1
|
Long Y, Li X, Liu Y, Zhang M, Feng F. Inhibition of YAP can down-regulate NLRP3 inflammasome and improve anti-tuberculosis drug-induced liver injury. Xenobiotica 2025:1-9. [PMID: 40288888 DOI: 10.1080/00498254.2025.2497050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Yes-associated protein (YAP) is a core effector molecule in the Hippo signalling pathway, but its role in antituberculosis drug-induced liver injury (ADLI) is unclear. We aimed to explore the regulatory effects of YAP on the NLRP3 inflammasome in ADLI and its potential hepatoprotective effects.An ADLI animal model was established. Various indicators of experimental animals were detected at 0, 7, 14, and 21 days. On day 7, HE staining observed liver tissue, and liver index, ALT, and AST levels confirmed the ADLI model. YAP's mRNA and protein levels were examined, YAP inhibitor effects were observed, and NLRP3 inflammasome, inflammation, and oxidative stress indicators were analysed.It was found that the mRNA and protein levels of YAP increased during ADLI and then decreased due to the action of YAP inhibitors. YAP caused an elevation in NLRP3 inflammasome indicators, as well as increased expression of inflammation and oxidative stress. After feeding with YAP inhibitors, these indicators were reduced.The results suggest that targeting YAP may be a novel therapeutic strategy for alleviating antituberculosis drug-induced liver injury.
Collapse
Affiliation(s)
- Yifei Long
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xueying Li
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yue Liu
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Mi Zhang
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Fumin Feng
- Hebei Coordinated Innovation Center of Occupational Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, China
| |
Collapse
|
2
|
Qiu C, Arora P, Malik I, Laperuta AJ, Pavlovic EM, Ugochukwu S, Naik M, Kaplan CD. Thiolutin has complex effects in vivo but is a direct inhibitor of RNA polymerase II in vitro. Nucleic Acids Res 2024; 52:2546-2564. [PMID: 38214235 PMCID: PMC10954460 DOI: 10.1093/nar/gkad1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Thiolutin is a natural product transcription inhibitor with an unresolved mode of action. Thiolutin and the related dithiolopyrrolone holomycin chelate Zn2+ and previous studies have concluded that RNA Polymerase II (Pol II) inhibition in vivo is indirect. Here, we present chemicogenetic and biochemical approaches to investigate thiolutin's mode of action in Saccharomyces cerevisiae. We identify mutants that alter sensitivity to thiolutin. We provide genetic evidence that thiolutin causes oxidation of thioredoxins in vivo and that thiolutin both induces oxidative stress and interacts functionally with multiple metals including Mn2+ and Cu2+, and not just Zn2+. Finally, we show direct inhibition of RNA polymerase II (Pol II) transcription initiation by thiolutin in vitro in support of classical studies that thiolutin can directly inhibit transcription in vitro. Inhibition requires both Mn2+ and appropriate reduction of thiolutin as excess DTT abrogates its effects. Pause prone, defective elongation can be observed in vitro if inhibition is bypassed. Thiolutin effects on Pol II occupancy in vivo are widespread but major effects are consistent with prior observations for Tor pathway inhibition and stress induction, suggesting that thiolutin use in vivo should be restricted to studies on its modes of action and not as an experimental tool.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Payal Arora
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Indranil Malik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | - Mandar Naik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
3
|
Chen Y, Zhang Y, Xu D, Zhang Z, Li B, Tian S. PeAP1-mediated oxidative stress response plays an important role in the growth and pathogenicity of Penicillium expansum. Microbiol Spectr 2023; 11:e0380822. [PMID: 37732795 PMCID: PMC10581040 DOI: 10.1128/spectrum.03808-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/17/2023] [Indexed: 09/22/2023] Open
Abstract
Penicillium expansum is the causal agent of post-harvest blue mold in various fruits and serves as a model for understanding fungal pathogenicity and mycotoxin production. The relevance of oxidative stress response in the growth and virulence of P. expansum has been largely unexplored. Here, we identify the transcriptional factor PeAP1 as a regulator of oxidative stress response in P. expansum. Gene expression and protein abundance of PeAP1, as well as its nuclear localization, are specifically induced by H2O2. Deletion of PeAP1 results in increased sensitivity to H2O2, and PeAP1 mutants exhibit a variety of defects in hyphal growth and virulence. PeAP1 prevents the accumulation of both intracellular H2O2 during vegetative growth and host-derived H2O2 during biotrophic growth. Application of an antioxidant glutathione and a NADPH oxidase inhibitor, diphenylene iodonium, to the PeAP1 mutant partially restored fungal growth and virulence. RNA sequencing analysis revealed 144 H2O2-induced PeAP1 target genes, including four antioxidant-related genes, PeGST1, PePrx1, PePrx2, and PeTRX2, that were also demonstrated to be involved in oxidative stress response and/or virulence. Collectively, our results demonstrate the global regulatory role of PeAP1 in response to oxidative stress and provide insights into the critical role of the PeAP1-mediated oxidative stress response to regulate growth and virulence of P. expansum. IMPORTANCE Reactive oxygen species are the core of host plant defense and also play a vital role in the successful invasion of host plants by pathogenic fungi. Despite its importance, the relevance of oxidative stress response in fungal growth and virulence is poorly understood in P. expansum. In this study, we reveal that the transcription factor PeAP1 acts as a central regulator of oxidative stress response in P. expansum and that there is a major link between PeAP1-mediated oxidative stress response and fungal growth and virulence. To explore the underlying mechanisms, we performed comparative transcriptomic studies and identified a number of H2O2-induced PeAP1 target genes, including four novel ones, PePrx1, PePrx2, PeGST1, and PeTRX2, whose functions were linked to PeAP1 and pathogenicity. These findings provide novel insights into the regulation mechanism of PeAP1 on growth and virulence, which might offer promising targets for control of blue mold and patulin contamination.
Collapse
Affiliation(s)
- Yong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yichen Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongying Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhanquan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Boqiang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Leite AC, Barbedo M, Costa V, Pereira C. The APC/C Activator Cdh1p Plays a Role in Mitochondrial Metabolic Remodelling in Yeast. Int J Mol Sci 2023; 24:ijms24044111. [PMID: 36835555 PMCID: PMC9967508 DOI: 10.3390/ijms24044111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Cdh1p is one of the two substrate adaptor proteins of the anaphase promoting complex/cyclosome (APC/C), a ubiquitin ligase that regulates proteolysis during cell cycle. In this work, using a proteomic approach, we found 135 mitochondrial proteins whose abundance was significantly altered in the cdh1Δ mutant, with 43 up-regulated proteins and 92 down-regulated proteins. The group of significantly up-regulated proteins included subunits of the mitochondrial respiratory chain, enzymes from the tricarboxylic acid cycle and regulators of mitochondrial organization, suggesting a metabolic remodelling towards an increase in mitochondrial respiration. In accordance, mitochondrial oxygen consumption and Cytochrome c oxidase activity increased in Cdh1p-deficient cells. These effects seem to be mediated by the transcriptional activator Yap1p, a major regulator of the yeast oxidative stress response. YAP1 deletion suppressed the increased Cyc1p levels and mitochondrial respiration in cdh1Δ cells. In agreement, Yap1p is transcriptionally more active in cdh1Δ cells and responsible for the higher oxidative stress tolerance of cdh1Δ mutant cells. Overall, our results unveil a new role for APC/C-Cdh1p in the regulation of the mitochondrial metabolic remodelling through Yap1p activity.
Collapse
Affiliation(s)
- Ana Cláudia Leite
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Barbedo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Vítor Costa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Clara Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Correspondence: ; Tel.: +351-220408800
| |
Collapse
|
5
|
de Oya IG, Jiménez-Gutiérrez E, Gaillard H, Molina M, Martín H, Wellinger RE. Manganese Stress Tolerance Depends on Yap1 and Stress-Activated MAP Kinases. Int J Mol Sci 2022; 23:ijms232415706. [PMID: 36555348 PMCID: PMC9779322 DOI: 10.3390/ijms232415706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Understanding which intracellular signaling pathways are activated by manganese stress is crucial to decipher how metal overload compromise cellular integrity. Here, we unveil a role for oxidative and cell wall stress signaling in the response to manganese stress in yeast. We find that the oxidative stress transcription factor Yap1 protects cells against manganese toxicity. Conversely, extracellular manganese addition causes a rapid decay in Yap1 protein levels. In addition, manganese stress activates the MAPKs Hog1 and Slt2 (Mpk1) and leads to an up-regulation of the Slt2 downstream transcription factor target Rlm1. Importantly, Yap1 and Slt2 are both required to protect cells from oxidative stress in mutants impaired in manganese detoxification. Under such circumstances, Slt2 activation is enhanced upon Yap1 depletion suggesting an interplay between different stress signaling nodes to optimize cellular stress responses and manganese tolerance.
Collapse
Affiliation(s)
- Inés G. de Oya
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Avda. Américo Vespucio s/n, 41092 Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain
| | - Elena Jiménez-Gutiérrez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034 Madrid, Spain
| | - Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Avda. Américo Vespucio s/n, 41092 Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034 Madrid, Spain
| | - Humberto Martín
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034 Madrid, Spain
| | - Ralf Erik Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Avda. Américo Vespucio s/n, 41092 Sevilla, Spain
- Departamento de Genética, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain
- Correspondence:
| |
Collapse
|
6
|
Xu R, Yang Z, Fan J, Huang X, Long L, Yu S, Zhang X, Li X, Huang H. Knowledge base and emerging trends in YAP1 research. Am J Transl Res 2022; 14:6467-6483. [PMID: 36247309 PMCID: PMC9556511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
Yes-associated protein 1 (YAP1) is a transcriptional coactivator that mediates the Hippo signaling pathway, which participates in the development and growth of the body; it plays key roles in tumorigenesis, metastasis, and therapy resistance. However, the pathophysiological mechanism of YAP1 has not been fully elucidated. Therefore, we explored the status and evolutionary trend in YAP1 research via bibliometric analysis. A total of 2,928 publications were downloaded from Web of Science Core Collection (WOSCC). The co-citation network map was drawn via CiteSpace and VOSviewer software. We analyzed the co-authorship networks among countries, journals, and authors, as well as co-occurrence of co-cited references, citation bursts, and keywords in YAP1 research, in order to predict its literature development. The present research evaluates the annual publication trends of YAP1 literature, and the following results were established: research on YAP1 are of steady increase; China present the highest co-citation; the Journal of Biological Chemistry (J Biol Chem) was the most productive journal, while Cell press received the most citations from co-cited references; Among the authors in the overall citations Bin Zhao is the most promising collaborator for emerging scholars in this field; and lastly, co-occurrence keyword analysis indicated that the emerging trends in YAP1 research were mainly focused on cancer therapy. We established that projects on YAP1 research is presently in its rapid developmental stage with active global collaboration. In addition, the mechanism and clinical significance of YAP1 in cancer was established as the potential trend of future studies.
Collapse
Affiliation(s)
- Rong Xu
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
| | - Zhiying Yang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
- Changsha Health Vocational CollegeChangsha, Hunan, China
| | - Jiahui Fan
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
| | - Xueying Huang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
| | - Linna Long
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
| | - Siying Yu
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
| | - Xiaorui Zhang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
| | - Xia Li
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Pre-Clinical Medicine/Second Affiliated Hospital, Xinjiang Medical UniversityUrumqi, Xinjiang, China
| | - He Huang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South UniversityChangsha, Hunan, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South UniversityChangsha, Hunan China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Pre-Clinical Medicine/Second Affiliated Hospital, Xinjiang Medical UniversityUrumqi, Xinjiang, China
| |
Collapse
|
7
|
Mfarej MG, Skibbens RV. Genetically induced redox stress occurs in a yeast model for Roberts syndrome. G3 (BETHESDA, MD.) 2022; 12:jkab426. [PMID: 34897432 PMCID: PMC9210317 DOI: 10.1093/g3journal/jkab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022]
Abstract
Roberts syndrome (RBS) is a multispectrum developmental disorder characterized by severe limb, craniofacial, and organ abnormalities and often intellectual disabilities. The genetic basis of RBS is rooted in loss-of-function mutations in the essential N-acetyltransferase ESCO2 which is conserved from yeast (Eco1/Ctf7) to humans. ESCO2/Eco1 regulate many cellular processes that impact chromatin structure, chromosome transmission, gene expression, and repair of the genome. The etiology of RBS remains contentious with current models that include transcriptional dysregulation or mitotic failure. Here, we report evidence that supports an emerging model rooted in defective DNA damage responses. First, the results reveal that redox stress is elevated in both eco1 and cohesion factor Saccharomyces cerevisiae mutant cells. Second, we provide evidence that Eco1 and cohesion factors are required for the repair of oxidative DNA damage such that ECO1 and cohesin gene mutations result in reduced cell viability and hyperactivation of DNA damage checkpoints that occur in response to oxidative stress. Moreover, we show that mutation of ECO1 is solely sufficient to induce endogenous redox stress and sensitizes mutant cells to exogenous genotoxic challenges. Remarkably, antioxidant treatment desensitizes eco1 mutant cells to a range of DNA damaging agents, raising the possibility that modulating the cellular redox state may represent an important avenue of treatment for RBS and tumors that bear ESCO2 mutations.
Collapse
Affiliation(s)
- Michael G Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
8
|
Hijazi I, Wang E, Orozco M, Pelton S, Chang A. Peroxisomal support of mitochondrial respiratory efficiency promotes ER stress survival. J Cell Sci 2022; 135:273605. [PMID: 34854901 PMCID: PMC8767275 DOI: 10.1242/jcs.259254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Endoplasmic reticulum stress (ERS) occurs when cellular demand for protein folding exceeds the capacity of the organelle. Adaptation and cell survival in response to ERS requires a critical contribution by mitochondria and peroxisomes. During ERS responses, mitochondrial respiration increases to ameliorate reactive oxygen species (ROS) accumulation. We now show in yeast that peroxisome abundance also increases to promote an adaptive response. In pox1Δ cells, which are defective in peroxisomal β-oxidation of fatty acids, the respiratory response to ERS is impaired and ROS accrues. However, the respiratory response to ERS is rescued and ROS production is mitigated in pox1Δ cells overexpressing Mpc1, the mitochondrial pyruvate carrier that provides another source of acetyl CoA to fuel the tricarboxylic acid cycle and oxidative phosphorylation. Using proteomics, select mitochondrial proteins were identified that undergo upregulation upon ERS to remodel the respiratory machinery. The abundance of several peroxisome-based proteins was also increased, corroborating the role of peroxisomes in ERS adaptation. Finally, ERS stimulates assembly of respiratory complexes into higher-order supercomplexes, underlying increased electron transfer efficiency. Our results highlight peroxisomal and mitochondrial support for ERS adaptation to favor cell survival.
Collapse
|
9
|
Vicker SL, Maina EN, Showalter AK, Tran N, Davidson EE, Bailey MR, McGarry SW, Freije WM, West JD. Broader than expected tolerance for substitutions in the WCGPCK catalytic motif of yeast thioredoxin 2. Free Radic Biol Med 2022; 178:308-313. [PMID: 34530076 DOI: 10.1016/j.freeradbiomed.2021.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022]
Abstract
Thioredoxins constitute a key class of oxidant defense enzymes that facilitate disulfide bond reduction in oxidized substrate proteins. While thioredoxin's WCGPCK active site motif is highly conserved in traditional model organisms, predicted thioredoxins from newly sequenced genomes show variability in this motif, making ascertaining which genes encode functional thioredoxins with robust activity a challenge. To address this problem, we generated a semi-saturation mutagenesis library of approximately 70 thioredoxin variants harboring mutations adjacent to their catalytic cysteines, making substitutions in the Saccharomyces cerevisiae thioredoxin Trx2. Using this library, we determined how such substitutions impact oxidant defense in yeast along with how they influence disulfide reduction and interaction with binding partners in vivo. The majority of thioredoxin variants screened rescued the slow growth phenotype that accompanies deletion of the yeast cytosolic thioredoxins; however, the ability of these mutant proteins to protect against H2O2-mediated toxicity, facilitate disulfide reduction, and interact with redox partners varied widely, depending on the site being mutated and the substitution made. We report that thioredoxin is less tolerant of substitutions at its conserved tryptophan and proline in the active site motif, while it is more amenable to substitutions at the conserved glycine and lysine. Our work highlights a noteworthy plasticity within the active site of this critical oxidant defense enzyme.
Collapse
Affiliation(s)
- Shayna L Vicker
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - Eran N Maina
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - Abigail K Showalter
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - Nghi Tran
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - Emma E Davidson
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - Morgan R Bailey
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - Stephen W McGarry
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - Wilson M Freije
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA.
| |
Collapse
|
10
|
Mfarej MG, Skibbens RV. DNA damage induces Yap5-dependent transcription of ECO1/CTF7 in Saccharomyces cerevisiae. PLoS One 2020; 15:e0242968. [PMID: 33373396 PMCID: PMC7771704 DOI: 10.1371/journal.pone.0242968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast Eco1 (ESCO2 in humans) acetyltransferase converts chromatin-bound cohesins to a DNA tethering state, thereby establishing sister chromatid cohesion. Eco1 establishes cohesion during DNA replication, after which Eco1 is targeted for degradation by SCF E3 ubiquitin ligase. SCF E3 ligase, and sequential phosphorylations that promote Eco1 ubiquitination and degradation, remain active throughout the M phase. In this way, Eco1 protein levels are high during S phase, but remain low throughout the remaining cell cycle. In response to DNA damage during M phase, however, Eco1 activity increases-providing for a new wave of cohesion establishment (termed Damage-Induced Cohesion, or DIC) which is critical for efficient DNA repair. To date, little evidence exists as to the mechanism through which Eco1 activity increases during M phase in response to DNA damage. Possibilities include that either the kinases or E3 ligase, that target Eco1 for degradation, are inhibited in response to DNA damage. Our results reveal instead that the degradation machinery remains fully active during M phase, despite the presence of DNA damage. In testing alternate models through which Eco1 activity increases in response to DNA damage, the results reveal that DNA damage induces new transcription of ECO1 and at a rate that exceeds the rate of Eco1 turnover, providing for rapid accumulation of Eco1 protein. We further show that DNA damage induction of ECO1 transcription is in part regulated by Yap5-a stress-induced transcription factor. Given the role for mutated ESCO2 (homolog of ECO1) in human birth defects, this study highlights the complex nature through which mutation of ESCO2, and defects in ESCO2 regulation, may promote developmental abnormalities and contribute to various diseases including cancer.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
11
|
Mertens JA, Skory CD, Nichols NN, Hector RE. Impact of stress-response related transcription factor overexpression on lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae environmental isolates. Biotechnol Prog 2020; 37:e3094. [PMID: 33085224 DOI: 10.1002/btpr.3094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 10/02/2020] [Accepted: 10/16/2020] [Indexed: 11/07/2022]
Abstract
Numerous transcription factor genes associated with stress response are upregulated in Saccharomyces cerevisiae grown in the presence of inhibitors that result from pretreatment processes to unlock simple sugars from biomass. To determine if overexpression of transcription factors could improve inhibitor tolerance in robust S. cerevisiae environmental isolates as has been demonstrated in S. cerevisiae haploid laboratory strains, transcription factors were overexpressed at three different expression levels in three S. cerevisiae environmental isolates. Overexpression of the YAP1 transcription factor in these isolates did not lead to increased growth rate or reduced lag in growth, and in some cases was detrimental, when grown in the presence of either lignocellulosic hydrolysates or furfural and 5-hydroxymethyl furfural individually. The expressed Yap1p localized correctly and the expression construct improved inhibitor tolerance of a laboratory strain as previously reported, indicating that lack of improvement in the environmental isolates was due to factors other than nonfunctional expression constructs or mis-folded protein. Additional stress-related transcription factors, MSN2, MSN4, HSF1, PDR1, and RPN4, were also overexpressed at three different expression levels and all failed to improve inhibitor tolerance. Transcription factor overexpression alone is unlikely to be a viable route toward increased inhibitor tolerance of robust environmental S. cerevisiae strains.
Collapse
Affiliation(s)
- Jeffrey A Mertens
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois, USA
| | - Christopher D Skory
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois, USA
| | - Nancy N Nichols
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois, USA
| | - Ronald E Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois, USA
| |
Collapse
|
12
|
Santiago AM, Gonçalves DL, Morano KA. Mechanisms of sensing and response to proteotoxic stress. Exp Cell Res 2020; 395:112240. [PMID: 32827554 DOI: 10.1016/j.yexcr.2020.112240] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022]
Abstract
Cells are continuously subject to various stresses, battling both exogenous insults as well as toxic by-products of normal cellular metabolism and nutrient deprivation. Throughout the millennia, cells developed a core set of general stress responses that promote survival and reproduction under adverse circumstances. Past and current research efforts have been devoted to understanding how cells sense stressors and how that input is deciphered and transduced, resulting in stimulation of stress management pathways. A prime element of cellular stress responses is the increased transcription and translation of proteins specialized in managing and mitigating distinct types of stress. In this review, we focus on recent developments in our understanding of cellular sensing of proteotoxic stressors that impact protein synthesis, folding, and maturation provided by the model eukaryote the budding yeast, Saccharomyces cerevisiae, with reference to similarities and differences with other model organisms and humans.
Collapse
Affiliation(s)
- Alec M Santiago
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, UTHealth, Houston, TX, 77030, USA
| | - Davi L Gonçalves
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Huang YH, Hsieh DK, Sung HM. Influence of gene position on the expression divergence of oxidative response genes in intraspecific yeast. J Evol Biol 2020; 33:505-511. [PMID: 31919900 DOI: 10.1111/jeb.13584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/10/2019] [Accepted: 12/29/2019] [Indexed: 11/28/2022]
Abstract
Phenotypic variation can arise from differences in the protein coding sequence and in the regulatory elements. However, little is known about the contribution of regulatory difference to the expression divergence, especially the cis and trans regulatory variation to the expression divergence in intraspecific populations. In this study, we used two different yeast strains, BY4743 and RM11-1a/α, to study the regulatory variation to the expression divergence between BY and RM under oxidative stress condition. Our results indicated that the expression divergence of BY and RM is mainly due to trans regulatory variations under both normal and oxidative stress conditions. However, cis regulatory variation seems to play a very important role in oxidative stress response in yeast because 36% of genes showed an increase in cis regulatory variation effect compared with 13% of genes that showed an increase in trans regulatory variation effect after oxidative stress. Our data also indicated that genes located on the longer arm of the chromosomes are more susceptible to cis variation effect under oxidative stress than genes on the shorter arm of the chromosomes.
Collapse
Affiliation(s)
- Yi-Hsuan Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Dai-Keng Hsieh
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Huang-Mo Sung
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
14
|
Wan X, Marsafari M, Xu P. Engineering metabolite-responsive transcriptional factors to sense small molecules in eukaryotes: current state and perspectives. Microb Cell Fact 2019; 18:61. [PMID: 30914048 PMCID: PMC6434827 DOI: 10.1186/s12934-019-1111-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/20/2019] [Indexed: 11/18/2022] Open
Abstract
Nature has evolved exquisite sensing mechanisms to detect cellular and environmental signals surrounding living organisms. These biosensors have been widely used to sense small molecules, detect environmental cues and diagnose disease markers. Metabolic engineers and synthetic biologists have been able to exploit metabolites-responsive transcriptional factors (MRTFs) as basic tools to rewire cell metabolism, reprogram cellular activity as well as boost cell’s productivity. This is commonly achieved by integrating sensor-actuator systems with biocatalytic functions and dynamically allocating cellular resources to drive carbon flux toward the target pathway. Up to date, most of identified MRTFs are derived from bacteria. As an endeavor to advance intelligent biomanufacturing in yeast cell factory, we will summarize the opportunities and challenges to transfer the bacteria-derived MRTFs to expand the small-molecule sensing capability in eukaryotic cells. We will discuss the design principles underlying MRTF-based biosensors in eukaryotic cells, including the choice of reliable reporters and the characterization tools to minimize background noise, strategies to tune the sensor dynamic range, sensitivity and specificity, as well as the criteria to engineer activator and repressor-based biosensors. Due to the physical separation of transcription and protein expression in eukaryotes, we argue that nuclear import/export mechanism of MRTFs across the nuclear membrane plays a critical role in regulating the MRTF sensor dynamics. Precisely-controlled MRTF response will allow us to repurpose the vast majority of transcriptional factors as molecular switches to achieve temporal or spatial gene expression in eukaryotes. Uncovering this knowledge will inform us fundamental design principles to deliver robust cell factories and enable the design of reprogrammable and predictable biological systems for intelligent biomanufacturing, smart therapeutics or precision medicine in the foreseeable future.
Collapse
Affiliation(s)
- Xia Wan
- Department of Chemical Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, Hubei, China
| | - Monireh Marsafari
- Department of Chemical Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Department of Agronomy and Plant Breeding, University of Guilan, Rasht, Islamic Republic of Iran
| | - Peng Xu
- Department of Chemical Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
15
|
Ukai Y, Kuroiwa M, Kurihara N, Naruse H, Homma T, Maki H, Naito A. Contributions of yap1 Mutation and Subsequent atrF Upregulation to Voriconazole Resistance in Aspergillus flavus. Antimicrob Agents Chemother 2018; 62:AAC.01216-18. [PMID: 30126960 PMCID: PMC6201102 DOI: 10.1128/aac.01216-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 01/16/2023] Open
Abstract
Aspergillus flavus is the second most significant pathogenic cause of invasive aspergillosis; however, its emergence risks and mechanisms of voriconazole (VRC) resistance have not yet been elucidated in detail. Here, we demonstrate that repeated exposure of A. flavus to subinhibitory concentrations of VRC in vitro causes the emergence of a VRC-resistant mutant with a novel resistance mechanism. The VRC-resistant mutant shows a MIC of 16 μg/ml for VRC and of 0.5 μg/ml for itraconazole (ITC). Whole-genome sequencing analysis showed that the mutant possesses a point mutation in yap1, which encodes a bZIP transcription factor working as the master regulator of the oxidative stress response, but no mutations in the cyp51 genes. This point mutation in yap1 caused alteration of Leu558 to Trp (Yap1Leu558Trp) in the putative nuclear export sequence in the carboxy-terminal cysteine-rich domain of Yap1. This Yap1Leu558Trp substitution was confirmed as being responsible for the VRC-resistant phenotype, but not for that of ITC, by the revertant to Yap1wild type with homologous gene replacement. Furthermore, Yap1Leu558Trp caused marked upregulation of the atrF ATP-binding cassette transporter, and the deletion of atrF restored susceptibility to VRC in A. flavus These findings provide new insights into VRC resistance mechanisms via a transcriptional factor mutation that is independent of the cyp51 gene mutation in A. flavus.
Collapse
Affiliation(s)
- Yuuta Ukai
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Miho Kuroiwa
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Naoko Kurihara
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Hiroki Naruse
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Tomoyuki Homma
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Hideki Maki
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Akira Naito
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| |
Collapse
|
16
|
Liu X, Long X, Liu W, Zhao Y, Hayashi T, Yamato M, Mizuno K, Fujisaki H, Hattori S, Tashiro SI, Ogura T, Atsuzawa Y, Ikejima T. Type I collagen induces mesenchymal cell differentiation into myofibroblasts through YAP-induced TGF-β1 activation. Biochimie 2018; 150:110-130. [PMID: 29777737 DOI: 10.1016/j.biochi.2018.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
In organ fibrosis, mechanical stress and transforming growth factor beta-1 (TGF-β1) promote differentiation into myofibroblast from mesenchymal cells, leading to extracellular matrix (ECM) remodeling or active synthesis, deposition or degradation of ECM components. A major component of ECM, type I collagen (col I) triple helical molecules assemble into fibrils or are denatured to gelatin without triple-helicity in remodeling. However, whether changes of ECM components in remodeling have influence on mesenchymal cell differentiation remains elusive. This study adopted three states of collagen I existing in ECM remodeling: molecular collagen, fibrillar collagen and gelatin to see what are characteristics in the effects on two cell lines of mesenchymal origin, murine 3T3-L1 embryonic fibroblast and murine C2C12 myoblasts. The results showed that all three forms of collagen I were capable of inducing these two cells to differentiate into myofibroblasts characterized by increased expression of alpha-smooth muscle actin (α-SMA) mRNA. The expression of α-SMA is positively regulated by TGF-β1. Nuclear translocation of Yes-associated protein (YAP) is involved in this process. Focal adhesion kinase (FAK) is activated in the cells cultured on molecular collagen-coated plates, contributing to YAP activation. On the other hand, in the cells cultured on fibrillar collagen gel or gelatin-coated plates, oxidative stress but not FAK induce YAP activation. In conclusion, the three physicochemically distinct forms of col I induce the differentiation of mesenchymal cells into myofibroblasts through different pathways.
Collapse
Affiliation(s)
- Xiaoling Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinyu Long
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weiwei Liu
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yeli Zhao
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Shin-Ichi Tashiro
- Department of Medical Education and Primary Care, Kyoto Prefectural University of Medicine, Kyoto, 603-8072, Japan
| | - Takaaki Ogura
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Yuji Atsuzawa
- Nippi Research Institute of Biomatrix, Ibaraki, 302-0017, Japan
| | - Takashi Ikejima
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
17
|
Song Z, Yin Y, Lin Y, Du F, Ren G, Wang Z. The bZIP transcriptional factor activator protein-1 regulates Metarhizium rileyi morphology and mediates microsclerotia formation. Appl Microbiol Biotechnol 2018; 102:4577-4588. [DOI: 10.1007/s00253-018-8941-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 11/24/2022]
|
18
|
Houang J, Perrone G, Mawad D, Boughton PC, Ruys AJ, Lauto A. Light treatments of nail fungal infections. JOURNAL OF BIOPHOTONICS 2018; 11:e201700350. [PMID: 29227574 DOI: 10.1002/jbio.201700350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Nail fungal infections are notoriously persistent and difficult to treat which can lead to severe health impacts, particularly in the immunocompromized. Current antifungal treatments, including systemic and topical drugs, are prolonged and do not effectively provide a complete cure. Severe side effects are also associated with systemic antifungals, such as hepatotoxicity. Light treatments of onychomycosis are an emerging therapy that has localized photodynamic, photothermal or photoablative action. These treatments have shown to be an effective alternative to traditional antifungal remedies with comparable or better cure rates achieved in shorter times and without systemic side effects. This report reviews significant clinical and experimental studies in the field, highlighting mechanisms of action and major effects related to light therapy; in particular, the impact of light on fungal genetics.
Collapse
Affiliation(s)
- Jessica Houang
- Biomedical Engineering, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, Australia
| | - Gabriel Perrone
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW, Australia
- Australian Centre for NanoMedicine and ARC Centre of Excellence in Convergent BioNano Science and Technology, University of New South Wales, Sydney, NSW, Australia
- Centre for Advanced Macromolecular Design, University of New South Wales, Sydney, NSW, Australia
| | - Philip C Boughton
- Biomedical Engineering, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, Australia
| | - Andrew J Ruys
- Biomedical Engineering, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, Australia
| | - Antonio Lauto
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
19
|
Azbarova AV, Galkina KV, Sorokin MI, Severin FF, Knorre DA. The contribution of Saccharomyces cerevisiae replicative age to the variations in the levels of Trx2p, Pdr5p, Can1p and Idh isoforms. Sci Rep 2017; 7:13220. [PMID: 29038504 PMCID: PMC5643315 DOI: 10.1038/s41598-017-13576-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023] Open
Abstract
Asymmetrical division can be a reason for microbial populations heterogeneity. In particular, budding yeast daughter cells are more vulnerable to stresses than the mothers. It was suggested that yeast mother cells could also differ from each other depending on their replicative age. To test this, we measured the levels of Idh1-GFP, Idh2-GFP, Trx2-GFP, Pdr5-GFP and Can1-GFP proteins in cells of the few first, most represented, age cohorts. Pdr5p and Can1p were selected because of the pronounced mother-bud asymmetry for these proteins distributions, Trx2p as indicator of oxidative stress. Isocitrate dehydrogenase subunits Idh1p and Idh2p were assessed because their levels are regulated by mitochondria. We found a small negative correlation between yeast replicative age and Idh1-GFP or Idh2-GFP but not Trx2-GFP levels. Mitochondrial network fragmentation was also confirmed as an early event of replicative aging. No significant difference in the membrane proteins levels Pdr5p and Can1p was found. Moreover, the elder mother cells showed lower coefficient of variation for Pdr5p levels compared to the younger ones and the daughters. Our data suggest that the levels of stress-response proteins Pdr5p and Trx2p in the mother cells are stable during the first few cell cycles regardless of their mother-bud asymmetry.
Collapse
Affiliation(s)
- Aglaia V Azbarova
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Kseniia V Galkina
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, Moscow, 119991, Russia
| | - Maxim I Sorokin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia.,National Research Centre Kurchatov Institute, Centre for Convergence of Nano-, Bio-Information and Cognitive Sciences and Technologies, Moscow, 123182, Russia.,OmicsWay Corp., 340S Lemon Ave, Walnut, CA, 91789, USA
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia.
| |
Collapse
|
20
|
Shedlovskiy D, Zinskie JA, Gardner E, Pestov DG, Shcherbik N. Endonucleolytic cleavage in the expansion segment 7 of 25S rRNA is an early marker of low-level oxidative stress in yeast. J Biol Chem 2017; 292:18469-18485. [PMID: 28939771 DOI: 10.1074/jbc.m117.800003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/13/2017] [Indexed: 12/29/2022] Open
Abstract
The ability to detect and respond to oxidative stress is crucial to the survival of living organisms. In cells, sensing of increased levels of reactive oxygen species (ROS) activates many defensive mechanisms that limit or repair damage to cell components. The ROS-signaling responses necessary for cell survival under oxidative stress conditions remain incompletely understood, especially for the translational machinery. Here, we found that drug treatments or a genetic deficiency in the thioredoxin system that increase levels of endogenous hydrogen peroxide in the yeast Saccharomyces cerevisiae promote site-specific endonucleolytic cleavage in 25S ribosomal RNA (rRNA) adjacent to the c loop of the expansion segment 7 (ES7), a putative regulatory region located on the surface of the 60S ribosomal subunit. Our data also show that ES7c is cleaved at early stages of the gene expression program that enables cells to successfully counteract oxidative stress and is not a prerequisite or consequence of apoptosis. Moreover, the 60S subunits containing ES7c-cleaved rRNA cofractionate with intact subunits in sucrose gradients and repopulate polysomes after a short starvation-induced translational block, indicating their active role in translation. These results demonstrate that ES7c cleavage in rRNA is an early and sensitive marker of increased ROS levels in yeast cells and suggest that changes in ribosomes may be involved in the adaptive response to oxidative stress.
Collapse
Affiliation(s)
| | | | - Ethan Gardner
- From the Department of Cell Biology and Neuroscience and.,the Graduate School for Biomedical Sciences, Rowan University, Stratford, New Jersey 08084
| | | | | |
Collapse
|
21
|
Li X, Wu Y, Liu Z, Zhang C. The function and transcriptome analysis of a bZIP transcription factor CgAP1 in Colletotrichum gloeosporioides. Microbiol Res 2017; 197:39-48. [PMID: 28219524 DOI: 10.1016/j.micres.2017.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/10/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
Colletotrichum gloeosporioides is an important pathogen of anthracnose, which is able to infect numerous crops in tropical and subtropical regions, causing great economic losses. To investigate the fungal response to host-generated reactive oxygen species (ROS), we cloned and characterized the CgAP1 gene of C. gloeosporioides. CgAP1 encoded a bZIP transcription factor which had a bZIP DNA-binding domain and two cysteine-rich domains structurally and functionally related to Saccharomyces cerevisiae YAP1. Deletion of CgAP1 in C. gloeosporioides resulted in increasing sensitivity to H2O2, changes in cell wall integrity and loss of pathogenicity. To understand the regulatory network of CgAP1, RNA sequencing was used to identify differentially expressed genes in the CgAP1 mutant. It was shown that several genes involved in ROS detoxification and cell wall integrity were affected by CgAP1. Moreover, CgAP1 was also involved in many biological processes especially ribosome, cellular transport and amino acid metabolism. In conclusion, CgAP1 is an important transcription factor involved in oxidative stress, cell wall integrity and pathogenicity in C. gloeosporioides.
Collapse
Affiliation(s)
- Xiaoyu Li
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yateng Wu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zhiqiang Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China.
| | - Chenghui Zhang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
22
|
Zhang C, Li Z, Zhang X, Yuan L, Dai H, Xiao W. Transcriptomic profiling of chemical exposure reveals roles of Yap1 in protecting yeast cells from oxidative and other types of stresses. Yeast 2015; 33:5-19. [DOI: 10.1002/yea.3135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/04/2015] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan People's Republic of China
- University of Chinese Academy of Sciences; Beijing People's Republic of China
| | - Zhouquan Li
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan People's Republic of China
- University of Chinese Academy of Sciences; Beijing People's Republic of China
| | - Xiaohua Zhang
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan People's Republic of China
| | - Li Yuan
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan People's Republic of China
| | - Heping Dai
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology; Chinese Academy of Sciences; Wuhan People's Republic of China
| | - Wei Xiao
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
- Department of Microbiology and Immunology; University of Saskatchewan; Saskatoon Canada
| |
Collapse
|
23
|
Elucidating the response of Kluyveromyces lactis to arsenite and peroxide stress and the role of the transcription factor KlYap8. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1295-306. [DOI: 10.1016/j.bbagrm.2014.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 11/24/2022]
|
24
|
Cryptococcus neoformans Yap1 is required for normal fluconazole and oxidative stress resistance. Fungal Genet Biol 2014; 74:1-9. [PMID: 25445311 DOI: 10.1016/j.fgb.2014.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans is a pathogen that is the most common cause of fungal meningitis. As with most fungal pathogens, the most prevalent clinical antifungal used to treat Cryptococcosis is orally administered fluconazole. Resistance to this antifungal is an increasing concern in treatment of fungal disease in general. Our knowledge of the specific determinants involved in fluconazole resistance in Cryptococcus is limited. Here we report the identification of an important genetic determinant of fluconazole resistance in C. neoformans that encodes a basic region-leucine zipper transcription factor homologous to Saccharomyces cerevisiae Yap1. Expression of a codon-optimized form of the Cn YAP1 cDNA in S. cerevisiae complemented defects caused by loss of the endogenous S. cerevisiae YAP1 gene and activated transcription from a reporter gene construct. Mutant strains of C. neoformans lacking YAP1 were hypersensitive to a range of oxidative stress agents but importantly also to fluconazole. Loss of Yap1 homologues from other fungal pathogens like Candida albicans or Aspergillus fumigatus was previously found to cause oxidant hypersensitivity but had no detectable effect on fluconazole resistance. Our data provide evidence for a unique biological role of Yap1 in wild-type fluconazole resistance in C. neoformans.
Collapse
|
25
|
Engelberg D, Perlman R, Levitzki A. Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years. Cell Signal 2014; 26:2865-78. [PMID: 25218923 DOI: 10.1016/j.cellsig.2014.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
In the very first article that appeared in Cellular Signalling, published in its inaugural issue in October 1989, we reviewed signal transduction pathways in Saccharomyces cerevisiae. Although this yeast was already a powerful model organism for the study of cellular processes, it was not yet a valuable instrument for the investigation of signaling cascades. In 1989, therefore, we discussed only two pathways, the Ras/cAMP and the mating (Fus3) signaling cascades. The pivotal findings concerning those pathways undoubtedly contributed to the realization that yeast is a relevant model for understanding signal transduction in higher eukaryotes. Consequently, the last 25 years have witnessed the discovery of many signal transduction pathways in S. cerevisiae, including the high osmotic glycerol (Hog1), Stl2/Mpk1 and Smk1 mitogen-activated protein (MAP) kinase pathways, the TOR, AMPK/Snf1, SPS, PLC1 and Pkr/Gcn2 cascades, and systems that sense and respond to various types of stress. For many cascades, orthologous pathways were identified in mammals following their discovery in yeast. Here we review advances in the understanding of signaling in S. cerevisiae over the last 25 years. When all pathways are analyzed together, some prominent themes emerge. First, wiring of signaling cascades may not be identical in all S. cerevisiae strains, but is probably specific to each genetic background. This situation complicates attempts to decipher and generalize these webs of reactions. Secondly, the Ras/cAMP and the TOR cascades are pivotal pathways that affect all processes of the life of the yeast cell, whereas the yeast MAP kinase pathways are not essential. Yeast cells deficient in all MAP kinases proliferate normally. Another theme is the existence of central molecular hubs, either as single proteins (e.g., Msn2/4, Flo11) or as multisubunit complexes (e.g., TORC1/2), which are controlled by numerous pathways and in turn determine the fate of the cell. It is also apparent that lipid signaling is less developed in yeast than in higher eukaryotes. Finally, feedback regulatory mechanisms seem to be at least as important and powerful as the pathways themselves. In the final chapter of this essay we dare to imagine the essence of our next review on signaling in yeast, to be published on the 50th anniversary of Cellular Signalling in 2039.
Collapse
Affiliation(s)
- David Engelberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; CREATE-NUS-HUJ, Cellular & Molecular Mechanisms of Inflammation Programme, National University of Singapore, 1 CREATE Way, Innovation Wing, #03-09, Singapore 138602, Singapore.
| | - Riki Perlman
- Hematology Division, Hadassah Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Alexander Levitzki
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
26
|
Koleva DI, Petrova VY, Nedeva TS, Kujumdzieva AV. Sugar Utilization Influences Yeast Glutathione Synthetases and Transferases:in SilicoAnalysis. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
27
|
Paul S, Moye-Rowley WS. Multidrug resistance in fungi: regulation of transporter-encoding gene expression. Front Physiol 2014; 5:143. [PMID: 24795641 PMCID: PMC3997011 DOI: 10.3389/fphys.2014.00143] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/25/2014] [Indexed: 11/24/2022] Open
Abstract
A critical risk to the continued success of antifungal chemotherapy is the acquisition of resistance; a risk exacerbated by the few classes of effective antifungal drugs. Predictably, as the use of these drugs increases in the clinic, more resistant organisms can be isolated from patients. A particularly problematic form of drug resistance that routinely emerges in the major fungal pathogens is known as multidrug resistance. Multidrug resistance refers to the simultaneous acquisition of tolerance to a range of drugs via a limited or even single genetic change. This review will focus on recent progress in understanding pathways of multidrug resistance in fungi including those of most medical relevance. Analyses of multidrug resistance in Saccharomyces cerevisiae have provided the most detailed outline of multidrug resistance in a eukaryotic microorganism. Multidrug resistant isolates of S. cerevisiae typically result from changes in the activity of a pair of related transcription factors that in turn elicit overproduction of several target genes. Chief among these is the ATP-binding cassette (ABC)-encoding gene PDR5. Interestingly, in the medically important Candida species, very similar pathways are involved in acquisition of multidrug resistance. In both C. albicans and C. glabrata, changes in the activity of transcriptional activator proteins elicits overproduction of a protein closely related to S. cerevisiae Pdr5 called Cdr1. The major filamentous fungal pathogen, Aspergillus fumigatus, was previously thought to acquire resistance to azole compounds (the principal antifungal drug class) via alterations in the azole drug target-encoding gene cyp51A. More recent data indicate that pathways in addition to changes in the cyp51A gene are important determinants in A. fumigatus azole resistance. We will discuss findings that suggest azole resistance in A. fumigatus and Candida species may share more mechanistic similarities than previously thought.
Collapse
Affiliation(s)
- Sanjoy Paul
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
28
|
Mu D, Li C, Zhang X, Li X, Shi L, Ren A, Zhao M. Functions of the nicotinamide adenine dinucleotide phosphate oxidase family inGanoderma lucidum: an essential role in ganoderic acid biosynthesis regulation, hyphal branching, fruiting body development, and oxidative-stress resistance. Environ Microbiol 2013; 16:1709-28. [DOI: 10.1111/1462-2920.12326] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/01/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Dashuai Mu
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Chenyang Li
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Xuchen Zhang
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Xiongbiao Li
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Liang Shi
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Ang Ren
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Mingwen Zhao
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
29
|
MacDiarmid CW, Taggart J, Kerdsomboon K, Kubisiak M, Panascharoen S, Schelble K, Eide DJ. Peroxiredoxin chaperone activity is critical for protein homeostasis in zinc-deficient yeast. J Biol Chem 2013; 288:31313-27. [PMID: 24022485 DOI: 10.1074/jbc.m113.512384] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Zinc is required for the folding and function of many proteins. In Saccharomyces cerevisiae, homeostatic and adaptive responses to zinc deficiency are regulated by the Zap1 transcription factor. One Zap1 target gene encodes the Tsa1 peroxiredoxin, a protein with both peroxidase and protein chaperone activities. Consistent with its regulation, Tsa1 is critical for growth under low zinc conditions. We previously showed that Tsa1's peroxidase function decreases the oxidative stress that occurs in zinc deficiency. In this report, we show that Tsa1 chaperone, and not peroxidase, activity is the more critical function in zinc-deficient cells. Mutations restoring growth to zinc-deficient tsa1 cells inactivated TRR1, encoding thioredoxin reductase. Because Trr1 is required for oxidative stress tolerance, this result implicated the Tsa1 chaperone function in tolerance to zinc deficiency. Consistent with this hypothesis, the tsa1Δ zinc requirement was complemented by a Tsa1 mutant allele that retained only chaperone function. Additionally, growth of tsa1Δ was also restored by overexpression of holdase chaperones Hsp26 and Hsp42, which lack peroxidase activity, and the Tsa1 paralog Tsa2 contributed to suppression by trr1Δ, even though trr1Δ inactivates Tsa2 peroxidase activity. The essentiality of the Tsa1 chaperone suggested that zinc-deficient cells experience a crisis of disrupted protein folding. Consistent with this model, assays of protein homeostasis suggested that zinc-limited tsa1Δ mutants accumulated unfolded proteins and induced a corresponding stress response. These observations demonstrate a clear physiological role for a peroxiredoxin chaperone and reveal a novel and unexpected role for protein homeostasis in tolerating metal deficiency.
Collapse
Affiliation(s)
- Colin W MacDiarmid
- From the Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706 and
| | | | | | | | | | | | | |
Collapse
|
30
|
Lee SK, Chen X, Huang L, Stargell LA. The head module of Mediator directs activation of preloaded RNAPII in vivo. Nucleic Acids Res 2013; 41:10124-34. [PMID: 24005039 PMCID: PMC3905900 DOI: 10.1093/nar/gkt796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The successful synthesis of a transcript by RNA polymerase II (RNAPII) is a multistage process with distinct rate-limiting steps that can vary depending on the particular gene. A growing number of genes in a variety of organisms are regulated at steps after the recruitment of RNAPII. The best-characterized Saccharomyces cerevisiae gene regulated in this manner is CYC1. This gene has high occupancy of RNAPII under non-inducing conditions, defining it as a poised gene. Here, we find that subunits of the head module of Mediator, Med18 and Med20, and Med19 are required for activation of transcription at the CYC1 promoter in response to environmental cues. These subunits of Mediator are required at the preloaded promoter for normal levels of recruitment and activity of the general transcription factor TFIIH. Strikingly, these Mediator components are dispensable for activation by the same activator at a different gene, which lacks a preloaded polymerase in the promoter region. Based on these results and other studies, we speculate that Mediator plays an essential role in triggering an inactive polymerase at CYC1 into a productively elongating form.
Collapse
Affiliation(s)
- Sarah K Lee
- Department of Biochemistry and Molecular Biology, Colorado State University, CO 80523, USA
| | | | | | | |
Collapse
|
31
|
FrnE, a cadmium-inducible protein in Deinococcus radiodurans, is characterized as a disulfide isomerase chaperone in vitro and for its role in oxidative stress tolerance in vivo. J Bacteriol 2013; 195:2880-6. [PMID: 23603741 DOI: 10.1128/jb.01503-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deinococcus radiodurans R1 exposed to a lethal dose of cadmium shows differential expression of a large number of genes, including frnE (drfrnE) and some of those involved in DNA repair and oxidative stress tolerance. The drfrnE::nptII mutant of D. radiodurans showed growth similar to that of the wild type, but its tolerance to 10 mM cadmium and 10 mM diamide decreased by ~15- and ~3-fold, respectively. These cells also showed nearly 6 times less resistance to gamma radiation at 12 kGy and ~2-fold-higher sensitivity to 40 mM hydrogen peroxide than the wild type. In trans expression of drFrnE increased cytotoxicity of dithiothreitol (DTT) in the dsbA mutant of Escherichia coli. Recombinant drFrnE showed disulfide isomerase activity and could maintain insulin in its reduced form in the presence of DTT. While an equimolar ratio of wild-type protein could protect malate dehydrogenase completely from thermal denaturation at 42 °C, the C22S mutant of drFrnE provided reduced protection to malate dehydrogenase from thermal inactivation. These results suggested that drFrnE is a protein disulfide isomerase in vitro and has a role in oxidative stress tolerance of D. radiodurans possibly by protecting the damaged cellular proteins from inactivation.
Collapse
|
32
|
Chung KR. Stress Response and Pathogenicity of the Necrotrophic Fungal Pathogen Alternaria alternata. SCIENTIFICA 2012; 2012:635431. [PMID: 24278721 PMCID: PMC3820455 DOI: 10.6064/2012/635431] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/03/2012] [Indexed: 05/07/2023]
Abstract
The production of host-selective toxins by the necrotrophic fungus Alternaria alternata is essential for the pathogenesis. A. alternata infection in citrus leaves induces rapid lipid peroxidation, accumulation of hydrogen peroxide (H2O2), and cell death. The mechanisms by which A. alternata avoids killing by reactive oxygen species (ROS) after invasion have begun to be elucidated. The ability to coordinate of signaling pathways is essential for the detoxification of cellular stresses induced by ROS and for pathogenicity in A. alternata. A low level of H2O2, produced by the NADPH oxidase (NOX) complex, modulates ROS resistance and triggers conidiation partially via regulating the redox-responsive regulators (YAP1 and SKN7) and the mitogen-activated protein (MAP) kinase (HOG1) mediated pathways, which subsequently regulate the genes required for the biosynthesis of siderophore, an iron-chelating compound. Siderophore-mediated iron acquisition plays a key role in ROS detoxification because of the requirement of iron for the activities of antioxidants (e.g., catalase and SOD). Fungal strains impaired for the ROS-detoxifying system severely reduce the virulence on susceptible citrus cultivars. This paper summarizes the current state of knowledge of signaling pathways associated with cellular responses to multidrugs, oxidative and osmotic stress, and fungicides, as well as the pathogenicity/virulence in the tangerine pathotype of A. alternata.
Collapse
Affiliation(s)
- Kuang-Ren Chung
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
33
|
Cordente AG, Cordero-Bueso G, Pretorius IS, Curtin CD. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. FEMS Yeast Res 2012; 13:62-73. [PMID: 23146134 DOI: 10.1111/1567-1364.12010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/20/2012] [Accepted: 09/30/2012] [Indexed: 11/28/2022] Open
Abstract
Acetic acid, a byproduct formed during yeast alcoholic fermentation, is the main component of volatile acidity (VA). When present in high concentrations in wine, acetic acid imparts an undesirable 'vinegary' character that results in a significant reduction in quality and sales. Previously, it has been shown that saké yeast strains resistant to the antifungal cerulenin produce significantly lower levels of VA. In this study, we used a classical mutagenesis method to isolate a series of cerulenin-resistant strains, derived from a commercial diploid wine yeast. Four of the selected strains showed a consistent low-VA production phenotype after small-scale fermentation of different white and red grape musts. Specific mutations in YAP1, a gene encoding a transcription factor required for oxidative stress tolerance, were found in three of the four low-VA strains. When integrated into the genome of a haploid wine strain, the mutated YAP1 alleles partially reproduced the low-VA production phenotype of the diploid cerulenin-resistant strains, suggesting that YAP1 might play a role in (regulating) acetic acid production during fermentation. This study offers prospects for the development of low-VA wine yeast starter strains that could assist winemakers in their effort to consistently produce wine to definable quality specifications.
Collapse
|
34
|
Walther A, Wendland J. Yap1-dependent oxidative stress response provides a link to riboflavin production in Ashbya gossypii. Fungal Genet Biol 2012; 49:697-707. [PMID: 22750190 DOI: 10.1016/j.fgb.2012.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 06/08/2012] [Accepted: 06/13/2012] [Indexed: 12/23/2022]
Abstract
Ashbya gossypii is a natural overproducer of riboflavin. Overproduction of riboflavin can be induced by environmental stress, e.g. nutritional or oxidative stress. The Yap-protein family has a well-documented role in stress response. Particularly, Yap1 has a major role in directing the oxidative stress responses. The A. gossypii YAP-family consists of only three genes in contrast to its closest relative Eremothecium cymbalariae, which has four YAP-homologs. Gene order at Eremothecium YAP-loci is conserved with the reconstructed yeast ancestor. AgYap1p is unique amongst Yap-homologs as it lacks the cysteine-rich domains (CRDs). AgYAP1 expression is inducible and GFP-AgYap1 localizes to the nucleus. Agyap1 mutants displayed higher sensitivity against oxidative stress - H(2)O(2) and menadione - and are strongly reduced in riboflavin production. High levels of cAMP, which also reduce riboflavin production, show a synergistic effect on this sensitivity. AgYAP1 and a chimera of AgYAP1 (with the DNA-binding domain) and ScYAP1 (with the CRDs) can both complement the Scyap1 oxidative stress sensitivity. This suggests that the DNA-binding sites of ScYap1 are conserved in A. gossypii. Expression of AgRIB4, which contains three putative Yap1-binding sites, assayed via a lacZ-reporter gene was strongly reduced in an Agyap1 mutant suggesting a direct involvement of AgYap1 in riboflavin production. Furthermore, our data show that application of H(2)O(2) stress leads to an increase in riboflavin production in a Yap1-dependent manner.
Collapse
Affiliation(s)
- Andrea Walther
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Copenhagen, Denmark
| | | |
Collapse
|
35
|
Gulshan K, Thommandru B, Moye-Rowley WS. Proteolytic degradation of the Yap1 transcription factor is regulated by subcellular localization and the E3 ubiquitin ligase Not4. J Biol Chem 2012; 287:26796-805. [PMID: 22707721 DOI: 10.1074/jbc.m112.384719] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Yap1 is a transcriptional regulatory protein that serves as a central determinant of oxidative stress tolerance. Activity of this factor is regulated in large part by control of its subcellular location. In the absence of oxidants, Yap1 is primarily located in the cytoplasm. Upon oxidant challenge, Yap1 accumulates rapidly in the nucleus where it activates expression of genes required for oxidative stress tolerance such as the thioredoxin TRX2. Here, we demonstrate that Yap1 degradation is accelerated in response to oxidative stress. Yap1 is folded differently depending on the oxidant used to induce its nuclear localization but is degraded similarly, irrespective of its folded status. Mutant forms of Yap1 that are constitutively trapped in the nucleus are degraded in the absence of an oxidant signal. Degradation requires the ability of the protein to bind DNA and a domain in the amino-terminal region of the factor. Inhibition of the proteasome prevents Yap1 turnover. Screening a variety of mutants involved in ubiquitin-mediated proteolysis demonstrated an important role for the nuclear ubiquitin ligase Not4 in Yap1 degradation. Not4 was found to bind to Yap1 in an oxidant-stimulated fashion. The Candida albicans Yap1 homologue (Cap1) also was degraded after oxidant challenge. These data uncover a new, conserved pathway for regulation of the oxidative stress response that serves to temporally limit the duration of Yap1-dependent transcriptional activation.
Collapse
Affiliation(s)
- Kailash Gulshan
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
36
|
Rowe LA, Degtyareva N, Doetsch PW. Yap1: a DNA damage responder in Saccharomyces cerevisiae. Mech Ageing Dev 2012; 133:147-56. [PMID: 22433435 PMCID: PMC3351557 DOI: 10.1016/j.mad.2012.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/29/2012] [Accepted: 03/09/2012] [Indexed: 12/27/2022]
Abstract
Activation of signaling pathways in response to genotoxic stress is crucial for cells to properly repair DNA damage. In response to DNA damage, intracellular levels of reactive oxygen species increase. One important function of such a response could be to initiate signal transduction processes. We have employed the model eukaryote Saccharomyces cerevisiae to delineate DNA damage sensing mechanisms. We report a novel, unanticipated role for the transcription factor Yap1 as a DNA damage responder, providing direct evidence that reactive oxygen species are an important component of the DNA damage signaling process. Our findings reveal an epistatic link between Yap1 and the DNA base excision repair pathway. Corruption of the Yap1-mediated DNA damage response influences cell survival and genomic stability in response to exposure to genotoxic agents.
Collapse
Affiliation(s)
- Lori A. Rowe
- Department of Biochemistry, Emory University School of Medicine, Atlanta, USA, 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, USA, 30322
| | - Natalya Degtyareva
- Department of Biochemistry, Emory University School of Medicine, Atlanta, USA, 30322
- Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, USA, 30322
| | - Paul W. Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, USA, 30322
- Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta, USA, 30322
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, USA, 30322
- Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, USA, 30322
| |
Collapse
|
37
|
Abstract
Oxidative damage to cellular constituents has frequently been associated with aging in a wide range of organisms. The power of yeast genetics and biochemistry has provided the opportunity to analyse in some detail how reactive oxygen and nitrogen species arise in cells, how cells respond to the damage that these reactive species cause, and to begin to dissect how these species may be involved in the ageing process. This chapter reviews the major sources of reactive oxygen species that occur in yeast cells, the damage they cause and how cells sense and respond to this damage.
Collapse
Affiliation(s)
- May T Aung-Htut
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia,
| | | | | | | |
Collapse
|
38
|
Carmona L, Gandía M, López-García B, Marcos JF. Sensitivity of Saccharomyces cerevisiae to the cell-penetrating antifungal peptide PAF26 correlates with endogenous nitric oxide (NO) production. Biochem Biophys Res Commun 2012; 417:56-61. [DOI: 10.1016/j.bbrc.2011.11.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 01/30/2023]
|
39
|
Abstract
A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters.
Collapse
|
40
|
Trendeleva T, Sukhanova E, Ural’skaya L, Saris NE, Zvyagilskaya R. Effect of prooxidants on yeast mitochondria. J Bioenerg Biomembr 2011; 43:633-44. [DOI: 10.1007/s10863-011-9403-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/25/2011] [Indexed: 01/08/2023]
|
41
|
Gulshan K, Lee SS, Moye-Rowley WS. Differential oxidant tolerance determined by the key transcription factor Yap1 is controlled by levels of the Yap1-binding protein, Ybp1. J Biol Chem 2011; 286:34071-81. [PMID: 21844193 PMCID: PMC3190762 DOI: 10.1074/jbc.m111.251298] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/11/2011] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae transcription factor Yap1 is a central determinant of oxidative stress tolerance. This protein is found primarily in the cytoplasm in the absence of oxidative stress but, upon exposure to oxidants, rapidly translocates to the nucleus and activates expression of target genes. Although both diamide and H(2)O(2) have been used to impose oxidative stress on cells, these different oxidants trigger Yap1 nuclear localization in distinctly different ways. Diamide appears to oxidize particular cysteine residues on Yap1, leading to inhibition of association of Yap1 with the nuclear exportin Crm1. Crm1 would normally transport Yap1 out of the nucleus. H(2)O(2) activation of Yap1 nuclear localization requires the participation of the glutathione peroxidase Gpx3 and the Yap1-binding protein Ybp1. H(2)O(2) exposure triggers formation of a dual disulfide bonded Yap1 that is catalyzed by the presence of Gpx3 and Ybp1. In the current study, we have determined that two distinct pools of Yap1 exist in the cell. These pools are designated by the level of Ybp1. Ybp1 interacts directly with Yap1 and these proteins form a stable complex in vivo. Genetic and biochemical experiments indicate that Ybp1 is rate-limiting for Yap1 oxidative folding during H(2)O(2) stress. The fungal pathogen Candida glabrata expresses a protein homologous to Ybp1 called CgYbp1. Overproduction of CgYbp1 elevated H(2)O(2) tolerance in this pathogen indicating that the determinative role of Ybp1 in setting the level of H(2)O(2) resistance has been evolutionarily conserved.
Collapse
Affiliation(s)
- Kailash Gulshan
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, 52242
| | | | - W. Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, 52242
| |
Collapse
|
42
|
Association of the Skn7 and Yap1 transcription factors in the Saccharomyces cerevisiae oxidative stress response. EUKARYOTIC CELL 2011; 10:761-9. [PMID: 21478431 DOI: 10.1128/ec.00328-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae Skn7p is a stress response transcription factor that undergoes aspartyl phosphorylation by the Sln1p histidine kinase. Aspartyl phosphorylation of Skn7p is required for activation of genes required in response to wall stress, but Skn7p also activates oxidative stress response genes in an aspartyl phosphorylation-independent manner. The presence of binding sites for the Yap1p and Skn7p transcription factors in oxidative stress response promoters and the oxidative stress-sensitive phenotypes of SKN7 and YAP1 mutants suggest that these two factors work together. We present here evidence for a DNA-independent interaction between the Skn7 and Yap1 proteins that involves the receiver domain of Skn7p and the cysteine-rich domains of Yap1p. The interaction with Yap1p may help partition the Skn7 protein to oxidative stress response promoters when the Yap1 protein accumulates in the nucleus.
Collapse
|
43
|
Lushchak VI. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:175-90. [PMID: 20959147 DOI: 10.1016/j.cbpc.2010.10.004] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 01/17/2023]
Abstract
Reactive oxygen species (ROS) are continuously produced and eliminated by living organisms normally maintaining ROS at certain steady-state levels. Under some circumstances, the balance between ROS generation and elimination is disturbed leading to enhanced ROS level called "oxidative stress". The primary goal of this review is to characterize two principal mechanisms of protection against oxidative stress - regulation of membrane permeability and antioxidant potential. The ancillary goals of this work are to describe up to date knowledge on the regulation of the previously mentioned mechanisms and to identify areas of prospective research and emerging directions in investigation of adaptation to oxidative stress. The ubiquity for challenges leading to oxidative stress development calls for identification of common mechanisms. They are cysteine residues and [Fe,S]-clusters of specific regulatory proteins. The latter mechanism is realized via SoxR bacterial protein, whereas the former mechanism is involved in operation of bacterial OxyR regulon, yeast H(2)O(2)-stimulon, plant NPR1/TGA and Rap2.4a systems, and animal Keap1/Nrf2, NF-κB and AP-1, and others. Although hundreds of studies have been carried out in the field with different taxa, the comparative analysis of adaptive response is quite incomplete and therefore, this work aims to cover a plethora of phylogenetic groups to delineate common mechanisms. In addition, this article raises some questions to be elucidated and points out future directions of this research. The comparative approach is used to shed light on fundamental principles and mechanisms of regulation of antioxidant systems. The idea is to provide starting points from which we can develop novel tools and hypothesis to facilitate meaningful investigations in the physiology and biochemistry of organismic response to oxidative stress.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76025, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
44
|
Guo M, Chen Y, Du Y, Dong Y, Guo W, Zhai S, Zhang H, Dong S, Zhang Z, Wang Y, Wang P, Zheng X. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog 2011; 7:e1001302. [PMID: 21383978 PMCID: PMC3044703 DOI: 10.1371/journal.ppat.1001302] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/20/2011] [Indexed: 01/05/2023] Open
Abstract
Saccharomyces cerevisiae Yap1 protein is an AP1-like transcription factor involved in the regulation of the oxidative stress response. An ortholog of Yap1, MoAP1, was recently identified from the rice blast fungus Magnaporthe oryzae genome. We found that MoAP1 is highly expressed in conidia and during invasive hyphal growth. The Moap1 mutant was sensitive to H2O2, similar to S. cerevisiae yap1 mutants, and MoAP1 complemented Yap1 function in resistance to H2O2, albeit partially. The Moap1 mutant also exhibited various defects in aerial hyphal growth, mycelial branching, conidia formation, the production of extracellular peroxidases and laccases, and melanin pigmentation. Consequently, the Moap1 mutant was unable to infect the host plant. The MoAP1-eGFP fusion protein is localized inside the nucleus upon exposure to H2O2, suggesting that MoAP1 also functions as a redox sensor. Moreover, through RNA sequence analysis, many MoAP1-regulated genes were identified, including several novel ones that were also involved in pathogenicity. Disruption of respective MGG_01662 (MoAAT) and MGG_02531 (encoding hypothetical protein) genes did not result in any detectable changes in conidial germination and appressorium formation but reduced pathogenicity, whereas the mutant strains of MGG_01230 (MoSSADH) and MGG_15157 (MoACT) showed marketed reductions in aerial hyphal growth, mycelial branching, and loss of conidiation as well as pathogenicity, similar to the Moap1 mutant. Taken together, our studies identify MoAP1 as a positive transcription factor that regulates transcriptions of MGG_01662, MGG_02531, MGG_01230, and MGG_15157 that are important in the growth, development, and pathogenicity of M. oryzae. Magnaporthe oryzae is a causal agent of rice blast disease and an important model for understanding of fungal development and pathogenicity. To examine the molecular mechanisms involved in conidium formation and appressorium development of M. oryzae, we identified the transcriptional factor MoAP1 as a regulator of the oxidative stress response. Our results indicated that MoAP1 is a stage-specific regulator for conidium formation, morphology, aerial hyphal growth, and also growth in planta. Additionally, we identified four novel genes whose functions were linked to MoAP1 and pathogenicity. Disruption of MGG_01662 (encoding aminobutyrate aminotransferase, MoAat) and MGG_02531 (hypothetical protein) caused minor phenotypic changes but attenuated virulence, and disruption of MGG_01230 (encoding succinic semialdehyde dehydrogenase, MoSsadh) and MGG_15157 (encoding acetyltransferase, MoAct) resulted in drastic reductions in the growth of aerial hyphae and hyphal branching as well as loss of conidiation and pathogenicity. Our studies extend the current understanding of AP1 functions in fungi and reveal that the MoAP1-mediated regulatory network is associated with the pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Min Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Yue Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Yan Du
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Yanhan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Wang Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Su Zhai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
- * E-mail:
| | - Yuanchao Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | - Ping Wang
- Department of Pediatrics and the Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
45
|
Glyoxalase system in yeasts: structure, function, and physiology. Semin Cell Dev Biol 2011; 22:278-84. [PMID: 21310260 DOI: 10.1016/j.semcdb.2011.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/02/2011] [Indexed: 11/22/2022]
Abstract
The glyoxalase system consists of glyoxalase I and glyoxalase II. Glyoxalase I catalyzes the conversion of methylglyoxal (CH(3)COCHO), a metabolite derived from glycolysis, with glutathione to S-D-lactoylglutathione, while glyoxalase II hydrolyses this glutathione thiolester to D-lactic acid and glutathione. Since methylglyoxal is toxic due to its high reactivity, the glyoxalase system is crucial to warrant the efficient metabolic flux of this reactive aldehyde. The budding yeast Saccharomyces cerevisiae has the sole gene (GLO1) encoding the structural gene for glyoxalase I. Meanwhile, this yeast has two isoforms of glyoxalase II encoded by GLO2 and GLO4. The expression of GLO1 is regulated by Hog1 mitogen-activated protein kinase and Msn2/Msn4 transcription factors under highly osmotic stress conditions. The physiological significance of GLO1 expression in response to osmotic stress is to combat the increase in the levels of methylglyoxal in cells during the production of glycerol as a compatible osmolyte. Deficiency in GLO1 in S. cerevisiae causes pleiotropic phenotypes in terms of stress response, because the steady state level of methylglyoxal increases in glo1Δ cells thereby constitutively activating Yap1 transcription factor. Yap1 is crucial for oxidative stress response, although methylglyoxal per se does not enhance the intracellular oxidation level in yeast, but it directly modifies cysteine residues of Yap1 that are critical for the nucleocytoplasmic localization of this b-ZIP transcription factor. Consequently, glyoxalase I can be defined as a negative regulator of Yap1 through modulating the intracellular methylglyoxal level.
Collapse
|
46
|
Ouyang X, Tran QT, Goodwin S, Wible RS, Sutter CH, Sutter TR. Yap1 activation by H2O2 or thiol-reactive chemicals elicits distinct adaptive gene responses. Free Radic Biol Med 2011; 50:1-13. [PMID: 20971184 DOI: 10.1016/j.freeradbiomed.2010.10.697] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/06/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022]
Abstract
The yeast Saccharomyces cerevisiae transcription factor Yap1 mediates an adaptive response to oxidative stress by regulating protective genes. H(2)O(2) activates Yap1 through the Gpx3-mediated formation of a Yap1 Cys303-Cys598 intramolecular disulfide bond. Thiol-reactive electrophiles can activate Yap1 directly by adduction to cysteine residues in the C-terminal domain containing Cys598, Cys620, and Cys629. H(2)O(2) and N-ethylmaleimide (NEM) showed no cross-protection against each other, whereas another thiol-reactive chemical, acrolein, elicited Yap1-dependent cross-protection against NEM, but not H(2)O(2). Either Cys620 or Cys629 was sufficient for activation of Yap1 by NEM or acrolein; Cys598 was dispensable for this activation mechanism. To determine whether Yap1 activated by H(2)O(2) or thiol-reactive chemicals elicits distinct adaptive gene responses, microarray analysis was performed on the wild-type strain or its isogenic single-deletion strain Δyap1 treated with control buffer, H(2)O(2), NEM, or acrolein. Sixty-five unique H(2)O(2) and 327 NEM and acrolein Yap1-dependent responsive genes were identified. Functional analysis using single-gene-deletion yeast strains demonstrated that protection was conferred by CTA1 and CTT1 in the H(2)O(2)-responsive subset and YDR042C in the NEM- and acrolein-responsive subset. These findings demonstrate that the distinct mechanisms of Yap1 activation by H(2)O(2) or thiol-reactive chemicals result in selective expression of protective genes.
Collapse
Affiliation(s)
- Xiaoguang Ouyang
- Department of Biological Sciences and W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152-3560, USA
| | | | | | | | | | | |
Collapse
|
47
|
Teixeira MC, Cabrito TR, Hanif ZM, Vargas RC, Tenreiro S, Sá-Correia I. Yeast response and tolerance to polyamine toxicity involving the drug : H+ antiporter Qdr3 and the transcription factors Yap1 and Gcn4. MICROBIOLOGY-SGM 2010; 157:945-956. [PMID: 21148207 DOI: 10.1099/mic.0.043661-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The yeast QDR3 gene encodes a plasma membrane drug : H(+) antiporter of the DHA1 family that was described as conferring resistance against the drugs quinidine, cisplatin and bleomycin and the herbicide barban, similar to its close homologue QDR2. In this work, a new physiological role for Qdr3 in polyamine homeostasis is proposed. QDR3 is shown to confer resistance to the polyamines spermine and spermidine, but, unlike Qdr2, also a determinant of resistance to polyamines, Qdr3 has no apparent role in K(+) homeostasis. QDR3 transcription is upregulated in yeast cells exposed to spermine or spermidine dependent on the transcription factors Gcn4, which controls amino acid homeostasis, and Yap1, the main regulator of oxidative stress response. Yap1 was found to be a major determinant of polyamine stress resistance in yeast and is accumulated in the nucleus of yeast cells exposed to spermidine-induced stress. QDR3 transcript levels were also found to increase under nitrogen or amino acid limitation; this regulation is also dependent on Gcn4. Consistent with the concept that Qdr3 plays a role in polyamine homeostasis, QDR3 expression was found to decrease the intracellular accumulation of [(3)H]spermidine, playing a role in the maintenance of the plasma membrane potential in spermidine-stressed cells.
Collapse
Affiliation(s)
- Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Tânia R Cabrito
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Zaitunnissa M Hanif
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Rita C Vargas
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Sandra Tenreiro
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Isabel Sá-Correia
- Department of Bioengineering, Instituto Superior Técnico, 1049-001, Lisboa, Portugal.,Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| |
Collapse
|
48
|
Saenko YV, Shutov AM, Rastorgueva EV. Doxorubicin and menadione decrease cell proliferation of Saccharomyces cerevisiae by different mechanisms. ACTA ACUST UNITED AC 2010. [DOI: 10.1134/s1990519x1004005x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Popa CV, Dumitru I, Ruta LL, Danet AF, Farcasanu IC. Exogenous oxidative stress induces Ca2+ release in the yeast Saccharomyces cerevisiae. FEBS J 2010; 277:4027-38. [PMID: 20735472 DOI: 10.1111/j.1742-4658.2010.07794.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Ca(2+) -dependent response to oxidative stress caused by H(2)O(2) or tert-butylhydroperoxide (tBOOH) was investigated in Saccharomyces cerevisiae cells expressing transgenic cytosolic aequorin, a Ca(2+) -dependent photoprotein. Both H(2)O(2) and tBOOH induced an immediate and short-duration cytosolic Ca(2+) increase that depended on the concentration of the stressors. Sublethal doses of H(2)O(2) induced Ca(2+) entry into the cytosol from both extracellular and vacuolar sources, whereas lethal H(2)O(2) shock mobilized predominantly the vacuolar Ca(2+). Sublethal and lethal tBOOH shocks induced mainly the influx of external Ca(2+), accompanied by a more modest vacuolar contribution. Ca(2+) transport across the plasma membrane did not necessarily involve the activity of the Cch1p/Mid1p channel, whereas the release of vacuolar Ca(2+) into the cytosol required the vacuolar channel Yvc1p. In mutants lacking the Ca(2+) transporters, H(2)O(2) or tBOOH sensitivity correlated with cytosolic Ca(2+) overload. Thus, it appears that under H(2)O(2)-induced or tBOOH-induced oxidative stress, Ca(2+) mediates the cytotoxic effect of the stressors and not the adaptation process.
Collapse
|
50
|
Abstract
The mechanisms of production and elimination of reactive oxygen species in the cells of the budding yeast Saccharomyces cerevisiae are analyzed. Coordinative role of special regulatory proteins including Yap1p, Msn2/4p, and Skn7p (Pos9p) in regulation of defense mechanisms in S. cerevisiae is described. A special section is devoted to two other well-studied species from the point of view of oxidative stress -- Schizosaccharomyces pombe and Candida albicans. Some examples demonstrating the use of yeast for investigation of apoptosis, aging, and some human diseases are given in the conclusion part.
Collapse
Affiliation(s)
- V I Lushchak
- Department of Biochemistry, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, Ukraine.
| |
Collapse
|