1
|
King CY. Total propagation of yeast prion conformers in ssz1∆ upf1∆ Hsp104 T160M triple mutants. Curr Genet 2025; 71:8. [PMID: 40156734 PMCID: PMC11954717 DOI: 10.1007/s00294-025-01313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/26/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
It was reported that yeast proteins Ssz1 and Upf1 can cure certain [PSI+] variants in wild-type cells and there is a special class of variants whose propagation requires the triple mutation of ssz1∆ upf1∆ Hsp104T160M. Attempts to isolate variants with the exact properties from the 74-D694 strain (and tested there) are not yet successful. The effort nevertheless leads to an alternative analysis about how ssz1∆ and upf1∆ mutations can help prion propagation. The cellular propagation of the yeast prion [PSI+] requires appropriate activities of the Hsp104 disaggregase. Many [PSI+] variants isolated in wild-type strains cannot propagate in cells expressing Hsp104T160M, which has weaker activities. Yet another group of [PSI+] variants shows the opposite, propagating well with Hsp104T160M but is eliminated by the wild-type protein. Deletion of SSZ1 and UPF1 genes in Hsp104T160M cells generates a just-right environment that supports the propagation of both types of [PSI+] variants. The pro-prion effect is not due to the removal of active curing by Ssz1 or Upf1-such curing activity is not observed for the variants. Rather, the double deletion causes a cellular response, which enables more efficient fragmentation of prion fibers, thus remedying the weak activity of Hsp104T160M. The "Goldilocks" conditioning seems also applicable to other yeast prions. Two [PIN+] variants that propagate well with wild-type Hsp104 but poorly with Hsp104∆N, lacking residues (2-147), can however thrive with the latter if Ssz1 and Upf1 are also deleted from the cell. In this case, the double deletion results in higher Hsp104∆N expression, leading to improved generation of prion seeds for robust propagation.
Collapse
Affiliation(s)
- Chih-Yen King
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
2
|
Temaj G, Chichiarelli S, Telkoparan-Akillilar P, Saha S, Nuhii N, Hadziselimovic R, Saso L. Advances in molecular function of UPF1 in Cancer. Arch Biochem Biophys 2024; 756:109989. [PMID: 38621446 DOI: 10.1016/j.abb.2024.109989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
It is known that more than 10 % of genetic diseases are caused by a mutation in protein-coding mRNA (premature termination codon; PTC). mRNAs with an early stop codon are degraded by the cellular surveillance process known as nonsense-mediated mRNA decay (NMD), which prevents the synthesis of C-terminally truncated proteins. Up-frameshift-1 (UPF1) has been reported to be involved in the downregulation of various cancers, and low expression of UPF1 was shown to correlate with poor prognosis. It is known that UPF1 is a master regulator of nonsense-mediated mRNA decay (NMD). UPF1 may also function as an E3 ligase and degrade target proteins without using mRNA decay mechanisms. Increasing evidence indicates that UPF1 could serve as a good biomarker for cancer diagnosis and treatment for future therapeutic applications. Long non-coding RNAs (lncRNAs) have the ability to bind different proteins and regulate gene expression; this role in cancer cells has already been identified by different studies. This article provides an overview of the aberrant expression of UPF1, its functional properties, and molecular processes during cancer for clinical applications in cancer. We also discussed the interactions of lncRNA with UPF1 for cell growth during tumorigenesis.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000, Prishtina, Republic of Kosovo.
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy.
| | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200, Tetovo, Macedonia.
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000, Sarajevo, Bosnia and Herzegovina.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185, Rome, Italy.
| |
Collapse
|
3
|
Andjus S, Szachnowski U, Vogt N, Gioftsidi S, Hatin I, Cornu D, Papadopoulos C, Lopes A, Namy O, Wery M, Morillon A. Pervasive translation of Xrn1-sensitive unstable long noncoding RNAs in yeast. RNA (NEW YORK, N.Y.) 2024; 30:662-679. [PMID: 38443115 PMCID: PMC11098462 DOI: 10.1261/rna.079903.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
Despite being predicted to lack coding potential, cytoplasmic long noncoding (lnc)RNAs can associate with ribosomes. However, the landscape and biological relevance of lncRNA translation remain poorly studied. In yeast, cytoplasmic Xrn1-sensitive unstable transcripts (XUTs) are targeted by nonsense-mediated mRNA decay (NMD), suggesting a translation-dependent degradation process. Here, we report that XUTs are pervasively translated, which impacts their decay. We show that XUTs globally accumulate upon translation elongation inhibition, but not when initial ribosome loading is impaired. Ribo-seq confirmed ribosomes binding to XUTs and identified ribosome-associated 5'-proximal small ORFs. Mechanistically, the NMD-sensitivity of XUTs mainly depends on the 3'-untranslated region length. Finally, we show that the peptide resulting from the translation of an NMD-sensitive XUT reporter exists in NMD-competent cells. Our work highlights the role of translation in the posttranscriptional metabolism of XUTs. We propose that XUT-derived peptides could be exposed to natural selection, while NMD restricts XUT levels.
Collapse
Affiliation(s)
- Sara Andjus
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL University, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| | - Ugo Szachnowski
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| | - Nicolas Vogt
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| | - Stamatia Gioftsidi
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| | - Isabelle Hatin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - David Cornu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Chris Papadopoulos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Anne Lopes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, F-75248 Paris Cedex 05, France
| |
Collapse
|
4
|
Colón EM, Haddock LA, Lasalde C, Lin Q, Ramírez-Lugo JS, González CI. Characterization of the mIF4G Domains in the RNA Surveillance Protein Upf2p. Curr Issues Mol Biol 2023; 46:244-261. [PMID: 38248319 PMCID: PMC10814901 DOI: 10.3390/cimb46010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Thirty percent of all mutations causing human disease generate mRNAs with premature termination codons (PTCs). Recognition and degradation of these PTC-containing mRNAs is carried out by the mechanism known as nonsense-mediated mRNA decay (NMD). Upf2 is a scaffold protein known to be a central component of the NMD surveillance pathway. It harbors three middle domains of eukaryotic initiation factor 4G (mIF4G-1, mIF4G-2, mIF4G-3) in its N-terminal region that are potentially important in regulating the surveillance pathway. In this study, we defined regions within the mIF4G-1 and mIF4G-2 that are required for proper function of Upf2p in NMD and translation termination in Saccharomyces cerevisiae. In addition, we narrowed down the activity of these regions to an aspartic acid (D59) in mIF4G-1 that is important for NMD activity and translation termination accuracy. Taken together, these studies suggest that inherently charged residues within mIF4G-1 of Upf2p play a role in the regulation of the NMD surveillance mechanism in S. cerevisiae.
Collapse
Affiliation(s)
- Edgardo M. Colón
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA (C.L.); (J.S.R.-L.)
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Luis A. Haddock
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA (C.L.); (J.S.R.-L.)
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Clarivel Lasalde
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA (C.L.); (J.S.R.-L.)
| | - Qishan Lin
- Department of Chemistry, University at Albany, Albany, NY 12222, USA;
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | - Juan S. Ramírez-Lugo
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA (C.L.); (J.S.R.-L.)
| | - Carlos I. González
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA (C.L.); (J.S.R.-L.)
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| |
Collapse
|
5
|
He F, Jacobson A. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 2023; 290:5057-5085. [PMID: 36098474 PMCID: PMC10008757 DOI: 10.1111/febs.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Decapping is the enzymatic removal of 5' cap structures from mRNAs in eukaryotic cells. Cap structures normally enhance mRNA translation and stability, and their excision commits an mRNA to complete 5'-3' exoribonucleolytic digestion and generally ends the physical and functional cellular presence of the mRNA. Decapping plays a pivotal role in eukaryotic cytoplasmic mRNA turnover and is a critical and highly regulated event in multiple 5'-3' mRNA decay pathways, including general 5'-3' decay, nonsense-mediated mRNA decay (NMD), AU-rich element-mediated mRNA decay, microRNA-mediated gene silencing, and targeted transcript-specific mRNA decay. In the yeast Saccharomyces cerevisiae, mRNA decapping is carried out by a single Dcp1-Dcp2 decapping enzyme in concert with the accessory activities of specific regulators commonly known as decapping activators or enhancers. These regulatory proteins include the general decapping activators Edc1, 2, and 3, Dhh1, Scd6, Pat1, and the Lsm1-7 complex, as well as the NMD-specific factors, Upf1, 2, and 3. Here, we focus on in vivo mRNA decapping regulation in yeast. We summarize recently uncovered molecular mechanisms that control selective targeting of the yeast decapping enzyme and discuss new roles for specific decapping activators in controlling decapping enzyme targeting, assembly of target-specific decapping complexes, and the monitoring of mRNA translation. Further, we discuss the kinetic contribution of mRNA decapping for overall decay of different substrate mRNAs and highlight experimental evidence pointing to the functional coordination and physical coupling between events in mRNA deadenylation, decapping, and 5'-3' exoribonucleolytic decay.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
6
|
Embree CM, Abu-Alhasan R, Singh G. Features and factors that dictate if terminating ribosomes cause or counteract nonsense-mediated mRNA decay. J Biol Chem 2022; 298:102592. [PMID: 36244451 PMCID: PMC9661723 DOI: 10.1016/j.jbc.2022.102592] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control pathway in eukaryotes that continuously monitors mRNA transcripts to ensure truncated polypeptides are not produced. The expression of many normal mRNAs that encode full-length polypeptides is also regulated by this pathway. Such transcript surveillance by NMD is intimately linked to translation termination. When a ribosome terminates translation at a normal termination codon, NMD is not activated, and mRNA can undergo repeated rounds of translation. On the other hand, when translation termination is deemed abnormal, such as that on a premature termination codon, it leads to a series of poorly understood events involving the NMD pathway, which destabilizes the transcript. In this review, we summarize our current understanding of how the NMD machinery interfaces with the translation termination factors to initiate NMD. We also discuss a variety of cis-acting sequence contexts and trans-acting factors that can cause readthrough, ribosome reinitiation, or ribosome frameshifting at stop codons predicted to induce NMD. These alternative outcomes can lead to the ribosome translating downstream of such stop codons and hence the transcript escaping NMD. NMD escape via these mechanisms can have wide-ranging implications on human health, from being exploited by viruses to hijack host cell systems to being harnessed as potential therapeutic possibilities to treat genetic diseases.
Collapse
Affiliation(s)
- Caleb M Embree
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA
| | - Rabab Abu-Alhasan
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA.
| |
Collapse
|
7
|
Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol 2020; 20:406-420. [PMID: 30992545 DOI: 10.1038/s41580-019-0126-2] [Citation(s) in RCA: 496] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of the best characterized and most evolutionarily conserved cellular quality control mechanisms. Although NMD was first found to target one-third of mutated, disease-causing mRNAs, it is now known to also target ~10% of unmutated mammalian mRNAs to facilitate appropriate cellular responses - adaptation, differentiation or death - to environmental changes. Mutations in NMD genes in humans are associated with intellectual disability and cancer. In this Review, we discuss how NMD serves multiple purposes in human cells by degrading both mutated mRNAs to protect the integrity of the transcriptome and normal mRNAs to control the quantities of unmutated transcripts.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. .,Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
8
|
Tang SJ, Shen H, An O, Hong H, Li J, Song Y, Han J, Tay DJT, Ng VHE, Bellido Molias F, Leong KW, Pitcheshwar P, Yang H, Chen L. Cis- and trans-regulations of pre-mRNA splicing by RNA editing enzymes influence cancer development. Nat Commun 2020; 11:799. [PMID: 32034135 PMCID: PMC7005744 DOI: 10.1038/s41467-020-14621-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
RNA editing and splicing are the two major processes that dynamically regulate human transcriptome diversity. Despite growing evidence of crosstalk between RNA editing enzymes (mainly ADAR1) and splicing machineries, detailed mechanistic explanations and their biological importance in diseases, such as cancer are still lacking. Herein, we identify approximately a hundred high-confidence splicing events altered by ADAR1 and/or ADAR2, and ADAR1 or ADAR2 protein can regulate cassette exons in both directions. We unravel a binding tendency of ADARs to dsRNAs that involves GA-rich sequences for editing and splicing regulation. ADAR1 edits an intronic splicing silencer, leading to recruitment of SRSF7 and repression of exon inclusion. We also present a mechanism through which ADAR2 binds to dsRNA formed between GA-rich sequences and polypyrimidine (Py)-tract and precludes access of U2AF65 to 3' splice site. Furthermore, we find these ADARs-regulated splicing changes per se influence tumorigenesis, not merely byproducts of ADARs editing and binding.
Collapse
Affiliation(s)
- Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Haoqing Shen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - HuiQi Hong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Daryl Jin Tai Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Vanessa Hui En Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Fernando Bellido Molias
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Ka Wai Leong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Priyankaa Pitcheshwar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore.
| |
Collapse
|
9
|
Ganesan R, Leszyk J, Jacobson A. Selective profiling of ribosomes associated with yeast Upf proteins. Methods 2018; 155:58-67. [PMID: 30593864 DOI: 10.1016/j.ymeth.2018.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
Ribosomes associated with nonsense-mediated decay factors Upf1, Upf2, or Upf3 were purified by immunoprecipitation, and enrichment and stoichiometry of Upf factors and ribosomal proteins were analyzed by western blot and mass spectrometry. Using a small RNA library preparation protocol that eliminates in-gel RNA and cDNA size selection and incorporates four random nucleotides on each side of the ribosome-protected RNA fragment allowed recovery, detection, and analysis of all size classes of protected fragments from a sample simultaneously.
Collapse
Affiliation(s)
- Robin Ganesan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, United States
| | - John Leszyk
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, United States
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, United States.
| |
Collapse
|
10
|
Collaboration of tRNA modifications and elongation factor eEF1A in decoding and nonsense suppression. Sci Rep 2018; 8:12749. [PMID: 30143741 PMCID: PMC6109124 DOI: 10.1038/s41598-018-31158-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/13/2018] [Indexed: 01/27/2023] Open
Abstract
Transfer RNA (tRNA) from all domains of life contains multiple modified nucleosides, the functions of which remain incompletely understood. Genetic interactions between tRNA modification genes in Saccharomyces cerevisiae suggest that different tRNA modifications collaborate to maintain translational efficiency. Here we characterize such collaborative functions in the ochre suppressor tRNA SUP4. We quantified ochre read-through efficiency in mutants lacking either of the 7 known modifications in the extended anticodon stem loop (G26-C48). Absence of U34, U35, A37, U47 and C48 modifications partially impaired SUP4 function. We systematically combined modification defects and scored additive or synergistic negative effects on SUP4 performance. Our data reveal different degrees of functional redundancy between specific modifications, the strongest of which was demonstrated for those occurring at positions U34 and A37. SUP4 activity in the absence of critical modifications, however, can be rescued in a gene dosage dependent fashion by TEF1 which encodes elongation factor eEF1A required for tRNA delivery to the ribosome. Strikingly, the rescue ability of higher-than-normal eEF1A levels extends to tRNA modification defects in natural non-suppressor tRNAs suggesting that elevated eEF1A abundance can partially compensate for functional defects induced by loss of tRNA modifications.
Collapse
|
11
|
Brogna S, McLeod T, Petric M. The Meaning of NMD: Translate or Perish. Trends Genet 2016; 32:395-407. [PMID: 27185236 DOI: 10.1016/j.tig.2016.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/02/2016] [Accepted: 04/25/2016] [Indexed: 02/08/2023]
Abstract
Premature translation termination leads to a reduced mRNA level in all types of organisms. In eukaryotes, the phenomenon is known as nonsense-mediated mRNA decay (NMD). This is commonly regarded as the output of a specific surveillance and destruction mechanism that is activated by the presence of a premature translation termination codon (PTC) in an atypical sequence context. Despite two decades of research, it is still unclear how NMD discriminates between PTCs and normal stop codons. We suggest that cells do not possess any such mechanism and instead propose a new model in which this mRNA depletion is a consequence of the appearance of long tracts of mRNA that are unprotected by scanning ribosomes.
Collapse
Affiliation(s)
- Saverio Brogna
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK.
| | - Tina McLeod
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK
| | - Marija Petric
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
12
|
Altamura E, Borgatti M, Finotti A, Gasparello J, Gambari R, Spinelli M, Castaldo R, Altamura N. Chemical-Induced Read-Through at Premature Termination Codons Determined by a Rapid Dual-Fluorescence System Based on S. cerevisiae. PLoS One 2016; 11:e0154260. [PMID: 27119736 PMCID: PMC4847774 DOI: 10.1371/journal.pone.0154260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/11/2016] [Indexed: 01/09/2023] Open
Abstract
Nonsense mutations generate in-frame stop codons in mRNA leading to a premature arrest of translation. Functional consequences of premature termination codons (PTCs) include the synthesis of truncated proteins with loss of protein function causing severe inherited or acquired diseases. A therapeutic approach has been recently developed that is based on the use of chemical agents with the ability to suppress PTCs (read-through) restoring the synthesis of a functional full-length protein. Research interest for compounds able to induce read-through requires an efficient high throughput large scale screening system. We present a rapid, sensitive and quantitative method based on a dual-fluorescence reporter expressed in the yeast Saccharomyces cerevisiae to monitor and quantitate read-through at PTCs. We have shown that our novel system works equally well in detecting read-through at all three PTCs UGA, UAG and UAA.
Collapse
Affiliation(s)
- Emiliano Altamura
- Chemistry Department, University of Bari, Bari, Italy
- * E-mail: (EA); (NA)
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section, University of Ferrara, Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section, University of Ferrara, Ferrara, Italy
| | - Mariangela Spinelli
- Institute of Biomembranes and Bioenergetics, National Researches Council, Bari, Italy
| | - Rosa Castaldo
- Institute of Biomembranes and Bioenergetics, National Researches Council, Bari, Italy
| | - Nicola Altamura
- Institute of Biomembranes and Bioenergetics, National Researches Council, Bari, Italy
- * E-mail: (EA); (NA)
| |
Collapse
|
13
|
He F, Jacobson A. Nonsense-Mediated mRNA Decay: Degradation of Defective Transcripts Is Only Part of the Story. Annu Rev Genet 2015; 49:339-66. [PMID: 26436458 DOI: 10.1146/annurev-genet-112414-054639] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance mechanism that monitors cytoplasmic mRNA translation and targets mRNAs undergoing premature translation termination for rapid degradation. From yeasts to humans, activation of NMD requires the function of the three conserved Upf factors: Upf1, Upf2, and Upf3. Here, we summarize the progress in our understanding of the molecular mechanisms of NMD in several model systems and discuss recent experiments that address the roles of Upf1, the principal regulator of NMD, in the initial targeting and final degradation of NMD-susceptible mRNAs. We propose a unified model for NMD in which the Upf factors provide several functions during premature termination, including the stimulation of release factor activity and the dissociation and recycling of ribosomal subunits. In this model, the ultimate degradation of the mRNA is the last step in a complex premature termination process.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655; ,
| |
Collapse
|
14
|
Zadorsky SP, Sopova YV, Andreichuk DY, Startsev VA, Medvedeva VP, Inge-Vechtomov SG. Chromosome VIII disomy influences the nonsense suppression efficiency and transition metal tolerance of the yeast Saccharomyces cerevisiae. Yeast 2015; 32:479-97. [PMID: 25874850 DOI: 10.1002/yea.3074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 02/24/2015] [Accepted: 03/27/2015] [Indexed: 01/26/2023] Open
Abstract
The SUP35 gene of the yeast Saccharomyces cerevisiae encodes the translation termination factor eRF3. Mutations in this gene lead to the suppression of nonsense mutations and a number of other pleiotropic phenotypes, one of which is impaired chromosome segregation during cell division. Similar effects result from replacing the S. cerevisiae SUP35 gene with its orthologues. A number of genetic and epigenetic changes that occur in the sup35 background result in partial compensation for this suppressor effect. In this study we showed that in S. cerevisiae strains in which the SUP35 orthologue from the yeast Pichia methanolica replaces the S. cerevisiae SUP35 gene, chromosome VIII disomy results in decreased efficiency of nonsense suppression. This antisuppressor effect is not associated with decreased stop codon read-through. We identified SBP1, a gene that localizes to chromosome VIII, as a dosage-dependent antisuppressor that strongly contributes to the overall antisuppressor effect of chromosome VIII disomy. Disomy of chromosome VIII also leads to a change in the yeast strains' tolerance of a number of transition metal salts.
Collapse
Affiliation(s)
- S P Zadorsky
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation.,St. Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, St Petersburg, Russian Federation
| | - Y V Sopova
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation.,St. Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, St Petersburg, Russian Federation
| | - D Y Andreichuk
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation
| | - V A Startsev
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation
| | - V P Medvedeva
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation
| | - S G Inge-Vechtomov
- Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russian Federation.,St. Petersburg Branch Vavilov Institute of General Genetics, Russian Academy of Science, St Petersburg, Russian Federation
| |
Collapse
|
15
|
Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proc Natl Acad Sci U S A 2015; 112:3038-43. [PMID: 25733896 DOI: 10.1073/pnas.1424127112] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Premature termination codons (PTCs) in an mRNA ORF inactivate gene function by causing production of a truncated protein and destabilization of the mRNA. Readthrough of a PTC allows ribosomal A-site insertion of a near-cognate tRNA, leading to synthesis of a full-length protein from otherwise defective mRNA. To understand the mechanism of such nonsense suppression, we developed a yeast system that allows purification and sequence analysis of full-length readthrough products arising as a consequence of endogenous readthrough or the compromised termination fidelity attributable to the loss of Upf (up-frameshift) factors, defective release factors, or the presence of the aminoglycoside gentamicin. Unlike classical "wobble" models, our analyses showed that three of four possible near-cognate tRNAs could mispair at position 1 or 3 of nonsense codons and that, irrespective of whether readthrough is endogenous or induced, the same sets of amino acids are inserted. We identified the insertion of Gln, Tyr, and Lys at UAA and UAG, whereas Trp, Arg, and Cys were inserted at UGA, and the frequency of insertion of individual amino acids was distinct for specific nonsense codons and readthrough-inducing agents. Our analysis suggests that the use of genetic or chemical means to increase readthrough does not promote novel or alternative mispairing events; rather, readthrough effectors cause quantitative enhancement of endogenous mistranslation events. Knowledge of the amino acids incorporated during readthrough not only elucidates the decoding process but also may allow predictions of the functionality of readthrough protein products.
Collapse
|
16
|
Celik A, Kervestin S, Jacobson A. NMD: At the crossroads between translation termination and ribosome recycling. Biochimie 2014; 114:2-9. [PMID: 25446649 DOI: 10.1016/j.biochi.2014.10.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of three regulatory mechanisms that monitor the cytoplasm for aberrant mRNAs. NMD is usually triggered by premature translation termination codons that arise from mutations, transcription errors, or inefficient splicing, but which also occur in transcripts with alternately spliced isoforms or upstream open reading frames, or in the context of long 3'-UTRs. This surveillance pathway requires detection of the nonsense codon by the eukaryotic release factors (eRF1 and eRF3) and the activities of the Upf proteins, but the exact mechanism by which a nonsense codon is recognized as premature, and the individual roles of the Upf proteins, are poorly understood. In this review, we highlight important differences between premature and normal termination. Based on our current understanding of normal termination and ribosome recycling, we propose a similar mechanism for premature termination events that includes a role for the Upf proteins. In this model, the Upf proteins not only target the mRNA and nascent peptide for degradation, but also assume the role of recycling factors and rescue a ribosome stalled at a premature nonsense codon. The ATPase and helicase activities of Upf1, with the help of Upf2 and Upf3, are thus thought to be the catalytic force in ribosome subunit dissociation and ribosome recycling at an otherwise poorly dissociable termination event. While this model is somewhat speculative, it provides a unified vision for current data and a direction for future research.
Collapse
Affiliation(s)
- Alper Celik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, USA
| | - Stephanie Kervestin
- CNRS FRE3630 Associated with Université Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655-0122, USA.
| |
Collapse
|
17
|
Nonsense-mediated mRNA decay: inter-individual variability and human disease. Neurosci Biobehav Rev 2013; 46 Pt 2:175-86. [PMID: 24239855 DOI: 10.1016/j.neubiorev.2013.10.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a regulatory pathway that functions to degrade transcripts containing premature termination codons (PTCs) and to maintain normal transcriptome homeostasis. Nonsense and frameshift mutations that generate PTCs cause approximately one-third of all known human genetic diseases and thus NMD has a potentially important role in human disease. In genetic disorders in which the affected genes carry PTC-generating mutations, NMD acts as a double-edge sword. While it can benefit the patient by degrading PTC-containing mRNAs that encode detrimental, dominant-negative truncated proteins, it can also make the disease worse when a PTC-containing mRNA is degraded that encodes a mutant but still functional protein. There is evidence that the magnitude of NMD varies between individuals, which, in turn, has been shown to correlate with both clinical presentations and the patients' responses to drugs that promote read-through of PTCs. In this review, we examine the evidence supporting the existence of inter-individual variability in NMD efficiency and discuss the genetic factors that underlie this variability. We propose that inter-individual variability in NMD efficiency is a common phenomenon in human populations and that an individual's NMD efficiency should be taken into consideration when testing, developing, and making therapeutic decisions for diseases caused by genes harboring PTCs.
Collapse
|
18
|
Lasalde C, Rivera AV, León AJ, González-Feliciano JA, Estrella LA, Rodríguez-Cruz EN, Correa ME, Cajigas IJ, Bracho DP, Vega IE, Wilkinson MF, González CI. Identification and functional analysis of novel phosphorylation sites in the RNA surveillance protein Upf1. Nucleic Acids Res 2013; 42:1916-29. [PMID: 24198248 PMCID: PMC3919615 DOI: 10.1093/nar/gkt1049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One third of inherited genetic diseases are caused by mRNAs harboring premature termination codons as a result of nonsense mutations. These aberrant mRNAs are degraded by the Nonsense-Mediated mRNA Decay (NMD) pathway. A central component of the NMD pathway is Upf1, an RNA-dependent ATPase and helicase. Upf1 is a known phosphorylated protein, but only portions of this large protein have been examined for phosphorylation sites and the functional relevance of its phosphorylation has not been elucidated in Saccharomyces cerevisiae. Using tandem mass spectrometry analyses, we report the identification of 11 putative phosphorylated sites in S. cerevisiae Upf1. Five of these phosphorylated residues are located within the ATPase and helicase domains and are conserved in higher eukaryotes, suggesting a biological significance for their phosphorylation. Indeed, functional analysis demonstrated that a small carboxy-terminal motif harboring at least three phosphorylated amino acids is important for three Upf1 functions: ATPase activity, NMD activity and the ability to promote translation termination efficiency. We provide evidence that two tyrosines within this phospho-motif (Y-738 and Y-742) act redundantly to promote ATP hydrolysis, NMD efficiency and translation termination fidelity.
Collapse
Affiliation(s)
- Clarivel Lasalde
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, PR, Department of Reproductive Medicine, University of California, San Diego, CA, Department of Biochemistry, University of Puerto Rico-Medical Sciences Campus, San Juan, PR and Molecular Sciences Research Building, San Juan, PR
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Intra- and intermolecular regulatory interactions in Upf1, the RNA helicase central to nonsense-mediated mRNA decay in yeast. Mol Cell Biol 2013; 33:4672-84. [PMID: 24100012 DOI: 10.1128/mcb.01136-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA helicases are involved in almost every aspect of RNA metabolism, yet very little is known about the regulation of this class of enzymes. In Saccharomyces cerevisiae, the stability and translational fidelity of nonsense-containing mRNAs are controlled by the group I RNA helicase Upf1 and the proteins it interacts with, Upf2 and Upf3. Combining the yeast two-hybrid system with genetic analysis, we show here that the cysteine- and histidine-rich (CH) domain and the RNA helicase domain of yeast Upf1 can engage in two new types of molecular interactions: an intramolecular interaction between these two domains and self-association of each of these domains. Multiple observations indicate that these molecular interactions are crucial for Upf1 regulation. First, coexpression of the CH domain and the RNA helicase domain in trans can reconstitute Upf1 function in both promoting nonsense-mediated mRNA decay (NMD) and preventing nonsense suppression. Second, mutations that disrupt Upf1 intramolecular interaction cause loss of Upf1 function. These mutations weaken Upf2 interaction and, surprisingly, promote Upf1 self-association. Third, the genetic defects resulting from deficiency in Upf1 intramolecular interaction or RNA binding are suppressed by expression of Upf2. Collectively, these data reveal a set of sequential molecular interactions and their roles in regulating Upf1 function during activation of NMD and suggest that cis intramolecular interaction and trans self-association may be general mechanisms for regulation of RNA helicase functions.
Collapse
|
20
|
Min EE, Roy B, Amrani N, He F, Jacobson A. Yeast Upf1 CH domain interacts with Rps26 of the 40S ribosomal subunit. RNA (NEW YORK, N.Y.) 2013; 19:1105-15. [PMID: 23801788 PMCID: PMC3708530 DOI: 10.1261/rna.039396.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/17/2013] [Indexed: 05/18/2023]
Abstract
The central nonsense-mediated mRNA decay (NMD) regulator, Upf1, selectively targets nonsense-containing mRNAs for rapid degradation. In yeast, Upf1 preferentially associates with mRNAs that are NMD substrates, but the mechanism of its selective retention on these mRNAs has yet to be elucidated. Previously, we demonstrated that Upf1 associates with 40S ribosomal subunits. Here, we define more precisely the nature of this association using conventional and affinity-based purification of ribosomal subunits, and a two-hybrid screen to identify Upf1-interacting ribosomal proteins. Upf1 coimmunoprecipitates specifically with epitope-tagged 40S ribosomal subunits, and Upf1 association with high-salt washed or puromycin-released 40S subunits was found to occur without simultaneous eRF1, eRF3, Upf2, or Upf3 association. Two-hybrid analyses and in vitro binding assays identified a specific interaction between Upf1 and Rps26. Using mutations in domains of UPF1 known to be crucial for its function, we found that Upf1:40S association is modulated by ATP, and Upf1:Rps26 interaction is dependent on the N-terminal Upf1 CH domain. The specific association of Upf1 with the 40S subunit is consistent with the notion that this RNA helicase not only triggers rapid decay of nonsense-containing mRNAs, but may also have an important role in dissociation of the premature termination complex.
Collapse
|
21
|
Nguyen LS, Kim HG, Rosenfeld JA, Shen Y, Gusella JF, Lacassie Y, Layman LC, Shaffer LG, Gécz J. Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders. Hum Mol Genet 2013; 22:1816-25. [PMID: 23376982 DOI: 10.1093/hmg/ddt035] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway functions not only to degrade transcripts containing premature termination codons (PTC), but also to regulate the transcriptome. UPF3B and RBM8A, important components of NMD, have been implicated in various forms of intellectual disability (ID) and Thrombocytopenia with Absent Radius (TAR) syndrome, which is also associated with ID. To gauge the contribution of other NMD factors to ID, we performed a comprehensive search for copy number variants (CNVs) of 18 NMD genes among individuals with ID and/or congenital anomalies. We identified 11 cases with heterozygous deletions of the genomic region encompassing UPF2, which encodes for a direct interacting protein of UPF3B. Using RNA-Seq, we showed that the genome-wide consequence of reduced expression of UPF2 is similar to that seen in patients with UPF3B mutations. Out of the 1009 genes found deregulated in patients with UPF2 deletions by at least 2-fold, majority (95%) were deregulated similarly in patients with UPF3B mutations. This supports the major role of deletion of UPF2 in ID. Furthermore, we found that four other NMD genes, UPF3A, SMG6, EIF4A3 and RNPS1 are frequently deleted and/or duplicated in the patients. We postulate that dosage imbalances of these NMD genes are likely to be the causes or act as predisposing factors for neuro-developmental disorders. Our findings further emphasize the importance of NMD pathway(s) in learning and memory.
Collapse
Affiliation(s)
- Lam S Nguyen
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA 5006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The interplay of translation and mRNA turnover has helped unveil how the regulation of gene expression is a continuum in which events that occur during the birth of a transcript in the nucleus can have profound effects on subsequent steps in the cytoplasm. Exemplifying this continuum is nonsense-mediated mRNA decay (NMD), the process wherein a premature stop codon affects both translation and mRNA decay. Studies of NMD helped lead us to the therapeutic concept of treating a subset of patients suffering from multiple genetic disorders due to nonsense mutations with a single small-molecule drug that modulates the translation termination process at a premature nonsense codon. Here we review both translation termination and NMD, and our subsequent efforts over the past 15 years that led to the identification, characterization, and clinical testing of ataluren, a new therapeutic with the potential to treat a broad range of genetic disorders due to nonsense mutations.
Collapse
Affiliation(s)
- Stuart W Peltz
- PTC Therapeutics, Inc., South Plainfield, New Jersey 07080, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Although most mRNA molecules derived from protein-coding genes are destined to be translated into functional polypeptides, some are eliminated by cellular quality control pathways that collectively perform the task of mRNA surveillance. In the nonsense-mediated decay (NMD) pathway premature translation termination promotes the recruitment of a set of factors that destabilize a targeted mRNA. The same factors also seem to have key roles in repressing the translation of the mRNA, dissociating its terminating ribosome and messenger ribonucleoproteins (mRNPs), promoting the degradation of its truncated polypeptide product and possibly even feeding back to the site of transcription to interfere with splicing of the primary transcript.
Collapse
|
24
|
Kebaara BW, Baker KE, Patefield KD, Atkin AL. Analysis of nonsense-mediated mRNA decay in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2012; Chapter 27:Unit 27.3. [PMID: 22422476 DOI: 10.1002/0471143030.cb2703s54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nonsense-mediated mRNA decay is a highly conserved pathway that degrades mRNAs with premature termination codons. These mRNAs include mRNAs transcribed from nonsense or frameshift alleles as well as wild-type mRNA with signals that direct ribosomes to terminate prematurely. This unit describes techniques to monitor steady-state mRNA levels, decay rates, and structural features of mRNAs targeted by this pathway, as well as in vivo analysis of nonsense suppression and allosuppression in the yeast Saccharomyces cerevisiae. Protocols for the structural features of mRNA include analysis of cap status, 5' and 3' untranslated region (UTR) lengths, and poly(A) tail length.
Collapse
|
25
|
Abstract
All RNA species in yeast cells are subject to turnover. Work over the past 20 years has defined degradation mechanisms for messenger RNAs, transfer RNAs, ribosomal RNAs, and noncoding RNAs. In addition, numerous quality control mechanisms that target aberrant RNAs have been identified. Generally, each decay mechanism contains factors that funnel RNA substrates to abundant exo- and/or endonucleases. Key issues for future work include determining the mechanisms that control the specificity of RNA degradation and how RNA degradation processes interact with translation, RNA transport, and other cellular processes.
Collapse
Affiliation(s)
- Roy Parker
- Department of Molecular and Cellular Biology, University of Arizona and Howard Hughes Medical Institute, Tucson, AZ 85721, USA.
| |
Collapse
|
26
|
Kvas S, Gloor GB, Brandl CJ. Loss of nonsense mediated decay suppresses mutations in Saccharomyces cerevisiae TRA1. BMC Genet 2012; 13:19. [PMID: 22439631 PMCID: PMC3364908 DOI: 10.1186/1471-2156-13-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/22/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tra1 is an essential protein in Saccharomyces cerevisiae. It was first identified in the SAGA and NuA4 complexes, both with functions in multiple aspects of gene regulation and DNA repair, and recently found in the ASTRA complex. Tra1 belongs to the PIKK family of proteins with a C-terminal PI3K domain followed by a FATC domain. Previously we found that mutation of leucine to alanine at position 3733 in the FATC domain of Tra1 (tra1-L3733A) results in transcriptional changes and slow growth under conditions of stress. To further define the regulatory interactions of Tra1 we isolated extragenic suppressors of the tra1-L3733A allele. RESULTS We screened for suppressors of the ethanol sensitivity caused by tra1-L3733A. Eleven extragenic recessive mutations, belonging to three complementation groups, were identified that partially suppressed a subset of the phenotypes caused by tra1-L3733A. Using whole genome sequencing we identified one of the mutations as an opal mutation at tryptophan 165 of UPF1/NAM7. Partial suppression of the transcriptional defect resulting from tra1-L3733A was observed at GAL10, but not at PHO5. Suppression was due to loss of nonsense mediated decay (NMD) since deletion of any one of the three NMD surveillance components (upf1/nam7, upf2/nmd2, or upf3) mediated the effect. Deletion of upf1 suppressed a second FATC domain mutation, tra1-F3744A, as well as a mutation to the PIK3 domain. In contrast, deletions of SAGA or NuA4 components were not suppressed. CONCLUSIONS We have demonstrated a genetic interaction between TRA1 and genes of the NMD pathway. The suppression is specific for mutations in TRA1. Since NMD and Tra1 generally act reciprocally to control gene expression, and the FATC domain mutations do not directly affect NMD, we suggest that suppression occurs as the result of overlap and/or crosstalk in these two broad regulatory networks.
Collapse
Affiliation(s)
- Stephanie Kvas
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London N6A5C1, Canada
| | | | | |
Collapse
|
27
|
Hwang J, Maquat LE. Nonsense-mediated mRNA decay (NMD) in animal embryogenesis: to die or not to die, that is the question. Curr Opin Genet Dev 2012; 21:422-30. [PMID: 21550797 DOI: 10.1016/j.gde.2011.03.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 11/28/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a well-studied cellular quality-control pathway. It decreases the half-lives of eukaryotic mRNAs that aberrantly contain premature termination codons and additionally regulates an estimated 10-20% of normal transcripts. NMD factors play crucial roles during embryogenesis in many animals. Here, we review data indicating that NMD factors are required for proper embryogenesis by discussing the abnormal developmental phenotypes that result when the abundance of individual NMD factors is either downregulated or completely eliminated. We conclude that while NMD per se affects the embryogenesis of all animals, it is required to avoid embryonic lethality in only some animals. The critical roles of many NMD factors in other metabolic pathways undoubtedly also contribute to embryonic development if not viability.
Collapse
Affiliation(s)
- Jungwook Hwang
- Department of Biochemistry and Biophysics and the Center for RNA Biology, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
28
|
[NSI+] determinant has a pleiotropic phenotypic manifestation that is modulated by SUP35, SUP45, and VTS1 genes. Curr Genet 2012; 58:35-47. [PMID: 22215010 DOI: 10.1007/s00294-011-0363-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
We recently discovered the novel non-chromosomal determinant in Saccharomyces cerevisiae [NSI(+)] (nonsense suppression inducer), which causes omnipotent nonsense suppression in strains where the Sup35 N-terminal domain is deleted. [NSI(+)] possesses yeast prion features and does not correspond to previously identified yeast prion determinants. Here, we show that [NSI(+)] enhances nonsense codon read-through and inhibits vegetative growth in S. cerevisiae. Using a large-scale overexpression screen to identify genes that impact the phenotypic effects of [NSI(+)], we found that the SUP35 and SUP45 genes encoding the translation termination factors eRF3 and eRF1, respectively, modulate nonsense suppression in [NSI(+)] strains. The VTS1 gene encodes an NQ-enriched RNA-binding protein that enhances nonsense suppression in [NSI(+)] and [nsi(-)] strains. We demonstrate that VTS1 overexpression, like [NSI(+)] induction, causes translational read-through and growth defects in S. cerevisiae.
Collapse
|
29
|
Kervestin S, Li C, Buckingham R, Jacobson A. Testing the faux-UTR model for NMD: analysis of Upf1p and Pab1p competition for binding to eRF3/Sup35p. Biochimie 2012; 94:1560-71. [PMID: 22227378 DOI: 10.1016/j.biochi.2011.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that accelerates the degradation of mRNAs containing premature translation termination codons. This quality control pathway depends on the NMD-specific factors, Upf1p, Upf2p/Nmd2p, and Upf3p, as well as the two release factors, eRF1 and eRF3 (respectively designated Sup45p and Sup35p in yeast). NMD activation is also enabled by the absence of the poly(A)-binding protein, Pab1p, downstream of a termination event. Since Sup35p interacts with both Upf1p and Pab1p we considered the possibility that differential binding of the latter factors to Sup35p may be a critical determinant of NMD sensitivity for an mRNA. Here we describe three approaches to assess this hypothesis. First, we tethered fragments or mutant forms of Sup35p downstream of a premature termination codon in a mini-pgk1 nonsense-containing mRNA and showed that the inhibition of NMD by tethered Sup35p does not depend on the domain necessary for the recruitment of Pab1p. Second, we examined the Sup35p interaction properties of Upf1p and Pab1p in vitro and showed that these two proteins bind differentially to Sup35p. Finally, we examined competitive binding between the three proteins and observed that Upf1p inhibits Pab1p binding to Sup35p whereas the interaction between Upf1p and Sup35p is relatively unaffected by Pab1p. These data indicate that the binding of Upf1p and Pab1p to Sup35p may be more complex than anticipated and that NMD activation could involve more than just simple competition between these factors. We conclude that activation of NMD at a premature termination codon is not solely based on the absence of Pab1p and suggest that a specific recruitment step must commit Upf1p to the process and Upf1p-associated mRNAs to NMD.
Collapse
Affiliation(s)
- Stephanie Kervestin
- CNRS UPR9073 Associated with Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-chimique (IBPC) 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
30
|
Copper tolerance of Saccharomyces cerevisiae nonsense-mediated mRNA decay mutants. Curr Genet 2011; 57:421-30. [PMID: 21918884 DOI: 10.1007/s00294-011-0356-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/23/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
Abstract
The eukaryotic nonsense-mediated mRNA (NMD) is a specialized pathway that leads to the recognition and rapid degradation of mRNAs with premature termination codons, and importantly some natural mRNAs as well. Natural mRNAs with atypically long 3'-untranslated regions (UTRs) are degraded by NMD in Saccharomyces cerevisiae. A number of S. cerevisiae mRNAs undergo alternative 3'-end processing producing mRNA isoforms that differ in their 3'-UTR lengths. Some of these alternatively 3'-end processed mRNA isoforms have atypically long 3'-UTRs and would be likely targets for NMD-mediated degradation. Here, we investigated the role NMD plays in the regulation of expression of CTR2, which encodes a vacuolar membrane copper transporter. CTR2 pre-mRNA undergoes alternative 3'-end processing to produce two mRNA isoforms with 300-nt and 2-kb 3'-UTRs. We show that both CTR2 mRNA isoforms are differentially regulated by NMD. The regulation of CTR2 mRNA by NMD has physiological consequences, since nmd mutants are more tolerant to toxic levels of copper relative to wild-type yeast cells and the copper tolerance of nmd mutants is dependent on the presence of CTR2.
Collapse
|
31
|
Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol Cell 2011; 41:693-703. [PMID: 21419344 DOI: 10.1016/j.molcel.2011.02.010] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/29/2010] [Accepted: 01/07/2011] [Indexed: 01/08/2023]
Abstract
Upf1 is a crucial factor in nonsense-mediated mRNA decay, the eukaryotic surveillance pathway that degrades mRNAs containing premature stop codons. The essential RNA-dependent ATPase activity of Upf1 is triggered by the formation of the surveillance complex with Upf2-Upf3. We report crystal structures of Upf1 in the presence and absence of the CH domain, captured in the transition state with ADP:AlF₄⁻ and RNA. In isolation, Upf1 clamps onto the RNA, enclosing it in a channel formed by both the catalytic and regulatory domains. Upon binding to Upf2, the regulatory CH domain of Upf1 undergoes a large conformational change, causing the catalytic helicase domain to bind RNA less extensively and triggering its helicase activity. Formation of the surveillance complex thus modifies the RNA binding properties and the catalytic activity of Upf1, causing it to switch from an RNA-clamping mode to an RNA-unwinding mode.
Collapse
|
32
|
Ghosh S, Ganesan R, Amrani N, Jacobson A. Translational competence of ribosomes released from a premature termination codon is modulated by NMD factors. RNA (NEW YORK, N.Y.) 2010; 16:1832-1847. [PMID: 20675403 PMCID: PMC2924542 DOI: 10.1261/rna.1987710] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 06/28/2010] [Indexed: 05/29/2023]
Abstract
In addition to their well-documented roles in the promotion of nonsense-mediated mRNA decay (NMD), yeast Upf proteins (Upf1, Upf2/Nmd2, and Upf3) also manifest translational regulatory functions, at least in vitro, including roles in premature translation termination and subsequent reinitiation. Here, we find that all upf Delta strains also fail to reinitiate translation after encountering a premature termination codon (PTC) in vivo, a result that led us to seek a unifying mechanism for all of these translation phenomena. Comparisons of the in vitro translational activities of wild-type (WT) and upf1 Delta extracts were utilized to test for a Upf1 role in post-termination ribosome reutilization. Relative to WT extracts, non-nucleased extracts lacking Upf1 had approximately twofold decreased activity for the translation of synthetic CAN1/LUC mRNA, a defect paralleled by fewer ribosomes per mRNA and reduced efficiency of the 60S joining step at initiation. These deficiencies could be complemented by purified FLAG-Upf1, or 60S subunits, and appeared to reflect diminished cycling of ribosomes from endogenous PTC-containing mRNAs to exogenously added synthetic mRNA in the same extracts. This hypothesis was tested, and supported, by experiments in which nucleased WT or upf1 Delta extracts were first challenged with high concentrations of synthetic mRNAs that were templates for either normal or premature translation termination and then assayed for their capacity to translate a normal mRNA. Our results indicate that Upf1 plays a key role in a mechanism coupling termination and ribosome release at a PTC to subsequent ribosome reutilization for another round of translation initiation.
Collapse
Affiliation(s)
- Shubhendu Ghosh
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0122, USA
| | | | | | | |
Collapse
|
33
|
Johansson MJO, Jacobson A. Nonsense-mediated mRNA decay maintains translational fidelity by limiting magnesium uptake. Genes Dev 2010; 24:1491-5. [PMID: 20634315 DOI: 10.1101/gad.1930710] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Inactivation of the yeast nonsense-mediated mRNA decay (NMD) pathway stabilizes nonsense mRNAs and promotes readthrough of premature translation termination codons. Although the latter phenotype is thought to reflect a direct role of NMD factors in translation termination, its mechanism is unknown. Here we show that the reduced termination efficiency of NMD-deficient cells is attributable to increased expression of the magnesium transporter Alr1p and the resulting effects of elevated Mg(2+) levels on termination fidelity. Alr1p levels increase because an upstream ORF in ALR1 mRNA targets the transcript for NMD. Our results demonstrate that NMD, at least in yeast, controls Mg(2+) homeostasis and, consequently, translational fidelity.
Collapse
Affiliation(s)
- Marcus J O Johansson
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
34
|
The shuttling protein Npl3 promotes translation termination accuracy in Saccharomyces cerevisiae. J Mol Biol 2009; 394:410-22. [PMID: 19733178 DOI: 10.1016/j.jmb.2009.08.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/24/2009] [Accepted: 08/29/2009] [Indexed: 01/20/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins are multifunctional proteins that bind to newly synthesized mRNAs in the nucleus and participate in many subsequent steps of gene expression. A well-studied Saccharomyces cerevisiae heterogeneous nuclear ribonucleoprotein that has several nuclear functions is Npl3p. Here, we provide evidence that Npl3p also has a cytoplasmic role: it functions in translation termination fidelity. Yeast harboring the npl3-95 mutant allele have an impaired ability to translate lacZ, enhanced sensitivity to cycloheximide and paromomycin, and increased ability to read through translation termination codons. Most of these defects are enhanced in yeast that also lack Upf1p, an RNA surveillance factor crucial for translation termination. We show that the npl3-95 mutant allele encodes a form of Npl3p that is part of high molecular-weight complexes that cofractionate with the poly(A)-binding protein Pab1p. Together, these results lead us to propose a model in which Npl3p engenders translational fidelity by promoting the remodeling of mRNPs during translation termination.
Collapse
|
35
|
Kebaara BW, Atkin AL. Long 3'-UTRs target wild-type mRNAs for nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Nucleic Acids Res 2009; 37:2771-8. [PMID: 19270062 PMCID: PMC2685090 DOI: 10.1093/nar/gkp146] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway, present in most eukaryotic cells, is a specialized pathway that leads to the recognition and rapid degradation of mRNAs with premature termination codons and, importantly, some wild-type mRNAs. Earlier studies demonstrated that aberrant mRNAs with artificially extended 3′-untranslated regions (3′-UTRs) are degraded by NMD. However, the extent to which wild-type mRNAs with long 3′-UTRs are degraded by NMD is not known. We used a global approach to identify wild-type mRNAs in Saccharomyces cerevisiae that have longer than expected 3′-UTRs, and of these mRNAs tested, 91% were degraded by NMD. We demonstrate for the first time that replacement of the natural, long 3′-UTR from wild-type PGA1 mRNA, which encodes a protein that is important for cell wall biosynthesis, with a short 3′-UTR renders it immune to NMD. The natural PGA1 3′-UTR is sufficient to target a NMD insensitive mRNA for decay by the NMD pathway. Finally, we show that nmd mutants are sensitive to Calcofluor White, which suggests that the regulation of PGA1 and other cell wall biosynthesis proteins by NMD is physiologically significant.
Collapse
Affiliation(s)
- Bessie W Kebaara
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | |
Collapse
|
36
|
Chen YH, Su LH, Huang YC, Wang YT, Kao YY, Sun CH. UPF1, a conserved nonsense-mediated mRNA decay factor, regulates cyst wall protein transcripts in Giardia lamblia. PLoS One 2008; 3:e3609. [PMID: 18974834 PMCID: PMC2572189 DOI: 10.1371/journal.pone.0003609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 10/15/2008] [Indexed: 12/03/2022] Open
Abstract
The Giardia lamblia cyst wall is required for survival outside the host and infection. Three cyst wall protein (cwp) genes identified to date are highly up-regulated during encystation. However, little is known of the molecular mechanisms governing their gene regulation. Messenger RNAs containing premature stop codons are rapidly degraded by a nonsense-mediated mRNA decay (NMD) system to avoid production of non-functional proteins. In addition to RNA surveillance, NMD also regulates thousands of naturally occurring transcripts through a variety of mechanisms. It is interesting to know the NMD pathway in the primitive eukaryotes. Previously, we have found that the giardial homologue of a conserved NMD factor, UPF1, may be functionally conserved and involved in NMD and in preventing nonsense suppression. In this study, we tested the hypothesis that NMD factors can regulate some naturally occurring transcripts in G. lamblia. We found that overexpression of UPF1 resulted in a significant decrease of the levels of CWP1 and cyst formation and of the endogenous cwp1-3, and myb2 mRNA levels and stability. This indicates that NMD could contribute to the regulation of the cwp1-3 and myb2 transcripts, which are key to G. lamblia differentiation into cyst. Interestingly, we also found that UPF1 may be involved in regulation of eight other endogenous genes, including up-regulation of the translation elongation factor gene, whose product increases translation which is required for NMD. Our results indicate that NMD factor could contribute to the regulation of not only nonsense containing mRNAs, but also mRNAs of the key encystation-induced genes and other endogenous genes in the early-diverging eukaryote, G. lamblia.
Collapse
Affiliation(s)
- Yi-Hsiu Chen
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Li-Hsin Su
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Chang Huang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yi-Ting Wang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yu-Yun Kao
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chin-Hung Sun
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
37
|
Takahashi S, Araki Y, Ohya Y, Sakuno T, Hoshino SI, Kontani K, Nishina H, Katada T. Upf1 potentially serves as a RING-related E3 ubiquitin ligase via its association with Upf3 in yeast. RNA (NEW YORK, N.Y.) 2008; 14:1950-8. [PMID: 18676617 PMCID: PMC2525956 DOI: 10.1261/rna.536308] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Three Upf proteins are essential to the nonsense-mediated mRNA decay (NMD) pathway. Although these proteins assemble on polysomes for recognition of aberrant mRNAs containing premature termination codons, the significance of this assembly remains to be elucidated. The Cys- and His-rich repeated N terminus (CH domain) of Upf1 has been implicated in its binding to Upf2. Here, we show that CH domain also plays a RING-related role for Upf1 to exhibit E3 ubiquitin ligase activity in yeast. Despite the sequence divergence from typical E3-RING fingers, the CH domain of yeast Upf1 specifically and directly interacted with the yeast E2 Ubc3. Interestingly, Upf1 served as a substrate for the in vitro self-ubiquitination, and the modification required its association with Upf3 rather than Upf2. Substitution of the coordinated Cys and His residues in the CH domain impaired not only self-ubiquitination of Upf1 but also rapid decay of aberrant mRNAs. These results suggest that Upf1 may serve as an E3 ubiquitin ligase upon its association with Upf3 and play an important role in signaling to the NMD pathway.
Collapse
Affiliation(s)
- Shinya Takahashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zaretsky JZ, Wreschner DH. Protein multifunctionality: principles and mechanisms. TRANSLATIONAL ONCOGENOMICS 2008; 3:99-136. [PMID: 21566747 PMCID: PMC3022353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the review, the nature of protein multifunctionality is analyzed. In the first part of the review the principles of structural/functional organization of protein are discussed. In the second part, the main mechanisms involved in development of multiple functions on a single gene product(s) are analyzed. The last part represents a number of examples showing that multifunctionality is a basic feature of biologically active proteins.
Collapse
Affiliation(s)
- Joseph Z Zaretsky
- Department Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Haim Levanon St., 69978 Tel-Aviv, Israel
| | | |
Collapse
|
39
|
Neu-Yilik G, Kulozik AE. NMD: multitasking between mRNA surveillance and modulation of gene expression. ADVANCES IN GENETICS 2008; 62:185-243. [PMID: 19010255 DOI: 10.1016/s0065-2660(08)00604-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene expression is a highly specific and regulated multilayer process with a plethora of interconnections as well as safeguard and feedback mechanisms. Messenger RNA, long neglected as a mere subcarrier of genetic information, is more recently recognized as a linchpin of regulation and control of gene expression. Moreover, the awareness of not only proteins but also mRNA as a modulator of genetic disorders has vastly increased in recent years. Nonsense-mediated mRNA decay (NMD) is a posttranscriptional surveillance mechanism that uses an intricate network of nuclear and cytoplasmic processes to eliminate mRNAs, containing premature termination codons. It thus helps limit the synthesis of potentially harmful truncated proteins. However, recent results suggest functions of NMD that go far beyond this role and affect the expression of wild-type genes and the modulation of whole pathways. In both respects--the elimination of faulty transcripts and the regulation of error-free mRNAs--NMD has many medical implications. Therefore, it has earned increasing interest from researchers of all fields of the life sciences. In the following text, we (1) present current knowledge about the NMD mechanism and its targets, (2) define its relevance in the regulation of important biochemical pathways, (3) explore its medical significance and the prospects of therapeutic interventions, and (4) discuss additional functions of NMD effectors, some of which may be networked to NMD. The main focus of this chapter lies on mammalian NMD and resorts to the features and factors of NMD in other organisms if these help to complete or illuminate the picture.
Collapse
Affiliation(s)
- Gabriele Neu-Yilik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Andreas E Kulozik
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg and Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| |
Collapse
|
40
|
He F, Amrani N, Johansson MJ, Jacobson A. Qualitative and Quantitative Assessment of the Activity of the Yeast Nonsense-Mediated mRNA Decay Pathway. Methods Enzymol 2008; 449:127-47. [DOI: 10.1016/s0076-6879(08)02406-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality-control mechanism that selectively degrades mRNAs harboring premature termination (nonsense) codons. If translated, these mRNAs can produce truncated proteins with dominant-negative or deleterious gain-of-function activities. In this review, we describe the molecular mechanism of NMD. We first cover conserved factors known to be involved in NMD in all eukaryotes. We then describe a unique protein complex that is deposited on mammalian mRNAs during splicing, which defines a stop codon as premature. Interaction between this exon-junction complex (EJC) and NMD factors assembled at the upstream stop codon triggers a series of steps that ultimately lead to mRNA decay. We discuss whether these proofreading events preferentially occur during a "pioneer" round of translation in higher and lower eukaryotes, their cellular location, and whether they can use alternative EJC factors or act independent of the EJC.
Collapse
Affiliation(s)
- Yao-Fu Chang
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
42
|
Chabelskaya S, Gryzina V, Moskalenko S, Le Goff C, Zhouravleva G. Inactivation of NMD increases viability of sup45 nonsense mutants in Saccharomyces cerevisiae. BMC Mol Biol 2007; 8:71. [PMID: 17705828 PMCID: PMC2039749 DOI: 10.1186/1471-2199-8-71] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 08/16/2007] [Indexed: 11/10/2022] Open
Abstract
Background The nonsense-mediated mRNA decay (NMD) pathway promotes the rapid degradation of mRNAs containing premature termination codons (PTCs). In yeast Saccharomyces cerevisiae, the activity of the NMD pathway depends on the recognition of the PTC by the translational machinery. Translation termination factors eRF1 (Sup45) and eRF3 (Sup35) participate not only in the last step of protein synthesis but also in mRNA degradation and translation initiation via interaction with such proteins as Pab1, Upf1, Upf2 and Upf3. Results In this work we have used previously isolated sup45 mutants of S. cerevisiae to characterize degradation of aberrant mRNA in conditions when translation termination is impaired. We have sequenced his7-1, lys9-A21 and trp1-289 alleles which are frequently used for analysis of nonsense suppression. We have established that sup45 nonsense and missense mutations lead to accumulation of his7-1 mRNA and CYH2 pre-mRNA. Remarkably, deletion of the UPF1 gene suppresses some sup45 phenotypes. In particular, sup45-n upf1Δ double mutants were less temperature sensitive, and more resistant to paromomycin than sup45 single mutants. In addition, deletion of either UPF2 or UPF3 restored viability of sup45-n double mutants. Conclusion This is the first demonstration that sup45 mutations do not only change translation fidelity but also acts by causing a change in mRNA stability.
Collapse
Affiliation(s)
- Svetlana Chabelskaya
- Department of Genetics and Breeding, St Petersburg State University, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
- CNRS UMR 6061 Génétique et Développement, Université de Rennes 1, IFR 140, Faculté de Médecine, 2 av. Pr. Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | - Valentina Gryzina
- Department of Genetics and Breeding, St Petersburg State University, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Svetlana Moskalenko
- Department of Genetics and Breeding, St Petersburg State University, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
- CNRS UMR 6061 Génétique et Développement, Université de Rennes 1, IFR 140, Faculté de Médecine, 2 av. Pr. Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | - Catherine Le Goff
- CNRS UMR 6061 Génétique et Développement, Université de Rennes 1, IFR 140, Faculté de Médecine, 2 av. Pr. Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | - Galina Zhouravleva
- Department of Genetics and Breeding, St Petersburg State University, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
- CNRS UMR 6061 Génétique et Développement, Université de Rennes 1, IFR 140, Faculté de Médecine, 2 av. Pr. Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| |
Collapse
|
43
|
Kodama H, Ito K, Nakamura Y. The role of N-terminal domain of translational release factor eRF3 for the control of functionality and stability in S. cerevisiae. Genes Cells 2007; 12:639-50. [PMID: 17535254 DOI: 10.1111/j.1365-2443.2007.01082.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Translation termination in eukaryotes is mediated by two eukaryotic release factors, eRF1 and eRF3. eRF1 recognizes all three stop codons and induces polypeptide release, while eRF3 binds to eRF1 and participates in translation termination though the regulatory role of eRF3 is still unknown. Importantly, eRF3 interacts with various proteins of distinct biological functions. Here, we investigated the effect of these binding factors on functionality and stability of eRF3 using a temperature-sensitive mutant eRF3ts, which is susceptible to factor binding to change the growth phenotype or cellular protein level. Of factors tested, Itt1 over-expression and Sla1 knockout severely impaired viability of eRF3ts cell and its protein abundance in permissive and semipermissive conditions. Sla1 over-expression reversed the phenotype. It is reported that Itt1 and Sla1 bind to the N-terminal extension domain (NED) of eRF3, unlike the other no-effect factors that bind to the C-terminal domain (CTD). Although NED itself is dispensable, NED-less eRF3ts altered in the stability and functionality. Moreover, Itt1-induced eRF3ts lethality was significantly restored by pep4, prb1 and prc1 knockouts that are defective in vacuolar proteolysis. These findings suggest that NED functions to switch the functional mode of eRF3 depending on the nature of binding factors.
Collapse
Affiliation(s)
- Hiroyuki Kodama
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
44
|
Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, Paushkin S, Patel M, Trotta CR, Hwang S, Wilde RG, Karp G, Takasugi J, Chen G, Jones S, Ren H, Moon YC, Corson D, Turpoff AA, Campbell JA, Conn MM, Khan A, Almstead NG, Hedrick J, Mollin A, Risher N, Weetall M, Yeh S, Branstrom AA, Colacino JM, Babiak J, Ju WD, Hirawat S, Northcutt VJ, Miller LL, Spatrick P, He F, Kawana M, Feng H, Jacobson A, Peltz SW, Sweeney HL. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007; 447:87-91. [PMID: 17450125 DOI: 10.1038/nature05756] [Citation(s) in RCA: 859] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 03/16/2007] [Indexed: 12/15/2022]
Abstract
Nonsense mutations promote premature translational termination and cause anywhere from 5-70% of the individual cases of most inherited diseases. Studies on nonsense-mediated cystic fibrosis have indicated that boosting specific protein synthesis from <1% to as little as 5% of normal levels may greatly reduce the severity or eliminate the principal manifestations of disease. To address the need for a drug capable of suppressing premature termination, we identified PTC124-a new chemical entity that selectively induces ribosomal readthrough of premature but not normal termination codons. PTC124 activity, optimized using nonsense-containing reporters, promoted dystrophin production in primary muscle cells from humans and mdx mice expressing dystrophin nonsense alleles, and rescued striated muscle function in mdx mice within 2-8 weeks of drug exposure. PTC124 was well tolerated in animals at plasma exposures substantially in excess of those required for nonsense suppression. The selectivity of PTC124 for premature termination codons, its well characterized activity profile, oral bioavailability and pharmacological properties indicate that this drug may have broad clinical potential for the treatment of a large group of genetic disorders with limited or no therapeutic options.
Collapse
Affiliation(s)
- Ellen M Welch
- PTC Therapeutics, 100 Corporate Court, South Plainfield, New Jersey 07080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dong S, Li C, Zenklusen D, Singer RH, Jacobson A, He F. YRA1 autoregulation requires nuclear export and cytoplasmic Edc3p-mediated degradation of its pre-mRNA. Mol Cell 2007; 25:559-73. [PMID: 17317628 PMCID: PMC1858660 DOI: 10.1016/j.molcel.2007.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 11/13/2006] [Accepted: 01/10/2007] [Indexed: 11/20/2022]
Abstract
Autoregulatory loops often provide precise control of the level of expression of specific genes that encode key regulatory proteins. Here we have defined a pathway by which Yra1p, a yeast mRNA export factor, controls its own expression. We show that YRA1 exon 1 sequences in cis and Yra1p in trans inhibit YRA1 pre-mRNA splicing and commit the pre-mRNA to nuclear export. Mex67p and Crm1p jointly promote YRA1 pre-mRNA export, and once in the cytoplasm, the pre-mRNA is degraded by a 5' to 3' decay mechanism that is dependent on the decapping activator Edc3p and on specific sequences in the YRA1 intron. These results illustrate how common steps in the nuclear processing, export, and degradation of a transcript can be uniquely combined to control the expression of a specific gene and suggest that Edc3p-mediated decay may have additional regulatory functions in eukaryotic cells.
Collapse
Affiliation(s)
- Shuyun Dong
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
46
|
Wu C, Amrani N, Jacobson A, Sachs MS. The use of fungal in vitro systems for studying translational regulation. Methods Enzymol 2007; 429:203-25. [PMID: 17913625 DOI: 10.1016/s0076-6879(07)29010-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The use of cell-free systems enables biochemical determination of factors and mechanisms contributing to translational processes. The preparation and use of cell-free translation systems from the fungi Saccharomyces cerevisiae and Neurospora crassa are described. Examples provided illustrate the use of these systems, in conjunction with luciferase assays, [(35)S]Met incorporation, and primer-extension inhibition (toeprint) analyses, to assess the translational effects of upstream open reading frames and premature termination codons.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, Oregon, USA
| | | | | | | |
Collapse
|
47
|
Morales J, Mulner-Lorillon O, Cosson B, Morin E, Bellé R, Bradham CA, Beane WS, Cormier P. Translational control genes in the sea urchin genome. Dev Biol 2006; 300:293-307. [PMID: 16959243 DOI: 10.1016/j.ydbio.2006.07.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 07/25/2006] [Accepted: 07/27/2006] [Indexed: 10/24/2022]
Abstract
Sea urchin eggs and early cleavage stage embryos provide an example of regulated gene expression at the level of translation. The availability of the sea urchin genome offers the opportunity to investigate the "translational control" toolkit of this model system. The annotation of the genome reveals that most of the factors implicated in translational control are encoded by nonredundant genes in echinoderm, an advantage for future functional studies. In this paper, we focus on translation factors that have been shown or suggested to play crucial role in cell cycle and development of sea urchin embryos. Addressing the cap-binding translational control, three closely related eIF4E genes (class I, II, III) are present, whereas its repressor 4E-BP and its activator eIF4G are both encoded by one gene. Analysis of the class III eIF4E proteins in various phyla shows an echinoderm-specific amino acid substitution. Furthermore, an interaction site between eIF4G and poly(A)-binding protein is uncovered in the sea urchin eIF4G proteins and is conserved in metazoan evolution. In silico screening of the sea urchin genome has uncovered potential new regulators of eIF4E sharing the common eIF4E recognition motif. Taking together, these data provide new insights regarding the strong requirement of cap-dependent translation following fertilization. The genome analysis gives insights on the complexity of eEF1B structure and motifs of functional relevance, involved in the translational control of gene expression at the level of elongation. Finally, because deregulation of translation process can lead to diseases and tumor formation in humans, the sea urchin orthologs of human genes implicated in human diseases and signaling pathways regulating translation were also discussed.
Collapse
Affiliation(s)
- Julia Morales
- Equipe Cycle Cellulaire et Développement, UMR 7150 CNRS/UPMC, Station Biologique 29680 Roscoff, France.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Keeling KM, Salas-Marco J, Osherovich LZ, Bedwell DM. Tpa1p is part of an mRNP complex that influences translation termination, mRNA deadenylation, and mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:5237-48. [PMID: 16809762 PMCID: PMC1592710 DOI: 10.1128/mcb.02448-05] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we show that the Saccharomyces cerevisiae protein Tpa1p (for termination and polyadenylation) influences translation termination efficiency, mRNA poly(A) tail length, and mRNA stability. Tpa1p is encoded by the previously uncharacterized open reading frame YER049W. Yeast strains carrying a deletion of the TPA1 gene (tpa1Delta) exhibited increased readthrough of stop codons, and coimmunoprecipitation assays revealed that Tpa1p interacts with the translation termination factors eRF1 and eRF3. In addition, the tpa1Delta mutation led to a 1.5- to 2-fold increase in the half-lives of mRNAs degraded by the general 5'-->3' pathway or the 3'-->5' nonstop decay pathway. In contrast, this mutation did not have any affect on the nonsense-mediated mRNA decay pathway. Examination of mRNA poly(A) tail length revealed that poly(A) tails are longer than normal in a tpa1Delta strain. Consistent with a potential role in regulating poly(A) tail length, Tpa1p was also found to coimmunoprecipitate with the yeast poly(A) binding protein Pab1p. These results suggest that Tpa1p is a component of a messenger ribonucleoprotein complex bound to the 3' untranslated region of mRNAs that affects translation termination, deadenylation, and mRNA decay.
Collapse
Affiliation(s)
- Kim M Keeling
- Department of Microbiology, BBRB 432/Box 8, 1530 3rd Avenue South, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| | | | | | | |
Collapse
|
49
|
Sheth U, Parker R. Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell 2006; 125:1095-109. [PMID: 16777600 PMCID: PMC1858659 DOI: 10.1016/j.cell.2006.04.037] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 02/13/2006] [Accepted: 04/11/2006] [Indexed: 10/24/2022]
Abstract
In eukaryotes, a specialized pathway of mRNA degradation termed nonsense-mediated decay (NMD) functions in mRNA quality control by recognizing and degrading mRNAs with aberrant termination codons. We demonstrate that NMD in yeast targets premature termination codon (PTC)-containing mRNA to P-bodies. Upf1p is sufficient for targeting mRNAs to P-bodies, whereas Upf2p and Upf3p act, at least in part, downstream of P-body targeting to trigger decapping. The ATPase activity of Upf1p is required for NMD after the targeting of mRNAs to P-bodies. Moreover, Upf1p can target normal mRNAs to P-bodies but not promote their degradation. These observations lead us to propose a new model for NMD wherein two successive steps are used to distinguish normal and aberrant mRNAs.
Collapse
Affiliation(s)
- Ujwal Sheth
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Roy Parker
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Howard Hughes Medical Institute, University of Arizona, Tucson, AZ 85721, USA
- *Contact:
| |
Collapse
|
50
|
Amrani N, Sachs MS, Jacobson A. Early nonsense: mRNA decay solves a translational problem. Nat Rev Mol Cell Biol 2006; 7:415-25. [PMID: 16723977 DOI: 10.1038/nrm1942] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene expression is highly accurate and rarely generates defective proteins. Several mechanisms ensure this fidelity, including specialized surveillance pathways that rid the cell of mRNAs that are incompletely processed or that lack complete open reading frames. One such mechanism, nonsense-mediated mRNA decay, is triggered when ribosomes encounter a premature translation-termination--or nonsense--codon. New evidence indicates that the specialized factors that are recruited for this process not only promote rapid mRNA degradation, but are also required to resolve a poorly dissociable termination complex.
Collapse
Affiliation(s)
- Nadia Amrani
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0122, USA
| | | | | |
Collapse
|