology as oogenesis progresses; the easily-visible chromosomes are initially polytenic during the early stages of oogenesis before they transiently condense into a distinct '5-blob' configuration, with subsequent dispersal into a diffuse state. Mutations in many genes, with diverse cellular functions, can affect the ability of nurse cells to fully decondense their chromatin, resulting in a '5-blob arrest' phenotype that is maintained throughout the later stages of oogenesis. However, the mechanisms and significance of nurse-cell (NC) chromatin dispersal remain poorly understood. Here, we report that a screen for modifiers of the 5-blob phenotype in the germ line isolated the spliceosomal gene peanuts, the Drosophila Prp22. We demonstrate that reduction of spliceosomal activity through loss of peanuts promotes decondensation defects in NC nuclei during mid-oogenesis. We also show that the Prp38 spliceosomal protein accumulates in the nucleoplasm of nurse cells with impaired peanuts function, suggesting that spliceosomal recycling is impaired. Finally, we reveal that loss of additional spliceosomal proteins impairs the full decondensation of NC chromatin during later stages of oogenesis, suggesting that individual spliceosomal subcomplexes modulate expression of the distinct subset of genes that are required for correct morphology in endopolyploid nurse cells.
Collapse
Affiliation(s)
- Stephen Klusza
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Amanda Novak
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Shirelle Figueroa
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - William Palmer
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
2
|
Müller R, Jenny A, Stanley P. The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila. PLoS One 2013; 8:e62835. [PMID: 23671640 PMCID: PMC3650022 DOI: 10.1371/journal.pone.0062835] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
The O-GlcNAc transferase Eogt modifies EGF repeats in proteins that transit the secretory pathway, including Dumpy and Notch. In this paper, we show that the Notch ligands Delta and Serrate are also substrates of Eogt, that mutation of a putative UDP-GlcNAc binding DXD motif greatly reduces enzyme activity, and that Eogt and the cytoplasmic O-GlcNAc transferase Ogt have distinct substrates in Drosophila larvae. Loss of Eogt is larval lethal and disrupts Dumpy functions, but does not obviously perturb Notch signaling. To identify novel genetic interactions with eogt, we investigated dominant modification of wing blister formation caused by knock-down of eogt. Unexpectedly, heterozygosity for several members of the canonical Notch signaling pathway suppressed wing blister formation. And importantly, extensive genetic interactions with mutants in pyrimidine metabolism were identified. Removal of pyrimidine synthesis alleles suppressed wing blister formation, while removal of uracil catabolism alleles was synthetic lethal with eogt knock-down. Therefore, Eogt may regulate protein functions by O-GlcNAc modification of their EGF repeats, and cellular metabolism by affecting pyrimidine synthesis and catabolism. We propose that eogt knock-down in the wing leads to metabolic and signaling perturbations that increase cytosolic uracil levels, thereby causing wing blister formation.
Collapse
Affiliation(s)
- Reto Müller
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, United States of America
- * E-mail: (AJ); (PS)
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, United States of America
- * E-mail: (AJ); (PS)
| |
Collapse
|
3
|
Buffin E, Emre D, Karess RE. Flies without a spindle checkpoint. Nat Cell Biol 2007; 9:565-72. [PMID: 17417628 DOI: 10.1038/ncb1570] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 03/15/2007] [Indexed: 11/08/2022]
Abstract
Mad2 has a key role in the spindle-assembly checkpoint (SAC) - the mechanism delaying anaphase onset until all chromosomes correctly attach to the spindle. Here, we show that unlike every other reported case of SAC inactivation in metazoans, mad2-null Drosophila are viable and fertile, and their cells almost always divide correctly despite having no SAC and an accelerated 'clock', which is caused by premature degradation of cyclin B. Mitosis in Drosophila does not need the SAC because correct chromosome attachment is achieved very rapidly, before even the cell lacking Mad2 can initiate anaphase. Experimentally reducing spindle-assembly efficiency renders the cells Mad2-dependent. In fact, the robustness of the SAC may generally mask minor mitotic defects of mutations affecting spindle function. The reported lethality of other Drosophila SAC mutations may be explained by their multifunctionality, and thus the 'checkpoint' phenotypes previously ascribed to these mutations should be considered the consequence of eliminating both the checkpoint and a second mitotic function.
Collapse
Affiliation(s)
- Eulalie Buffin
- CNRS, Centre de Génétique Moléculaire, Ave de la Terrasse, 91198 Gif sur Yvette, France
| | | | | |
Collapse
|
4
|
Rawls JM. Analysis of pyrimidine catabolism in Drosophila melanogaster using epistatic interactions with mutations of pyrimidine biosynthesis and beta-alanine metabolism. Genetics 2005; 172:1665-74. [PMID: 16361227 PMCID: PMC1456268 DOI: 10.1534/genetics.105.052753] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biochemical pathway for pyrimidine catabolism links the pathways for pyrimidine biosynthesis and salvage with beta-alanine metabolism, providing an array of epistatic interactions with which to analyze mutations of these pathways. Loss-of-function mutations have been identified and characterized for each of the enzymes for pyrimidine catabolism: dihydropyrimidine dehydrogenase (DPD), su(r) mutants; dihydropyrimidinase (DHP), CRMP mutants; beta-alanine synthase (betaAS), pyd3 mutants. For all three genes, mutants are viable and fertile and manifest no obvious phenotypes, aside from a variety of epistatic interactions. Mutations of all three genes disrupt suppression by the rudimentary gain-of-function mutation (r(Su(b))) of the dark cuticle phenotype of black mutants in which beta-alanine pools are diminished; these results confirm that pyrimidines are the major source of beta-alanine in cuticle pigmentation. The truncated wing phenotype of rudimentary mutants is suppressed completely by su(r) mutations and partially by CRMP mutations; however, no suppression is exhibited by pyd3 mutations. Similarly, su(r) mutants are hypersensitive to dietary 5-fluorouracil, CRMP mutants are less sensitive, and pyd3 mutants exhibit wild-type sensitivity. These results are discussed in the context of similar consequences of 5-fluoropyrimidine toxicity and pyrimidine catabolism mutations in humans.
Collapse
Affiliation(s)
- John M Rawls
- Molecular and Cellular Biology Group, Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA.
| |
Collapse
|
5
|
Tanackovic G, Krämer A. Human splicing factor SF3a, but not SF1, is essential for pre-mRNA splicing in vivo. Mol Biol Cell 2005; 16:1366-77. [PMID: 15647371 PMCID: PMC551499 DOI: 10.1091/mbc.e04-11-1034] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The three subunits of human splicing factor SF3a are essential for the formation of the functional 17S U2 snRNP and prespliceosome assembly in vitro. RNAi-mediated depletion indicates that each subunit is essential for viability of human cells. Knockdown of single subunits results in a general block in splicing strongly suggesting that SF3a is a constitutive splicing factor in vivo. In contrast, splicing of several endogenous and reporter pre-mRNAs is not affected after knockdown of SF1, which functions at the onset of spliceosome assembly in vitro and is essential for cell viability. Thus, SF1 may only be required for the splicing of a subset of pre-mRNAs. We also observe a reorganization of U2 snRNP components in SF3a-depleted cells, where U2 snRNA and U2-B'' are significantly reduced in nuclear speckles and the nucleoplasm, but still present in Cajal bodies. Together with the observation that the 17S U2 snRNP cannot be detected in extracts from SF3a-depleted cells, our results provide further evidence for a function of Cajal bodies in U2 snRNP biogenesis.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Western
- Cell Nucleus/metabolism
- Cell Survival
- Coiled Bodies/metabolism
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Fluorescent Antibody Technique, Indirect
- HeLa Cells
- Humans
- In Situ Hybridization, Fluorescence
- Microscopy, Fluorescence
- Protein Binding
- Protein Biosynthesis
- Protein Structure, Tertiary
- RNA Interference
- RNA Splicing
- RNA Splicing Factors
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- RNA, Small Nuclear/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleoprotein, U2 Small Nuclear/chemistry
- Ribonucleoprotein, U2 Small Nuclear/genetics
- Ribonucleoprotein, U2 Small Nuclear/physiology
- Ribonucleoproteins, Small Nuclear/metabolism
- Spliceosomes/chemistry
- Time Factors
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Goranka Tanackovic
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
6
|
Nesic D, Krämer A. Domains in human splicing factors SF3a60 and SF3a66 required for binding to SF3a120, assembly of the 17S U2 snRNP, and prespliceosome formation. Mol Cell Biol 2001; 21:6406-17. [PMID: 11533230 PMCID: PMC99788 DOI: 10.1128/mcb.21.19.6406-6417.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The active 17S U2 small nuclear ribonucleoprotein particle (snRNP), which binds to the intron branch site during the formation of the prespliceosome, is assembled in vitro by sequential interactions of the essential splicing factors SF3b and SF3a with the 12S U2 snRNP. We have analyzed the function of individual subunits of human SF3a (SF3a60, SF3a66, and SF3a120) by testing recombinant proteins, expressed in insect cells, in various in vitro assays. The recombinant subunits readily form the SF3a heterotrimer, where SF3a60 and SF3a66 interact with SF3a120, but not with each other. All SF3a subunits are essential for the formation of the mature 17S U2 snRNP and the prespliceosome. Single subunits engage in interactions with the 15S U2 snRNP (consisting of the 12S U2 snRNP and SF3b), and SF3a60 appears to play a major role in recruiting SF3a120 into the U2 particle. Analysis of functional domains in SF3a60 and SF3a66 identified interaction sites for SF3a120 in their N-terminal portions. C(2)H(2)-type zinc finger domains mediate the integration of SF3a60 and SF3a66 into the U2 snRNP, and we propose a model in which protein-protein interactions between the zinc finger domains and the Sm proteins, common to all spliceosomal snRNPs, contribute to the assembly of the 17S U2 snRNP. Finally, we demonstrate that all domains required for interactions within the SF3a heterotrimer and the formation of the 17S U2 snRNP are also necessary to assemble the prespliceosome.
Collapse
Affiliation(s)
- D Nesic
- Département de Biologie Cellulaire, Université de Genève, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
7
|
Nagengast AA, Salz HK. The Drosophila U2 snRNP protein U2A' has an essential function that is SNF/U2B" independent. Nucleic Acids Res 2001; 29:3841-7. [PMID: 11557816 PMCID: PMC55907 DOI: 10.1093/nar/29.18.3841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recruitment of the U2 snRNP to the pre-mRNA is an essential step in spliceosome assembly. Although the protein components of the U2 snRNP have been identified, their individual contributions to function are poorly defined. In vitro studies with the Drosophila and human proteins suggest that two of the U2 snRNP-specific proteins, U2A' and U2B", function exclusively as a dimer. In Drosophila the presence of the U2B" counterpart, Sans-Fille (SNF), in the U2 snRNP is dispensable for viability, suggesting that SNF is not necessary for U2 snRNP function in vivo. With the identification of a single U2A'-like protein in the Drosophila genome, we can now investigate the relationship between SNF and its putative binding partner in vivo. Here we show that Drosophila U2A' protein interacts with SNF in vivo and, like its human counterpart, is U2 snRNP specific. Unexpectedly, however, we find that loss of function causes lethality, suggesting that U2A', but not SNF, is critical for U2 snRNP function. Moreover, although we demonstrate that several domains in the SNF protein are important for the interaction with the Drosophila U2A' protein, including a redundant domain at the normally dispensable C-terminus, we find that U2A' does not require heterodimer formation for either its vital function or U2 snRNP assembly. Thus together these data demonstrate that in Drosophila U2A' has an essential function that is unrelated to its role as the partner protein of SNF/U2B".
Collapse
Affiliation(s)
- A A Nagengast
- Department of Genetics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4955, USA
| | | |
Collapse
|
8
|
Cline TW, Rudner DZ, Barbash DA, Bell M, Vutien R. Functioning of the Drosophila integral U1/U2 protein Snf independent of U1 and U2 small nuclear ribonucleoprotein particles is revealed by snf(+) gene dose effects. Proc Natl Acad Sci U S A 1999; 96:14451-8. [PMID: 10588726 PMCID: PMC24457 DOI: 10.1073/pnas.96.25.14451] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Snf, encoded by sans fille, is the Drosophila homolog of mammalian U1A and U2B" and is an integral component of U1 and U2 small nuclear ribonucleoprotein particles (snRNPs). Surprisingly, changes in the level of this housekeeping protein can specifically affect autoregulatory activity of the RNA-binding protein Sex-lethal (Sxl) in an action that we infer must be physically separate from Snf's functioning within snRNPs. Sxl is a master switch gene that controls its own pre-mRNA splicing as well as splicing for subordinate switch genes that regulate sex determination and dosage compensation. Exploiting an unusual new set of mutant Sxl alleles in an in vivo assay, we show that Snf is rate-limiting for Sxl autoregulation when Sxl levels are low. In such situations, increasing either maternal or zygotic snf(+) dose enhances the positive autoregulatory activity of Sxl for Sxl somatic pre-mRNA splicing without affecting Sxl activities toward its other RNA targets. In contrast, increasing the dose of genes encoding either the integral U1 snRNP protein U1-70k, or the integral U2 snRNP protein SF3a(60), has no effect. Increased snf(+) enhances Sxl autoregulation even when U1-70k and SF3a(60) are reduced by mutation to levels that, in the case of SF3a(60), demonstrably interfere with Sxl autoregulation. The observation that increased snf(+) does not suppress other phenotypes associated with mutations that reduce U1-70k or SF3a(60) is additional evidence that snf(+) dose effects are not caused by increased snRNP levels. Mammalian U1A protein, like Snf, has a snRNP-independent function.
Collapse
Affiliation(s)
- T W Cline
- Department of Molecular Biology, University of California, Berkeley, 401 Barker Hall, Berkeley, CA 94720-3204, USA.
| | | | | | | | | |
Collapse
|