1
|
Abstract
Basal autophagy is as a compressive catabolic mechanism engaged in the breakdown of damaged macromolecules and organelles leading to the recycling of elementary nutrients. Thought essential to cellular refreshing, little is known about the origin of a constitutional rate of basal autophagy. Here, we found that loss of Drosophila vacuolar peduncle (vap), a presumed GAP enzyme, is associated with enhanced basal autophagy rate and physiological alterations resulting in a wasteful cell energy balance, a hallmark of overactive autophagy. By contrast, starvation-induced autophagy was disrupted in vap mutant conditions, leading to a block of maturation into autolysosomes. This phenotype stem for exacerbated biogenesis of PI(3)P-dependent endomembranes, including autophagosome membranes and ectopic fusions of vesicles. These findings shed new light on the neurodegenerative phenotype found associated to mutant vap adult brains in a former study. A partner of Vap, Sprint (Spri), acting as an endocytic GEF for Rab5, had the converse effect of leading to a reduction in PI(3)P-dependent endomembrane formation in mutants. Spri was conditional to normal basal autophagy and instrumental to the starvation-sensitivity phenotype specific of vap. Rab5 activity itself was essential for PI(3)P and for pre-autophagosome structures formation. We propose that Vap/Spri complexes promote a cell surface-derived flow of endocytic Rab5-containing vesicles, the traffic of which is crucial for the implementation of a basal autophagy rate.
Collapse
|
2
|
Heigwer F, Scheeder C, Miersch T, Schmitt B, Blass C, Pour Jamnani MV, Boutros M. Time-resolved mapping of genetic interactions to model rewiring of signaling pathways. eLife 2018; 7:40174. [PMID: 30592458 PMCID: PMC6319608 DOI: 10.7554/elife.40174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Context-dependent changes in genetic interactions are an important feature of cellular pathways and their varying responses under different environmental conditions. However, methodological frameworks to investigate the plasticity of genetic interaction networks over time or in response to external stresses are largely lacking. To analyze the plasticity of genetic interactions, we performed a combinatorial RNAi screen in Drosophila cells at multiple time points and after pharmacological inhibition of Ras signaling activity. Using an image-based morphology assay to capture a broad range of phenotypes, we assessed the effect of 12768 pairwise RNAi perturbations in six different conditions. We found that genetic interactions form in different trajectories and developed an algorithm, termed MODIFI, to analyze how genetic interactions rewire over time. Using this framework, we identified more statistically significant interactions compared to end-point assays and further observed several examples of context-dependent crosstalk between signaling pathways such as an interaction between Ras and Rel which is dependent on MEK activity. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Florian Heigwer
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,HBIGS Graduate School, Heidelberg University, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Christian Scheeder
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,HBIGS Graduate School, Heidelberg University, Heidelberg, Germany
| | - Thilo Miersch
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Barbara Schmitt
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Claudia Blass
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Mischan Vali Pour Jamnani
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Matsuda R, Hosono C, Samakovlis C, Saigo K. Multipotent versus differentiated cell fate selection in the developing Drosophila airways. eLife 2015; 4. [PMID: 26633813 PMCID: PMC4775228 DOI: 10.7554/elife.09646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/02/2015] [Indexed: 12/03/2022] Open
Abstract
Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI:http://dx.doi.org/10.7554/eLife.09646.001 Many organs are composed of tubes of different sizes, shapes and patterns that transport vital substances from one site to another. In the fruit fly species Drosophila melanogaster, oxygen is transported by a tubular network, which divides into finer tubes that allow the oxygen to reach every part of the body. Different parts of the fruit fly’s airways develop from different groups of tracheal precursor cells. P-fate cells form the most 'proximal' tubes (which are found next to the outer layer of the fly). These cells are 'multipotent' stem cells, and have the ability to specialize into many different types of cells during metamorphosis. The more 'distal' branches that emerge from the proximal tubes develop from D-fate cells. These are cells that generally acquire a narrower range of cell identities. By performing a genetic analysis of fruit fly embryos, Matsuda et al. have now identified several proteins and signaling molecules that control whether tracheal precursor cells become D-fate or P-fate cells. For example, several signaling pathways work with a protein called Ventral veinless to cause D-fate cells to develop instead of P-fate cells. However, molecules that prevent signaling occurring via these pathways help P-fate cells to form. Different amounts of the molecules that either promote or hinder these signaling processes are present in different parts of the fly embryo; this helps the airways of the fly to develop in the correct pattern. This work provides a comprehensive view of how cell types with different developmental potentials are positioned in a complex tubular network. This sets a basis for future studies addressing how the respiratory organs – and indeed the entire organism – are sustained. DOI:http://dx.doi.org/10.7554/eLife.09646.002
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chie Hosono
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden.,ECCPS, Justus Liebig University of Giessen, Giessen, Germany
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Lebreton G, Casanova J. Ligand-binding and constitutive FGF receptors in single Drosophila tracheal cells: Implications for the role of FGF in collective migration. Dev Dyn 2015; 245:372-8. [PMID: 26342211 DOI: 10.1002/dvdy.24345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The migration of individual cells relies on their capacity to evaluate differences across their bodies and to move either toward or against a chemoattractant or a chemorepellent signal respectively. However, the direction of collective migration is believed to depend on the internal organization of the cell cluster while the role of the external signal is limited to single out some cells in the cluster, conferring them with motility properties. RESULTS Here we analyzed the role of Fibroblast Growth Factor (FGF) signaling in collective migration in the Drosophila trachea. While ligand-binding FGF receptor (FGFR) activity in a single cell can drive migration of a tracheal cluster, we show that activity from a constitutively activated FGFR cannot-an observation that contrasts with previously analyzed cases. CONCLUSIONS Our results indicate that individual cells in the tracheal cluster can "read" differences in the distribution of FGFR activity and lead migration of the cluster accordingly. Thus, FGF can act as a chemoattractant rather than as a motogen in collective cell migration. This finding has many implications in both development and pathology.
Collapse
Affiliation(s)
- Gaëlle Lebreton
- Institut de Biologia Molecular de Barcelona (CSIC) and Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC) and Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Rowshanravan B, Woodcock SA, Botella JA, Kiermayer C, Schneuwly S, Hughes DA. RasGAP mediates neuronal survival in Drosophila through direct regulation of Rab5-dependent endocytosis. J Cell Sci 2014; 127:2849-61. [PMID: 24816559 DOI: 10.1242/jcs.139329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GTPase Ras can either promote or inhibit cell survival. Inactivating mutations in Drosophila RasGAP (encoded by vap), a Ras GTPase-activating protein, lead to age-related brain degeneration. Genetic interactions implicate the epidermal growth factor receptor (EGFR)-Ras pathway in promoting neurodegeneration but the mechanism is not known. Here, we show that the Src homology 2 (SH2) domains of RasGAP are essential for its neuroprotective function. By using affinity purification and mass spectrometry, we identify a complex containing RasGAP together with Sprint, which is a Ras effector and putative activator of the endocytic GTPase Rab5. Formation of the RasGAP-Sprint complex requires the SH2 domains of RasGAP and tyrosine phosphorylation of Sprint. RasGAP and Sprint colocalize with Rab5-positive early endosomes but not with Rab7-positive late endosomes. We demonstrate a key role for this interaction in neurodegeneration: mutation of Sprint (or Rab5) suppresses neuronal cell death caused by the loss of RasGAP. These results indicate that the long-term survival of adult neurons in Drosophila is crucially dependent on the activities of two GTPases, Ras and Rab5, regulated by the interplay of RasGAP and Sprint.
Collapse
Affiliation(s)
- Behzad Rowshanravan
- The Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Simon A Woodcock
- The Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - José A Botella
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany
| | - Claudia Kiermayer
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stephan Schneuwly
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany
| | - David A Hughes
- The Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
6
|
Activation of Ras/MEK/ERK signaling in chronic subdural hematoma outer membranes. Brain Res 2012; 1489:98-103. [DOI: 10.1016/j.brainres.2012.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/07/2012] [Indexed: 01/01/2023]
|
7
|
Abstract
PURPOSE OF REVIEW It has been known for decades that in order to grow, tumors need to activate quiescent endothelial cells to form a functional vascular network, a process termed 'angiogenesis'. However, the molecular determinants that reverse this endothelial quiescence to facilitate pathological angiogenesis are not yet completely understood. This review examines a critical regulatory switch at the level of Ras that activates this angiogenic switch process and the role that microRNAs play in this process. RECENT FINDINGS In the last few years, microRNAs, a new class of small RNA molecules, have emerged as key regulators of several cellular processes, including angiogenesis. MicroRNAs such as miR-126, miR-296, and miR-92a have been shown to play important roles in angiogenesis. We recently described how miR-132, an angiogenic growth factor inducible microRNA in the endothelium, facilitates pathological angiogenesis by downregulating p120RasGAP, a molecular brake for Ras. Importantly, targeting miR-132 with a complementary, synthetic antimicroRNA restored the brake and decreased angiogenesis and tumor burden in multiple tumor models. Taken together, emerging evidence suggests a central role for microRNAs downstream of multiple growth factors in regulating endothelial proliferation, migration, and vascular patterning. SUMMARY Further research into miR-132-p120RasGAP biology and more broadly, microRNA regulation of Ras pathways in the endothelium will not only advance our understanding of angiogenesis but also provide opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Sudarshan Anand
- Moores UCSD Cancer Center and Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
8
|
Pamonsinlapatham P, Hadj-Slimane R, Lepelletier Y, Allain B, Toccafondi M, Garbay C, Raynaud F. p120-Ras GTPase activating protein (RasGAP): a multi-interacting protein in downstream signaling. Biochimie 2008; 91:320-8. [PMID: 19022332 DOI: 10.1016/j.biochi.2008.10.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 10/16/2008] [Indexed: 11/29/2022]
Abstract
p120-RasGAP (Ras GTPase activating protein) plays a key role in the regulation of Ras-GTP bound by promoting GTP hydrolysis via its C-terminal catalytic domain. The p120-RasGAP N-terminal part contains two SH2, SH3, PH (pleckstrin homology) and CaLB/C2 (calcium-dependent phospholipid-binding domain) domains. These protein domains allow various functions, such as anti-/pro-apoptosis, proliferation and also cell migration depending of their distinct partners. The p120-RasGAP domain participates in protein-protein interactions with Akt, Aurora or RhoGAP to regulate functions described bellow. Here, we summarize, in angiogenesis and cancer, the various functional roles played by p120-RasGAP domains and their effector partners in downstream signaling.
Collapse
Affiliation(s)
- Perayot Pamonsinlapatham
- Université Paris Descartes, UFR Biomédicale, Laboratoire de Pharmacochimie Moléculaire et Cellulaire, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Walker JA, Tchoudakova AV, McKenney PT, Brill S, Wu D, Cowley GS, Hariharan IK, Bernards A. Reduced growth of Drosophila neurofibromatosis 1 mutants reflects a non-cell-autonomous requirement for GTPase-Activating Protein activity in larval neurons. Genes Dev 2006; 20:3311-23. [PMID: 17114577 PMCID: PMC1686607 DOI: 10.1101/gad.1466806] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neurofibromatosis type 1 (NF1) is among the most common genetic disorders of humans and is caused by loss of neurofibromin, a large and highly conserved protein whose only known function is to serve as a GTPase-Activating Protein (GAP) for Ras. However, most Drosophila NF1 mutant phenotypes, including an overall growth deficiency, are not readily modified by manipulating Ras signaling strength, but are rescued by increasing signaling through the cAMP-dependent protein kinase A pathway. This has led to suggestions that NF1 has distinct Ras- and cAMP-related functions. Here we report that the Drosophila NF1 growth defect reflects a non-cell-autonomous requirement for NF1 in larval neurons that express the R-Ras ortholog Ras2, that NF1 is a GAP for Ras1 and Ras2, and that a functional NF1-GAP catalytic domain is both necessary and sufficient for rescue. Moreover, a Drosophila p120RasGAP ortholog, when expressed in the appropriate cells, can substitute for NF1 in growth regulation. Our results show that loss of NF1 can give rise to non-cell-autonomous developmental defects, implicate aberrant Ras-mediated signaling in larval neurons as the primary cause of the NF1 growth deficiency, and argue against the notion that neurofibromin has separable Ras- and cAMP-related functions.
Collapse
Affiliation(s)
- James A Walker
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Li WX. Functions and mechanisms of receptor tyrosine kinase Torso signaling: lessons from Drosophila embryonic terminal development. Dev Dyn 2005; 232:656-72. [PMID: 15704136 PMCID: PMC3092428 DOI: 10.1002/dvdy.20295] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Torso receptor tyrosine kinase (RTK) is required for cell fate specification in the terminal regions (head and tail) of the early Drosophila embryo. Torso contains a split tyrosine kinase domain and belongs to the type III subgroup of the RTK superfamily that also includes the platelet-derived growth factor receptors, stem cell or steel factor receptor c-Kit proto-oncoprotein, colony-stimulating factor-1 receptor, and vascular endothelial growth factor receptor. The Torso pathway has been a model system for studying RTK signal transduction. Genetic and biochemical studies of Torso signaling have provided valuable insights into the biological functions and mechanisms of RTK signaling during early Drosophila embryogenesis.
Collapse
Affiliation(s)
- Willis X Li
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York 14642, USA.
| |
Collapse
|
11
|
Woodcock SA, Hughes DA. p120 Ras GTPase-activating protein associates with fibroblast growth factor receptors in Drosophila. Biochem J 2004; 380:767-74. [PMID: 15030317 PMCID: PMC1224229 DOI: 10.1042/bj20031848] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 03/18/2004] [Accepted: 03/18/2004] [Indexed: 11/17/2022]
Abstract
Btl (breathless) and Htl (heartless), the two FGFRs (fibroblast growth factor receptors) in Drosophila melanogaster, control cell migration and differentiation in the developing embryo. These receptors signal through the conserved Ras/mitogen-activated protein kinase pathway, but how they regulate Ras activity is not known. The present study shows that there is a direct interaction between p120 RasGAP (Ras GTPase-activating protein), a negative regulator of Ras, and activated FGFRs in Drosophila. The interaction is dependent on the SH2 (Src homology 2) domains of RasGAP, which have been shown to interact with a phosphotyrosine residue within the consensus sequence (phospho)YXXPXD. A potential binding site that matches this consensus is found in both Btl and Htl, located between the transmembrane and kinase domains of each receptor. A peptide corresponding to this region was capable of binding RasGAP only when the tyrosine residue was phosphorylated. This tyrosine residue appears to be conserved in human FGFR-1 and mediates the association with the adapter protein CrkII, but no association between dCrk (Drosophila homologue of CrkII) and the activated FGFRs was detected. RasGAP was a substrate of the activated FGFR kinase domain, and mutation of the tyrosine residue within the potential binding site on the receptor prevented tyrosine phosphorylation of RasGAP. RasGAP attenuated FGFR signalling in vivo and this ability was dependent on both its SH2 domains and its GAP activity. On the basis of these results, we propose that RasGAP is directly recruited into activated FGFRs in Drosophila and plays a role in regulating the strength of signalling through Ras and the mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Simon A Woodcock
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, UK
| | | |
Collapse
|
12
|
MacDougall LK, Gagou ME, Leevers SJ, Hafen E, Waterfield MD. Targeted expression of the class II phosphoinositide 3-kinase in Drosophila melanogaster reveals lipid kinase-dependent effects on patterning and interactions with receptor signaling pathways. Mol Cell Biol 2004; 24:796-808. [PMID: 14701751 PMCID: PMC343800 DOI: 10.1128/mcb.24.2.796-808.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) can be divided into three distinct classes (I, II, and III) on the basis of their domain structures and the lipid signals that they generate. Functions have been assigned to the class I and class III enzymes but have not been established for the class II PI3Ks. We have obtained the first evidence for a biological function for a class II PI3K by expressing this enzyme during Drosophila melanogaster development and by using deficiencies that remove the endogenous gene. Wild-type and catalytically inactive PI3K_68D transgenes have opposite effects on the number of sensory bristles and on wing venation phenotypes induced by modified epidermal growth factor (EGF) receptor signaling. These results indicate that the endogenous PI3K_68D may act antagonistically to the EGF receptor-stimulated Ras-mitogen-activated protein kinase pathway and downstream of, or parallel to, the Notch receptor. A class II polyproline motif in PI3K_68D can bind the Drk adaptor protein in vitro, primarily via the N-terminal SH3 domain of Drk. Drk may thus be important for the localization of PI3K_68D, allowing it to modify signaling pathways downstream of cell surface receptors. The phenotypes obtained are markedly distinct from those generated by expression of the Drosophila class I PI3K, which affects growth but not pattern formation.
Collapse
Affiliation(s)
- Lindsay K MacDougall
- Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, UK.
| | | | | | | | | |
Collapse
|
13
|
Corson LB, Yamanaka Y, Lai KMV, Rossant J. Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 2003; 130:4527-37. [PMID: 12925581 DOI: 10.1242/dev.00669] [Citation(s) in RCA: 333] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signaling between tissues is essential to form the complex, three-dimensional organization of an embryo. Because many receptor tyrosine kinases signal through the RAS-MAPK pathway, phosphorylated ERK can be used as an indicator of when and where signaling is active during development. Using whole-mount immunohistochemistry with antibodies specific to phosphorylated ERK1 and ERK2, we analyzed the location, timing, distribution, duration and intensity of ERK signaling during mouse embryogenesis (5-10.5 days postcoitum). Spatial and temporal domains of ERK activation were discrete with well-defined boundaries, indicating specific regulation of signaling in vivo. Prominent, sustained domains of ERK activation were seen in the ectoplacental cone, extra-embryonic ectoderm, limb buds, branchial arches, frontonasal process, forebrain, midbrain-hindbrain boundary, tailbud, foregut and liver. Transient activation was seen in neural crest, peripheral nervous system, nascent blood vessels, and anlagen of the eye, ear and heart. In the contiguous domains of ERK signaling, phospho-ERK staining was cytoplasmic with no sign of nuclear translocation. With few exceptions, the strongest domains of ERK activation correlated with regions of known or suspected fibroblast growth factor (FGF) signaling, and brief incubation with an inhibitor of the fibroblast growth factor receptor (FGFR) specifically diminished the phospho-ERK staining in these regions. Although many domains of ERK activation were FGFR-dependent, not all domains of FGF signaling were phospho-ERK positive. These studies identify key domains of sustained ERK signaling in the intact mouse embryo, give significant insight into the regulation of this signaling in vivo and pinpoint regions where downstream target genes can be sought.
Collapse
Affiliation(s)
- Laura Beth Corson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | | | |
Collapse
|
14
|
Bernards A. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1603:47-82. [PMID: 12618308 DOI: 10.1016/s0304-419x(02)00082-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Typical members of the Ras superfamily of small monomeric GTP-binding proteins function as regulators of diverse processes by cycling between biologically active GTP- and inactive GDP-bound conformations. Proteins that control this cycling include guanine nucleotide exchange factors or GEFs, which activate Ras superfamily members by catalyzing GTP for GDP exchange, and GTPase activating proteins or GAPs, which accelerate the low intrinsic GTP hydrolysis rate of typical Ras superfamily members, thus causing their inactivation. Two among the latter class of proteins have been implicated in common genetic disorders associated with an increased cancer risk, neurofibromatosis-1, and tuberous sclerosis. To facilitate genetic analysis, I surveyed Drosophila and human sequence databases for genes predicting proteins related to GAPs for Ras superfamily members. Remarkably, close to 0.5% of genes in both species (173 human and 64 Drosophila genes) predict proteins related to GAPs for Arf, Rab, Ran, Rap, Ras, Rho, and Sar family GTPases. Information on these genes has been entered into a pair of relational databases, which can be used to identify evolutionary conserved proteins that are likely to serve basic biological functions, and which can be updated when definitive information on the coding potential of both genomes becomes available.
Collapse
Affiliation(s)
- André Bernards
- Massachusetts General Hospital Cancer Center, Building 149, 13th Street, Charlestown, MA 02129-2000, USA.
| |
Collapse
|
15
|
Botella JA, Kretzschmar D, Kiermayer C, Feldmann P, Hughes DA, Schneuwly S. Deregulation of the Egfr/Ras signaling pathway induces age-related brain degeneration in the Drosophila mutant vap. Mol Biol Cell 2003. [PMID: 12529440 DOI: 10.1091/mbc.e02--05--0297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ras signaling has been shown to play an important role in promoting cell survival in many different tissues. Here we show that upregulation of Ras activity in adult Drosophila neurons induces neuronal cell death, as evident from the phenotype of vacuolar peduncle (vap) mutants defective in the Drosophila RasGAP gene, which encodes a Ras GTPase-activating protein. These mutants show age-related brain degeneration that is dependent on activation of the EGF receptor signaling pathway in adult neurons, leading to autophagic cell death (cell death type 2). These results provide the first evidence for a requirement of Egf receptor activity in differentiated adult Drosophila neurons and show that a delicate balance of Ras activity is essential for the survival of adult neurons.
Collapse
Affiliation(s)
- José A Botella
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Botella JA, Kretzschmar D, Kiermayer C, Feldmann P, Hughes DA, Schneuwly S. Deregulation of the Egfr/Ras signaling pathway induces age-related brain degeneration in the Drosophila mutant vap. Mol Biol Cell 2003; 14:241-50. [PMID: 12529440 PMCID: PMC140241 DOI: 10.1091/mbc.e02-05-0297] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ras signaling has been shown to play an important role in promoting cell survival in many different tissues. Here we show that upregulation of Ras activity in adult Drosophila neurons induces neuronal cell death, as evident from the phenotype of vacuolar peduncle (vap) mutants defective in the Drosophila RasGAP gene, which encodes a Ras GTPase-activating protein. These mutants show age-related brain degeneration that is dependent on activation of the EGF receptor signaling pathway in adult neurons, leading to autophagic cell death (cell death type 2). These results provide the first evidence for a requirement of Egf receptor activity in differentiated adult Drosophila neurons and show that a delicate balance of Ras activity is essential for the survival of adult neurons.
Collapse
Affiliation(s)
- José A Botella
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Lasko P. Diabetic flies? Using Drosophila melanogaster to understand the causes of monogenic and genetically complex diseases. Clin Genet 2002; 62:358-67. [PMID: 12431248 DOI: 10.1034/j.1399-0004.2002.620502.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Approximately three-quarters of human disease loci have counterparts in the fruit fly Drosophila melanogaster. This model organism is therefore extremely valuable for using to understand the role of these loci in normal development, and for unravelling genetic pathways in which these loci take part. Important advantages for Drosophila in such studies are its completed genome, the unparalleled collection of mutations already in existence, the relative ease in which new mutations can be generated, the existence of convenient techniques for inactivating or overexpressing genes in dispensable tissues that are easily observed and measured, and the ability to readily carry out second-site modifier genetics. Recent work in Drosophila on the insulin-signaling pathway, a pathway of profound clinical importance, is reviewed as an illustration of how such research can provide fundamental insights into the functions of this pathway in regulating growth and development. Moreover, Drosophila research is now identifying heretofore unknown regulators of insulin signaling, as well as indicating novel functions for this pathway in suppressing benign tumor formation and regulating life span.
Collapse
Affiliation(s)
- P Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
18
|
Abstract
The receptor tyrosine kinase (RTK) signaling network plays a central role in regulating cellular differentiation, proliferation, and survival in all metazoan animals. Excessive or continuous activation of the RTK pathway has been linked to carcinogenesis in mammals, underscoring the importance of preventing uncontrolled signaling. This review will focus on the inhibitory mechanisms that keep RTK-mediated signals in check, with emphasis on conserved principles discerned from studies using Drosophila as a model system. Two general strategies of inhibition will be discussed. The first, threshold regulation, postulates that an effective way of antagonizing RTK signaling is to erect and maintain high threshold barriers that prevent inappropriate responses to moderate signaling levels. Activation of the pathway above this level overcomes the inhibitory blocks and shifts the balance to allow a positive flow of inductive information. A second layer of negative regulation involving induction of negative feedback loops that limit the extent, strength, or duration of the signal prevents runaway signaling in response to the high levels of activation required to surmount the threshold barriers. Such autoinhibitory mechanisms attenuate signaling at critical points throughout the network, from the receptor to the downstream effectors.
Collapse
Affiliation(s)
- Ilaria Rebay
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA.
| |
Collapse
|
19
|
Donovan S, Shannon KM, Bollag G. GTPase activating proteins: critical regulators of intracellular signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1602:23-45. [PMID: 11960693 DOI: 10.1016/s0304-419x(01)00041-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shane Donovan
- Department of Pediatrics and Comprehensive Cancer Center, 513 Parnassus Ave., Room HSE-302, University of California, San Francisco, CA 94143-0519, USA
| | | | | |
Collapse
|
20
|
Cailliau K, Browaeys-Poly E, Vilain JP. RasGAP is involved in signal transduction triggered by FGF1 inXenopusoocytes expressing FGFR1. FEBS Lett 2001; 496:161-5. [PMID: 11356202 DOI: 10.1016/s0014-5793(01)02410-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of RasGAP was investigated in the model system of Xenopus oocytes expressing fibroblast growth factor receptor 1 (FGFR1) stimulated by fibroblast growth factor 1 (FGF1). The injection of the SH2-SH3-SH2 domains of RasGAP suppressed Ras activity, extracellular signal-regulated protein kinase 2 (ERK2) phosphorylation and Mos synthesis. The SH2 domain of Src, and PP2, an inhibitor of Src, also abolished Ras activity, ERK2 phosphorylation and Mos synthesis. In addition, Src activity was blocked by the SH2-SH3-SH2 domains of RasGAP. Immunoprecipitation of a chimera composed of the extracellular domain of the platelet-derived growth factor (PDGF) receptor and the intracellular domain of FGFR1 stimulated by PDGF-BB demonstrates the recruitment of phosphorylated RasGAP. This study shows that the transduction cascade induced by the FGFR1-FGF1 interaction in Xenopus oocytes involves RasGAP as a co-activator of Src to stimulate the Ras/mitogen-activated protein kinase cascade and Mos synthesis. It emphasises a new positive regulatory role for RasGAP in FGFR transduction.
Collapse
Affiliation(s)
- K Cailliau
- Université des Sciences et Technologies de Lille, Laboratoire de Biologie du Développement, UE 1033, Bâtiment SN3, 59655 Cedex, Villeneuve D'Ascq, France.
| | | | | |
Collapse
|
21
|
Lorenzen JA, Baker SE, Denhez F, Melnick MB, Brower DL, Perkins LA. Nuclear import of activated D-ERK by DIM-7, an importin family member encoded by the gene moleskin. Development 2001; 128:1403-14. [PMID: 11262240 DOI: 10.1242/dev.128.8.1403] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The initiation of gene expression in response to Drosophila receptor tyrosine kinase signaling requires the nuclear import of the MAP kinase, D-ERK. However, the molecular details of D-ERK translocation are largely unknown. In this regard, we have identified D-Importin-7 (DIM-7), the Drosophila homolog of vertebrate importin 7, and its gene moleskin. DIM-7 exhibits a dynamic nuclear localization pattern that overlaps the spatial and temporal profile of nuclear, activated D-ERK. Co-immunoprecipitation experiments show that DIM-7 associates with phosphorylated D-ERK in Drosophila S2 cells. Furthermore, moleskin mutations enhance hypomorphic and suppress hypermorphic D-ERK mutant phenotypes. Deletion or mutation of moleskin dramatically reduces the nuclear localization of activated D-ERK. Directly linking DIM-7 to its nuclear import, this defect can be rescued by the expression of wild-type DIM-7. Mutations in the Drosophila Importin (β) homolog Ketel, also reduce the nuclear localization of activated D-ERK. Together, these data indicate that DIM-7 and Ketel are components of the nuclear import machinery for activated D-ERK.
Collapse
Affiliation(s)
- J A Lorenzen
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
22
|
Robertson H, Hime GR, Lada H, Bowtell DD. A Drosophila analogue of v-Cbl is a dominant-negative oncoprotein in vivo. Oncogene 2000; 19:3299-308. [PMID: 10918586 DOI: 10.1038/sj.onc.1203624] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cells rely on the ability to receive and interpret external signals to regulate growth, differentiation, and death. Positive transduction of these signals to the cytoplasm and nucleus has been extensively characterized, and genetic studies in Drosophila have made major contributions to the understanding of these pathways. Less well understood, but equally important, are the mechanisms underlying signal down-regulation. Here we report biochemical and genetic characterization of the Drosophila homologue of c-Cbl, a negative regulator of signal transduction with ubiquitin-protein ligase activity. A new isoform of D-Cbl, D-CblL, has been identified that contains SH3-binding and UBA domains previously reported to be absent. Genetic analysis demonstrates that Dv-cbl, analogous to the mammalian v-cbl oncogene, is a dominant negative mutation able to enhance signalling from the Drosophila Egfr and cooperate with activating mutations in the sevenless pathway to produce melanotic tumours. In addition, our data show genetic and biochemical links between D-Cbl and proteins involved in endocytosis and ubiquitination, suggesting that v-Cbl may exert its oncogenic effect by enhancing receptor signalling as a consequence of suppressing receptor endocytosis.
Collapse
Affiliation(s)
- H Robertson
- Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
23
|
Pazman C, Mayes CA, Fanto M, Haynes SR, Mlodzik M. Rasputin, the Drosophila homologue of the RasGAP SH3 binding protein, functions in ras- and Rho-mediated signaling. Development 2000; 127:1715-25. [PMID: 10725247 DOI: 10.1242/dev.127.8.1715] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The small GTPase Ras plays an important role in many cellular signaling processes. Ras activity is negatively regulated by GTPase activating proteins (GAPs). It has been proposed that RasGAP may also function as an effector of Ras activity. We have identified and characterized the Drosophila homologue of the RasGAP-binding protein G3BP encoded by rasputin (rin). rin mutants are viable and display defects in photoreceptor recruitment and ommatidial polarity in the eye. Mutations in rin/G3BP genetically interact with components of the Ras signaling pathway that function at the level of Ras and above, but not with Raf/MAPK pathway components. These interactions suggest that Rin is required as an effector in Ras signaling during eye development, supporting an effector role for RasGAP. The ommatidial polarity phenotypes of rin are similar to those of RhoA and the polarity genes, e.g. fz and dsh. Although rin/G3BP interacts genetically with RhoA, affecting both photoreceptor differentiation and polarity, it does not interact with the gain-of-function genotypes of fz and dsh. These data suggest that Rin is not a general component of polarity generation, but serves a function specific to Ras and RhoA signaling pathways.
Collapse
Affiliation(s)
- C Pazman
- LMG, NICHD, NIH, MSC 2785, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
24
|
Platelet-derived growth factor-dependent association of the GTPase-activating protein of Ras and Src. Biochem J 2000. [PMID: 10567236 DOI: 10.1042/bj3440519] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here we report that the platelet-derived growth factor beta receptor (betaPDGFR) is not the only tyrosine kinase able to associate with the GTPase-activating protein of Ras (RasGAP). The interaction of non-betaPDGFR kinase(s) with RasGAP was dependent on stimulation with platelet-derived growth factor (PDGF) and seemed to require tyrosine phosphorylation of RasGAP. Because the tyrosine phosphorylation site of RasGAP is in a sequence context that is favoured by the Src homology 2 ('SH2') domain of Src family members, we tested the possibility that Src was the kinase that associated with RasGAP. Indeed, Src interacted with phosphorylated RasGAP fusion proteins; immunodepletion of Src markedly decreased the recovery of the RasGAP-associated kinase activity. Thus PDGF-dependent tyrosine phosphorylation of RasGAP results in the formation of a complex between RasGAP and Src. To begin to address the relevance of these observations, we focused on the consequences of the interaction of Src and RasGAP. We found that a receptor mutant that did not activate Src was unable to efficiently mediate the tyrosine phosphorylation of phospholipase Cgamma (PLCgamma). Taken together, these observations support the following hypothesis. When RasGAP is recruited to the betaPDGFR, it is phosphorylated and associates with Src. Once bound to RasGAP, Src is no longer able to promote the phosphorylation of PLCgamma. This hypothesis offers a mechanistic explanation for our previously published findings that the recruitment of RasGAP to the betaPDGFR attenuates the tyrosine phosphorylation of PLCgamma. Finally, these findings suggest a novel way in which RasGAP negatively regulates signal relay by the betaPDGFR.
Collapse
|
25
|
Schlesinger TK, Demali KA, Johnson GL, Kazlauskas A. Platelet-derived growth factor-dependent association of the GTPase-activating protein of Ras and Src. Biochem J 1999; 344 Pt 2:519-26. [PMID: 10567236 PMCID: PMC1220671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Here we report that the platelet-derived growth factor beta receptor (betaPDGFR) is not the only tyrosine kinase able to associate with the GTPase-activating protein of Ras (RasGAP). The interaction of non-betaPDGFR kinase(s) with RasGAP was dependent on stimulation with platelet-derived growth factor (PDGF) and seemed to require tyrosine phosphorylation of RasGAP. Because the tyrosine phosphorylation site of RasGAP is in a sequence context that is favoured by the Src homology 2 ('SH2') domain of Src family members, we tested the possibility that Src was the kinase that associated with RasGAP. Indeed, Src interacted with phosphorylated RasGAP fusion proteins; immunodepletion of Src markedly decreased the recovery of the RasGAP-associated kinase activity. Thus PDGF-dependent tyrosine phosphorylation of RasGAP results in the formation of a complex between RasGAP and Src. To begin to address the relevance of these observations, we focused on the consequences of the interaction of Src and RasGAP. We found that a receptor mutant that did not activate Src was unable to efficiently mediate the tyrosine phosphorylation of phospholipase Cgamma (PLCgamma). Taken together, these observations support the following hypothesis. When RasGAP is recruited to the betaPDGFR, it is phosphorylated and associates with Src. Once bound to RasGAP, Src is no longer able to promote the phosphorylation of PLCgamma. This hypothesis offers a mechanistic explanation for our previously published findings that the recruitment of RasGAP to the betaPDGFR attenuates the tyrosine phosphorylation of PLCgamma. Finally, these findings suggest a novel way in which RasGAP negatively regulates signal relay by the betaPDGFR.
Collapse
Affiliation(s)
- T K Schlesinger
- National Jewish Medical and Research Center, Division of Molecular Signal Transduction, 1400 Jackson Street, Denver, CO 80226, USA
| | | | | | | |
Collapse
|
26
|
DeMali KA, Balciunaite E, Kazlauskas A. Integrins enhance platelet-derived growth factor (PDGF)-dependent responses by altering the signal relay enzymes that are recruited to the PDGF beta receptor. J Biol Chem 1999; 274:19551-8. [PMID: 10391888 DOI: 10.1074/jbc.274.28.19551] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the extracellular matrix (ECM) can promote platelet-derived growth factor (PDGF)-dependent responses, we hypothesized that the ECM mediates this effect by preventing the PDGF beta receptor (betaPDGFR) from associating with the negative regulator, RasGAP (the GTPase-activating protein of Ras). We found that binding of RasGAP to the wild-type betaPDGFR was decreased; the activation of Ras and Erk was enhanced, and [3H]thymidine uptake was better in cells cultured on fibronectin than in cells cultured on polylysine. To investigate the mechanism by which culturing cells on fibronectin diminished the recruitment of RasGAP to the betaPDGFR, we focused on SHP-2 since it dephosphorylates the betaPDGFR at the phosphotyrosine required for binding of RasGAP. Culturing cells on fibronectin increased the amount of SHP-2 that associated with the betaPDGFR. Furthermore, cells expressing receptor mutants that failed to associate with SHP-2 were insensitive to fibronectin. The ECM enhances PDGF-dependent responses by increasing the association of SHP-2 with the betaPDGFR, which in turn decreases the time that RasGAP interacts with the receptor. Thus, fibronectin changes PDGF-dependent signaling and biological responses by altering the signal relay enzymes that are recruited to the receptor.
Collapse
Affiliation(s)
- K A DeMali
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|