1
|
Jia GX, Ma WJ, Wu ZB, Li S, Zhang XQ, He Z, Wu SX, Tao HP, Fang Y, Song YW, Xu SR, Wang XQ, Yang QE. Single-cell transcriptomic characterization of sheep conceptus elongation and implantation. Cell Rep 2023; 42:112860. [PMID: 37494181 DOI: 10.1016/j.celrep.2023.112860] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Bidirectional communication between the developing conceptus and endometrium is essential for pregnancy recognition and establishment in ruminants. We dissect the transcriptomic dynamics of sheep conceptus and corresponding endometrium at pre- and peri-implantation stages using single-cell RNA sequencing. Spherical blastocysts contain five cell types, with 68.62% trophectoderm cells. Strikingly, elongated conceptuses differentiate into 17 cell types, indicating dramatic cell fate specifications. Cell-type-specific gene expression delineates the features of distinctive trophectoderm lineages and indicates that the transition from polar trophectoderm to trophoblast increases interferon-tau expression and likely drives elongation initiation. We identify 13 endometrium-derived cell types and elucidate their molecular responses to conceptus development. Integrated analyses uncover multiple paired transcripts mediating the dialogues between extraembryonic membrane and endometrium, including IGF2-IGF1R, FGF19-FGFR1, NPY-NPY1R, PROS1-AXL, and ADGRE5-CD55. These data provide insight into the molecular regulation of conceptus elongation and represent a valuable resource for functional investigations of pre- and peri-implantation ruminant development.
Collapse
Affiliation(s)
- Gong-Xue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Wen-Ji Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhao-Bo Wu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Xiao-Qian Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Zhen He
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Ping Tao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Fang
- University of Chinese Academy of Sciences, Beijing 100049, China; Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong-Wu Song
- Animal Husbandry and Veterinary Station of Gangcha, Haibei 812300, China
| | - Shang-Rong Xu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Xiao-Qun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China.
| |
Collapse
|
2
|
Pluripotent Core in Bovine Embryos: A Review. Animals (Basel) 2022; 12:ani12081010. [PMID: 35454256 PMCID: PMC9032358 DOI: 10.3390/ani12081010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Early development in mammals is characterized by the ability of each cell to produce a complete organism plus the extraembryonic, or placental, cells, defined as pluripotency. During subsequent development, pluripotency is lost, and cells begin to differentiate to a particular cell fate. This review summarizes the current knowledge of pluripotency features of bovine embryos cultured in vitro, focusing on the core of pluripotency genes (OCT4, NANOG, SOX2, and CDX2), and main chemical strategies for controlling pluripotent networks during early development. Finally, we discuss the applicability of manipulating pluripotency during the morula to blastocyst transition in cattle species.
Collapse
|
3
|
Analysis of Bovine Interferon-tau Gene subtypes Expression in the Trophoblast and Non-trophoblast cells. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.4.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
4
|
Imakawa K, Bai R, Kusama K. Integration of molecules to construct the processes of conceptus implantation to the maternal endometrium. J Anim Sci 2018; 96:3009-3021. [PMID: 29554266 DOI: 10.1093/jas/sky103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/15/2018] [Indexed: 12/22/2022] Open
Abstract
During the peri-implantation period, ruminant conceptuses go through rapid elongation, followed by their attachment to the uterine endometrial epithelial cells, during which interferon-tau (IFNT), a trophectodermal cytokine required for the process of maternal recognition of pregnancy, is expressed in a temporal and spatial manner. On day 22 (day 0 = day of estrus), 2 to 3 d after the initiation of bovine conceptus attachment to the uterine epithelium, when IFNT production begins to subside, the expression of molecules related to epithelial-mesenchymal transition, zinc finger E-box binding homeobox 1, snail family transcriptional repressor 2, N-cadherin, and vimentin was found in the trophectoderm. Through the use of in vitro coculture system with bovine trophoblast CT-1 and endometrial epithelial cells, a series of experiments have been conducted to elucidate mechanisms associated with the regulation of IFNT gene transcription and conceptus implantation, including epithelial-mesenchymal transition processes. Expression of IFNT, both up- and downregulation, during the peri-implantation period is tightly controlled. Cytokines and cell adhesion molecules such as epidermal growth factor, basic fibroblast growth factor, transforming growth factor beta, activin A, L-selectin-podocalyxin, and vascular cell adhesion molecule 1-integrin α4 expressed in utero all contribute to the initiation of epithelial-mesenchymal transition in the trophectoderm. These results indicate that conceptus implantation to the uterine endometrium proceeds while elongated conceptuses and endometria express cell adhesion molecules and their receptors, and the trophectoderm experiences epithelial-mesenchymal transition. Data accumulated suggest that while the conceptus and the endometrial epithelium adhere, trophectodermal cells must gain more flexibility for binucleate and possibly trinucleate cell formation during the peri-implantation period, and that understanding and constructing the conditions throughout implantation processes is key to improving ruminants' fertility.
Collapse
Affiliation(s)
- K Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ago, Kasama, Ibaraki, Japan
| | - R Bai
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ago, Kasama, Ibaraki, Japan
| | - K Kusama
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ago, Kasama, Ibaraki, Japan
| |
Collapse
|
5
|
Liu Y, Ding D, Liu H, Sun X. The accessible chromatin landscape during conversion of human embryonic stem cells to trophoblast by bone morphogenetic protein 4. Biol Reprod 2018; 96:1267-1278. [PMID: 28430877 DOI: 10.1093/biolre/iox028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/14/2017] [Indexed: 12/12/2022] Open
Abstract
Human embryonic stem cells (hESCs) exposed to the growth factor bone morphogenetic protein 4 (BMP4) in the absence of FGF2 have been used as a model to study the development of placental development. However, little is known about the cis-regulatory mechanisms underlying this important process. In this study, we used the public available chromatin accessibility data of hESC H1 cells and BMP4-induced trophoblast (TB) cell lines to identify DNase I hypersensitive sites (DHSs) in the two cell lines, as well as the transcription factor (TF) binding sites within the DHSs. By comparing read profiles in H1 and TB, we identified 17 472 TB-specific DHSs. The TB-specific DHSs are enriched in terms of "blood vessel" and "trophectoderm," consisting of TF motifs family: Leucine Zipper, Helix-Loop-Helix, GATA, and ETS. To validate differential expression of the TFs binding to these motifs, we analyzed public available RNA-seq and microarray data in the same context. Finally, by integrating the protein-protein interaction data, we constructed a TF network for placenta development and identified top 20 key TFs through centrality analysis in the network. Our results indicate BMP4-induced TB system provided an invaluable model for the study of TB development and highlighted novel candidate genes in placenta development in human.
Collapse
Affiliation(s)
- Yajun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P.R. China
| | - Dewu Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P.R. China.,Department of Mathematics and Computer Science, Chizhou College, Chizhou, P.R. China
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P.R. China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, P.R. China
| |
Collapse
|
6
|
Kim MS, Min KS, Seong HH, Kim CL, Jeon IS, Kim SW, Imakawa K. Regulation of conceptus interferon-tau gene subtypes expressed in the uterus during the peri-implantation period of cattle. Anim Reprod Sci 2018; 190:39-46. [DOI: 10.1016/j.anireprosci.2018.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/23/2017] [Accepted: 01/16/2018] [Indexed: 01/09/2023]
|
7
|
Ezashi T, Imakawa K. Transcriptional control of IFNT expression. Reproduction 2017; 154:F21-F31. [PMID: 28982936 PMCID: PMC5687277 DOI: 10.1530/rep-17-0330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/01/2017] [Accepted: 08/29/2017] [Indexed: 12/24/2022]
Abstract
Once interferon-tau (IFNT) had been identified as a type I IFN in sheep and cattle and its functions were characterized, numerous studies were conducted to elucidate the transcriptional regulation of this gene family. Transfection studies performed largely with human choriocarcinoma cell lines identified regulatory regions of the IFNT gene that appeared responsible for trophoblast-specific expression. The key finding was the recognition that the transcription factor ETS2 bound to a proximal region within the 5'UTR of a bovine IFNT and acted as a strong transactivator. Soon after other transcription factors were identified as cooperative partners. The ETS2-binding site and the nearby AP1 site enable response to intracellular signaling from maternal uterine factors. The AP1 site also serves as a GATA-binding site in one of the bovine IFNT genes. The homeobox-containing transcription factor, DLX3, augments IFNT expression combinatorially with ETS2. CDX2 has also been identified as transactivator that binds to a separate site upstream of the main ETS2 enhancer site. CDX2 participates in IFNT epigenetic regulation by modifying histone acetylation status of the gene. The IFNT downregulation at the time of the conceptus attachment to the uterine endometrium appears correlated with the increased EOMES expression and the loss of other transcription coactivators. Altogether, the studies of transcriptional control of IFNT have provided mechanistic evidence of the regulatory framework of trophoblast-specific expression and critical expression pattern for maternal recognition of pregnancy.
Collapse
Affiliation(s)
- Toshihiko Ezashi
- Bond Life Sciences Center and Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211 USA
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding, Veterinary Medical Sciences and Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Imakawa K, Bai R, Nakamura K, Kusama K. Thirty years of interferon-tau research; Past, present and future perspective. Anim Sci J 2017; 88:927-936. [DOI: 10.1111/asj.12807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/06/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Kazuhiko Imakawa
- Animal Resource Science Center; Graduate School of Agricultural and Life Sciences; the University of Tokyo; Kasama Ibaraki Japan
| | - Rulan Bai
- Animal Resource Science Center; Graduate School of Agricultural and Life Sciences; the University of Tokyo; Kasama Ibaraki Japan
| | - Keigo Nakamura
- Animal Resource Science Center; Graduate School of Agricultural and Life Sciences; the University of Tokyo; Kasama Ibaraki Japan
| | - Kazuya Kusama
- Animal Resource Science Center; Graduate School of Agricultural and Life Sciences; the University of Tokyo; Kasama Ibaraki Japan
| |
Collapse
|
9
|
Davis TL, Rebay I. Master regulators in development: Views from the Drosophila retinal determination and mammalian pluripotency gene networks. Dev Biol 2016; 421:93-107. [PMID: 27979656 DOI: 10.1016/j.ydbio.2016.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/03/2016] [Accepted: 12/03/2016] [Indexed: 02/07/2023]
Abstract
Among the mechanisms that steer cells to their correct fate during development, master regulatory networks are unique in their sufficiency to trigger a developmental program outside of its normal context. In this review we discuss the key features that underlie master regulatory potency during normal and ectopic development, focusing on two examples, the retinal determination gene network (RDGN) that directs eye development in the fruit fly and the pluripotency gene network (PGN) that maintains cell fate competency in the early mammalian embryo. In addition to the hierarchical transcriptional activation, extensive positive transcriptional feedback, and cooperative protein-protein interactions that enable master regulators to override competing cellular programs, recent evidence suggests that network topology must also be dynamic, with extensive rewiring of the interactions and feedback loops required to navigate the correct sequence of developmental transitions to reach a final fate. By synthesizing the in vivo evidence provided by the RDGN with the extensive mechanistic insight gleaned from the PGN, we highlight the unique regulatory capabilities that continual reorganization into new hierarchies confers on master control networks. We suggest that deeper understanding of such dynamics should be a priority, as accurate spatiotemporal remodeling of network topology will undoubtedly be essential for successful stem cell based therapeutic efforts.
Collapse
Affiliation(s)
- Trevor L Davis
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Kusama K, Bai R, Sakurai T, Bai H, Ideta A, Aoyagi Y, Imakawa K. A transcriptional cofactor YAP regulates IFNT expression via transcription factor TEAD in bovine conceptuses. Domest Anim Endocrinol 2016; 57:21-30. [PMID: 27315596 DOI: 10.1016/j.domaniend.2016.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 12/22/2022]
Abstract
Interferon tau (IFNT) is the pregnancy recognition protein in all ruminants, and its expression is restricted to trophoblast cells. Interferon tau production increases as the conceptus elongates; however, its expression is downregulated soon after the initiation of conceptus attachment to the uterine epithelium. Our previous study identified that among 8 bovine IFNT genes, only 2 forms of IFNTs, IFNT2 and IFN-tau-c1, were expressed by the conceptuses during the periattachment period. To characterize whether Hippo signaling including a transcription cofactor yes-associated protein (YAP) was involved in the IFNT regulation, we examined the expression and effects of YAP and/or TEAD in human choriocarcinoma JEG3 and bovine trophoblast CT-1 cells, and in bovine conceptuses obtained from day 17, 20 or 22 pregnant animals (pregnant day 19.5 = day of conceptus attachment to the endometrium). YAP was expressed in bovine conceptuses and transfection of YAP or TEAD4, a transcription factor partner of YAP, expression plasmid increased the luciferase activity of IFNT2 and IFN-tau-c1 reporter plasmids in JEG3 cells. In the presence of YAP expression plasmid, TEAD2 or TEAD4 expression plasmid further upregulated transcriptional activity of IFNT2 or IFN-tau-c1 constructs, which were substantially reduced in the absence of the TEAD-binding site on IFNT2 or IFN-tau-c1 promoter region in JEG3 cells. In CT-1 cells, treatment with TEAD2, TEAD4, or YAP small-interfering RNA downregulated endogenous IFNT expression. It should be noted that TEAD2 and TEAD4 were predominantly localized in the nuclei of trophectoderm of Day 17 conceptuses, but nuclear localization appeared to be lower in those cells of conceptuses on days 20 and 22 of pregnancy. Moreover, the binding of TEAD4 to the TEAD-binding site of the IFN-tau-c1 promoter region in day 17 conceptuses was less in day 20 and 22 conceptuses. Furthermore, the level of YAP phosphorylation increased in day 20 and 22 conceptuses. These results indicated that although YAP/TEAD had the ability to up-regulate IFNT gene transcription on day 17, IFNT2 or IFN-tau-c1 was down-regulated following changes in the localization of TEAD2 and TEAD4 from the nucleus to the cytoplasm and increases in phosphorylation and degradation of YAP. These data suggest that TEAD relocation and/or YAP degradation following its phosphorylation down-regulates IFNT gene transcription after conceptus attachment to the uterine endometrium.
Collapse
Affiliation(s)
- K Kusama
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - R Bai
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - T Sakurai
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - H Bai
- Laboratory of Animal Breeding and Reproduction, Department of Animal Science, Graduate School of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - A Ideta
- Zennoh Embryo Transfer Center, Hokkaido 080-1407, Japan
| | - Y Aoyagi
- Zennoh Embryo Transfer Center, Hokkaido 080-1407, Japan
| | - K Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, 319-0206, Japan.
| |
Collapse
|
11
|
Joo JY, Lee J, Ko HY, Lee YS, Heo H, Gu HN, Cho S, Kim S. VisuFect-mediated siRNA delivery into zygotes. Colloids Surf B Biointerfaces 2015; 135:646-651. [DOI: 10.1016/j.colsurfb.2015.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 11/25/2022]
|
12
|
Brinkhof B, van Tol HTA, Groot Koerkamp MJA, Riemers FM, IJzer SG, Mashayekhi K, Haagsman HP, Roelen BAJ. A mRNA landscape of bovine embryos after standard and MAPK-inhibited culture conditions: a comparative analysis. BMC Genomics 2015; 16:277. [PMID: 25888366 PMCID: PMC4397860 DOI: 10.1186/s12864-015-1448-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/06/2015] [Indexed: 01/09/2023] Open
Abstract
Background Genes and signalling pathways involved in pluripotency have been studied extensively in mouse and human pre-implantation embryos and embryonic stem (ES) cells. The unsuccessful attempts to generate ES cell lines from other species including cattle suggests that other genes and pathways are involved in maintaining pluripotency in these species. To investigate which genes are involved in bovine pluripotency, expression profiles were generated from morula, blastocyst, trophectoderm and inner cell mass (ICM) samples using microarray analysis. As MAPK inhibition can increase the NANOG/GATA6 ratio in the inner cell mass, additionally blastocysts were cultured in the presence of a MAPK inhibitor and changes in gene expression in the inner cell mass were analysed. Results Between morula and blastocyst 3,774 genes were differentially expressed and the largest differences were found in blastocyst up-regulated genes. Gene ontology (GO) analysis shows lipid metabolic process as the term most enriched with genes expressed at higher levels in blastocysts. Genes with higher expression levels in morulae were enriched in the RNA processing GO term. Of the 497 differentially expressed genes comparing ICM and TE, the expression of NANOG, SOX2 and POU5F1 was increased in the ICM confirming their evolutionary preserved role in pluripotency. Several genes implicated to be involved in differentiation or fate determination were also expressed at higher levels in the ICM. Genes expressed at higher levels in the ICM were enriched in the RNA splicing and regulation of gene expression GO term. Although NANOG expression was elevated upon MAPK inhibition, SOX2 and POU5F1 expression showed little increase. Expression of other genes in the MAPK pathway including DUSP4 and SPRY4, or influenced by MAPK inhibition such as IFNT, was down-regulated. Conclusion The data obtained from the microarray studies provide further insight in gene expression during bovine embryonic development. They show an expression profile in pluripotent cells that indicates a pluripotent, epiblast-like state. The inability to culture ICM cells as stem cells in the presence of an inhibitor of MAPK activity together with the reported data indicates that MAPK inhibition alone is not sufficient to maintain a pluripotent character in bovine cells. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1448-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bas Brinkhof
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, 3584 CM, The Netherlands.
| | - Helena T A van Tol
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, 3584 CM, The Netherlands.
| | - Marian J A Groot Koerkamp
- University Medical Center Utrecht, Molecular Cancer Research, PO Box 85060, Utrecht, 3508 AB, The Netherlands.
| | - Frank M Riemers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, University Utrecht, Yalelaan 108, Utrecht, 3584 CM, The Netherlands.
| | - Sascha G IJzer
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, 3584 CM, The Netherlands.
| | - Kaveh Mashayekhi
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, 3584 CM, The Netherlands. .,BioTalentum Ltd, Aulich L u.26, Gödöllő, 2100, Hungary.
| | - Henk P Haagsman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, 3584 CL, The Netherlands.
| | - Bernard A J Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht, 3584 CM, The Netherlands.
| |
Collapse
|
13
|
Kim MS, Sakurai T, Bai H, Bai R, Sato D, Nagaoka K, Chang KT, Godkin JD, Min KS, Imakawa K. Presence of Transcription Factor OCT4 Limits Interferon-tau Expression during the Pre-attachment Period in Sheep. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:638-45. [PMID: 25049833 PMCID: PMC4093334 DOI: 10.5713/ajas.2012.12462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/23/2012] [Accepted: 10/18/2012] [Indexed: 11/27/2022]
Abstract
Interferon-tau (IFNT) is thought to be the conceptus protein that signals maternal recognition of pregnancy in ruminants. We and others have observed that OCT4 expression persists in the trophectoderm of ruminants; thus, both CDX2 and OCT4 coexist during the early stages of conceptus development. The aim of this study was to examine the effect of CDX2 and OCT4 on IFNT gene transcription when evaluated with other transcription factors. Human choriocarcinoma JEG-3 cells were cotransfected with an ovine IFNT (-654-bp)-luciferase reporter (-654-IFNT-Luc) construct and several transcription factor expression plasmids. Cotransfection of the reporter construct with Cdx2, Ets2 and Jun increased transcription of -654-IFNT-Luc by about 12-fold compared with transfection of the construct alone. When cells were initially transfected with Oct4 (0 h) followed by transfection with Cdx2, Ets2 and/or Jun 24 h later, the expression of -654-IFNT-Luc was reduced to control levels. OCT4 also inhibited the stimulatory activity of CDX2 alone, but not when CDX2 was combined with JUN and/or ETS2. Thus, when combined with the other transcription factors, OCT4 exhibited little inhibitory activity towards CDX2. An inhibitor of the transcriptional coactivator CREB binding protein (CREBBP), 12S E1A, reduced CDX2/ETS2/JUN stimulated -654-IFNT-Luc expression by about 40%, indicating that the formation of an appropriate transcription factor complex is required for maximum expression. In conclusion, the presence of OCT4 may initially minimize IFNT expression; however, as elongation proceeds, the increasing expression of CDX2 and formation of the transcription complex leads to greatly increased IFNT expression, resulting in pregnancy establishment in ruminants.
Collapse
Affiliation(s)
- Min-Su Kim
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Toshihiro Sakurai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hanako Bai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Rulan Bai
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Daisuke Sato
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro Nagaoka
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kyu-Tae Chang
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - James D Godkin
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kwan-Sik Min
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
14
|
Transcriptional regulation of two conceptus interferon tau genes expressed in Japanese black cattle during peri-implantation period. PLoS One 2013; 8:e80427. [PMID: 24348910 PMCID: PMC3857836 DOI: 10.1371/journal.pone.0080427] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/02/2013] [Indexed: 11/19/2022] Open
Abstract
Interferon tau (IFNT), produced by the mononuclear trophectoderm, signals the process of maternal recognition of pregnancy in ruminants. However, its expression in vivo and its transcriptional regulation are not yet well characterized. Objectives of this study were to determine conceptus IFNT gene isoforms expressed in the bovine uterus and to identify differences in promoter sequences of IFNT genes that differ in their expression. RNA-seq data analysis of bovine conceptuses on days 17, 20, and 22 (day 0 = day of estrus) detected the expression of two IFNT transcripts, IFNT1 and IFNTc1, which were indeed classified into the IFNT gene clade. RNA-seq and quantitative RT-PCR analyses also revealed that the expression levels of both IFNT mRNAs were highest on day 17, and then decreased on days 20 and 22. Bovine ear-derived fibroblast (EF) cells, a model system commonly used for bovine IFNT gene transcription study in this laboratory, were cotransfected with luciferase reporter constructs carrying upstream (positions -637 to +51) regions of IFNT1 or IFNTc1 gene and various transcription factor expression plasmids including CDX2, AP-1 (Jun) and ETS2. CDX2, either alone or with the other transcription factors, markedly increased luciferase activity. The upstream regions of IFNT1 and IFNTc1 loci were then serially deleted or point-mutated at potential CDX-, AP-1-, and ETS-binding sites. Compared to the wild-type constructs, deletion or mutation at CDX2 or ETS2 binding sites similarly reduced the luciferase activities of IFNT1- or IFNTc1-promoter constructs. However, with the AP-1 site mutated construct, IFNT1- and IFNTc1-reporters behaved differently. These results suggest that two forms of bovine conceptus IFNT genes are expressed in utero and their transcriptional regulations differ.
Collapse
|
15
|
Imakawa K, Yasuda J, Kobayashi T, Miyazawa T. Changes in Gene Expression Associated with Conceptus Implantation to the Maternal Endometrium. ACTA ACUST UNITED AC 2013. [DOI: 10.1274/jmor.30.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Wu FR, Ding B, Qi B, Shang MB, Yang XX, Liu Y, Li WY. Sequence analysis, expression patterns and transcriptional regulation of mouse Ifrg15 during preimplantation embryonic development. Gene 2012; 507:119-24. [PMID: 22871540 DOI: 10.1016/j.gene.2012.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/06/2012] [Accepted: 07/17/2012] [Indexed: 12/21/2022]
Abstract
Ifrg15 is a newly identified interferon alpha responsive gene and is implicated in a wide variety of physiological roles in mammals. In the present study, multiple alignments of the deduced amino acids of 10 eutherian mammalian IFRG15/Ifrg15s isolated from open genomic database revealed that they were highly conserved. Real-time PCR showed that mouse Ifrg15 mRNA was expressed in MII stage oocytes and preimplantation embryos, and its highest value peaked at the stage of mouse blastocysts. To understand the effect of three development-related genes on the promoter activity of mouse Ifrg15, promoter analysis using luciferase assays in COS-7 cells were performed. The results showed that the transcription of mouse Ifrg15 was suppressed by Oct4 and Nanog when transfected with the longest Ifrg15 promoter reporter gene. After the relatively shorter promoters were co-transfected with Oct4, c-Myc and Nanog, the relative luciferase activities of Ifrg15 were gradually increased. These in vitro results data and expression profiles of Ifrg15 as revealed by real-time PCR partly indicated that Ifrg15 transcription might be either potentially regulated or dependent on the post-transcriptional effects of IFN-α mediated by the three genes indirectly. Our data suggested that the mouse Ifrg15 might interact with these key development-related genes and play significant roles on the mouse preimplantation embryos development, especially for the development of mouse blastocysts.
Collapse
Affiliation(s)
- Feng-Rui Wu
- School of Life Science, Fuyang Teachers College, Anhui Province, Fuyang, China; Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province, Fuyang, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Generating pluripotent stem cells: differential epigenetic changes during cellular reprogramming. FEBS Lett 2012; 586:2874-81. [PMID: 22819821 DOI: 10.1016/j.febslet.2012.07.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 01/06/2023]
Abstract
Pluripotent stem cells hold enomous potential for therapuetic applications in tissue replacement therapy. Reprogramming somatic cells from a patient donor to generate pluripotent stem cells involves both ethical concerns inherent in the use of embryonic and oocyte-derived stem cells, as well as issues of histocompatibility. Among the various pluripotent stem cells, induced pluripotent stem cells (iPSC)--derived by ectopic expression of four reprogramming factors in donor somatic cells--are superior in terms of ethical use, histocompatibility, and derivation method. However, iPSC also show genetic and epigenetic differences that limit their differentiation potential, functionality, safety, and potential clinical utility. Here, we discuss the unique characteristics of iPSC and approaches that are being taken to overcome these limitations.
Collapse
|
18
|
Optimization of a lipitoid-based plasmid DNA transfection protocol for bovine trophectoderm CT-1 cells. In Vitro Cell Dev Biol Anim 2012; 48:403-6. [DOI: 10.1007/s11626-012-9525-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
|
19
|
Saadeldin IM, Choi W, Roibas Da Torre B, Kim B, Lee B, Jang G. Embryonic development and implantation related gene expression of oocyte reconstructed with bovine trophoblast cells. J Reprod Dev 2012; 58:425-31. [PMID: 22522228 DOI: 10.1262/jrd.11-112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temporal progressive increase of interferon tau (IFNτ) secretion from the bovine trophoblast is a major embryonic signal of establishing pregnancy. Here, we cultured and isolated bovine trophoblast cells (BTs) from IVM/IVF oocytes and in vitro produced blastocysts, used them, for the first time, as donor cells for nuclear transfer and compared them with adult fibroblasts (AFs) as donor cells. BTs were reprogrammed in enucleated oocytes to blastocysts with similar efficiency to AFs (14.5% and 15.6% respectively, P≤0.05). The levels of IFNτ, CDX2 and OCT4 expression in IVF-, BT- and AF-derived blastocysts were analyzed using reverse transcription polymerase chain reaction and reverse transcription quantitative polymerase chain reaction (RT-PCR and RT-qPCR). IVF-produced embryos were used as reference to analyze the linear progressive expression of IFNτ through mid, expanded and hatching blastocysts. RT-PCR and RT-qPCR studies showed that IFNτ expression was higher in BT-derived blastocysts than IVF- and AF-derived blastocysts. Both IVF- and BT-derived blastocysts showed a progressive increase in IFNτ expression as blastocyst development advanced when it compared with AF-derived blastocysts. OCT4 was inversely related with IFNτ expression, while CDX2 was found to be directly related with IFNτ temporal expression. Persistence of high expression of IFNτ and CDX2 was found to be higher in BT-derived embryos than in IVF- or AF-derived embryos. In conclusion, using BTs expressing IFNτ as donor cells for bovine NT could be a useful tool for understanding the IFNτ genetics and epigenetics.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
20
|
Gupta R, Ezashi T, Roberts RM. Squelching of ETS2 transactivation by POU5F1 silences the human chorionic gonadotropin CGA subunit gene in human choriocarcinoma and embryonic stem cells. Mol Endocrinol 2012; 26:859-72. [PMID: 22446105 DOI: 10.1210/me.2011-1146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The subunit genes encoding human chorionic gonadotropin, CGA, and CGB, are up-regulated in human trophoblast. However, they are effectively silenced in choriocarcinoma cells by ectopically expressed POU domain class 5 transcription factor 1 (POU5F1). Here we show that POU5F1 represses activity of the CGA promoter through its interactions with ETS2, a transcription factor required for both placental development and human chorionic gonadotropin subunit gene expression, by forming a complex that precludes ETS2 from interacting with the CGA promoter. Mutation of a POU5F1 binding site proximal to the ETS2 binding site does not alter the ability of POU5F1 to act as a repressor but causes a drop in basal promoter activity due to overlap with the binding site for DLX3. DLX3 has only a modest ability to raise basal CGA promoter activity, but its coexpression with ETS2 can up-regulate it 100-fold or more. The two factors form a complex, and both must bind to the promoter for the combination to be transcriptionally effective, a synergy compromised by POU5F1. Similarly, in human embryonic stem cells, which express ETS2 but not CGA, ETS2 does not occupy its binding site on the CGA promoter but is found instead as a soluble complex with POU5F1. When human embryonic stem cells differentiate in response to bone morphogenetic protein-4 and concentrations of POU5F1 fall and hCG and DLX3 rise, ETS2 then occupies its binding site on the CGA promoter. Hence, a squelching mechanism underpins the transcriptional silencing of CGA by POU5F1 and could have general relevance to how pluripotency is maintained and how the trophoblast lineage emerges from pluripotent precursor cells.
Collapse
Affiliation(s)
- Rangan Gupta
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
21
|
Expression and quantification of Oct-4 gene in blastocyst and embryonic stem cells derived from in vitro produced buffalo embryos. In Vitro Cell Dev Biol Anim 2012; 48:229-35. [DOI: 10.1007/s11626-012-9491-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/05/2012] [Indexed: 01/18/2023]
|
22
|
Bai H, Sakurai T, Fujiwara H, Ideta A, Aoyagi Y, Godkin JD, Imakawa K. Functions of interferon tau as an immunological regulator for establishment of pregnancy. Reprod Med Biol 2012; 11:109-116. [PMID: 29699116 DOI: 10.1007/s12522-011-0117-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/27/2011] [Indexed: 11/29/2022] Open
Abstract
The establishment of a successful pregnancy requires a "fine quality embryo", "maternal recognition of pregnancy", and a "receptive uterus" during the period of conceptus implantation to the uterine endometrium. In ruminants, a conceptus cytokine, interferon tau (IFNT), a major cytokine produced by the peri-implantation trophectoderm, is known as a key factor for maternal recognition of pregnancy. IFNT can be considered one of the main factors in conceptus-uterus cross-talk, resulting in the rescue of ovarian corpus luteum (CL), induction of endometrial gene expressions, activation of residual immune cells, and recruitment of immune cells. Much research on IFNT has focused on the CL life-span (pregnancy recognition) and uterine gene expression through IFNT and related genes; however, immunological acceptance of the conceptus by the mother has not been well characterized. In this review, we will discuss the progress in IFNT and implantation research made by us and others for over 10 years, and relate this progress to pregnancy in mammalian species other than ruminants.
Collapse
Affiliation(s)
- Hanako Bai
- Laboratory of Animal Breeding and Reproduction, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| | - Toshihiro Sakurai
- Laboratory of Animal Breeding and Reproduction, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| | - Hiroshi Fujiwara
- Department of Gynecology and Obstetrics, Faculty of Medicine Kyoto University Sakyo-ku 606-8397 Kyoto Japan
| | - Atsushi Ideta
- Zen-noh ET center 080-1407 Kamishihoro Hokkaido Japan
| | | | - James D Godkin
- Department of Animal Sciences University of Tennessee 37996-4588 Knoxville TN USA
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding and Reproduction, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| |
Collapse
|
23
|
Sugimura S, Kobayashi S, Hashiyada Y, Ohtake M, Kaneda M, Yamanouchi T, Matsuda H, Aikawa Y, Watanabe S, Nagai T, Kobayashi E, Konishi K, Imai K. Follicular growth-stimulated cows provide favorable oocytes for producing cloned embryos. Cell Reprogram 2011; 14:29-37. [PMID: 22204594 DOI: 10.1089/cell.2011.0060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We examined the influence of recipient oocytes on in vitro development, oxygen consumption, and gene expression in the resulting cloned bovine embryos. Oocytes derived from slaughterhouse ovaries and ovum pickup (OPU)-derived oocytes were used as recipient cytoplasts for the production of cloned embryos. A series of OPU sessions was conducted on Holstein cows without follicular growth treatment (FGT). In the same cows, we then performed dominant follicle ablation and subsequently administered follicle-stimulating hormone and prostaglandin F(2α) with controlled internal drug release device before a second series of OPU. Cumulus cells collected from single Holstein cows were used as donor cells. After measurement of oxygen consumption at the blastocyst stage with modified scanning electrochemical microscopy, analysis of 10 genes (CDX2, IFN-tau, PLAC8, OCT4, SOX2, NANOG, ATP5A1, GLUT1, AKR1B1, and IGF2R) was performed with real-time RT-PCR. Rates of fusion, cleavage, and blastocyst formation were not different among the treatment groups. Levels of oxygen consumption in cloned blastocysts derived from slaughterhouse ovaries or OPU without FGT were significantly lower than in blastocysts derived from artificial insemination (AI). However, oxygen consumption was increased in cloned blastocysts derived from OPU with FGT, depending on the individual oocyte donor. Furthermore, gene expression of IFN-tau and OCT4 in cloned blastocysts derived from OPU with FGT was similar to that in AI-derived blastocysts, whereas expression of those genes in cloned blastocysts derived from slaughterhouse ovaries or OPU without FGT was significantly different from that in AI-derived blastocysts. Thus, recipient oocytes collected by OPU in combination with manipulation of follicular growth in donor cows are suitable for producing cloned embryos.
Collapse
|
24
|
Yang QE, Fields SD, Zhang K, Ozawa M, Johnson SE, Ealy AD. Fibroblast growth factor 2 promotes primitive endoderm development in bovine blastocyst outgrowths. Biol Reprod 2011; 85:946-53. [PMID: 21778141 DOI: 10.1095/biolreprod.111.093203] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Primitive endoderm (PE) is the second extraembryonic tissue to form during embryogenesis in mammals. The PE develops from pluripotent cells of the blastocyst inner cell mass. Experimental results described herein provide evidence that FGF2 stimulates PE development during bovine blastocyst development in vitro. Bovine blastocysts were cultured individually on a feeder layer-free, Matrigel-coated surface in the presence or absence of FGF2. A majority of blastocysts cultures formed outgrowths (76.8%) and the rate of outgrowth formation was not affected by FGF2 supplementation. However, supplementation with FGF2 increased the incidence of PE outgrowths on Days 13 and 15 after in vitro fertilization. Presumptive PE cultures contained cells with a phenotype distinct from trophectoderm (TE). Cell identity was validated by expression of GATA4 and GATA6 mRNA and transferrin protein, all markers of the PE lineage. Expression of GATA4 occurred coincident with blastocyst expansion and hatching. These cells did not express IFNT and CDX2 (TE lineage markers). Profiles of FGF receptor (FGFR) isoforms were distinct between PE and TE cultures. Specifically, FGFR1b and FGFR1c were the predominant FGFR transcripts in PE whereas FGFR2b transcripts were abundant in TE. Supplementation with FGF2 increased the mitotic index of PE but not TE. Moreover, FGF signaling appears important for initiation of PE formation in blastocysts, presumably by lineage committal from NANOG-positive epiblast cells, because chemical disruption of FGFR kinase activity with PD173074 reduces GATA4 expression and increases NANOG expression. Collectively, these results indicate that FGF2 and potentially other FGFs specify PE formation and mediate PE proliferation during early pregnancy in cattle.
Collapse
Affiliation(s)
- Qi En Yang
- Department of Animal Sciences, University of Florida, Gainesville, Florida 32611-0910, USA
| | | | | | | | | | | |
Collapse
|
25
|
Oct4 protein remains in trophectoderm until late stages of mouse blastocyst development. Reprod Biol 2011; 11:145-56. [DOI: 10.1016/s1642-431x(12)60051-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Nie J, Stewart R, Zhang H, Thomson JA, Ruan F, Cui X, Wei H. TF-Cluster: a pipeline for identifying functionally coordinated transcription factors via network decomposition of the shared coexpression connectivity matrix (SCCM). BMC SYSTEMS BIOLOGY 2011; 5:53. [PMID: 21496241 PMCID: PMC3101171 DOI: 10.1186/1752-0509-5-53] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 04/15/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND Identifying the key transcription factors (TFs) controlling a biological process is the first step toward a better understanding of underpinning regulatory mechanisms. However, due to the involvement of a large number of genes and complex interactions in gene regulatory networks, identifying TFs involved in a biological process remains particularly difficult. The challenges include: (1) Most eukaryotic genomes encode thousands of TFs, which are organized in gene families of various sizes and in many cases with poor sequence conservation, making it difficult to recognize TFs for a biological process; (2) Transcription usually involves several hundred genes that generate a combination of intrinsic noise from upstream signaling networks and lead to fluctuations in transcription; (3) A TF can function in different cell types or developmental stages. Currently, the methods available for identifying TFs involved in biological processes are still very scarce, and the development of novel, more powerful methods is desperately needed. RESULTS We developed a computational pipeline called TF-Cluster for identifying functionally coordinated TFs in two steps: (1) Construction of a shared coexpression connectivity matrix (SCCM), in which each entry represents the number of shared coexpressed genes between two TFs. This sparse and symmetric matrix embodies a new concept of coexpression networks in which genes are associated in the context of other shared coexpressed genes; (2) Decomposition of the SCCM using a novel heuristic algorithm termed "Triple-Link", which searches the highest connectivity in the SCCM, and then uses two connected TF as a primer for growing a TF cluster with a number of linking criteria. We applied TF-Cluster to microarray data from human stem cells and Arabidopsis roots, and then demonstrated that many of the resulting TF clusters contain functionally coordinated TFs that, based on existing literature, accurately represent a biological process of interest. CONCLUSIONS TF-Cluster can be used to identify a set of TFs controlling a biological process of interest from gene expression data. Its high accuracy in recognizing true positive TFs involved in a biological process makes it extremely valuable in building core GRNs controlling a biological process. The pipeline implemented in Perl can be installed in various platforms.
Collapse
Affiliation(s)
- Jeff Nie
- Morgridge Institute for Research, 330 N. Orchard St., Madison, WI 53715, USA
| | - Ron Stewart
- Morgridge Institute for Research, 330 N. Orchard St., Madison, WI 53715, USA
| | - Hang Zhang
- Department of Computer Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - James A Thomson
- Morgridge Institute for Research, 330 N. Orchard St., Madison, WI 53715, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin, 600 Highland Ave., Madison, WI 53792, USA
- Department of Cell & Regenerative Biology, University of Wisconsin, 1300 University Ave., Madison, WI 53705, USA
- Department of Molecular, Cellular, & Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Fang Ruan
- Program of Computing Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Xiaoqi Cui
- Department of Mathematics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
- Biotechnology Research Center, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| |
Collapse
|
27
|
Saadeldin IM, Kim B, Lee B, Jang G. Effect of different culture media on the temporal gene expression in the bovine developing embryos. Theriogenology 2011; 75:995-1004. [DOI: 10.1016/j.theriogenology.2010.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
|
28
|
Bebbere D, Bogliolo L, Ariu F, Fois S, Leoni GG, Succu S, Berlinguer F, Ledda S. Different temporal gene expression patterns for ovine pre-implantation embryos produced by parthenogenesis or in vitro fertilization. Theriogenology 2010; 74:712-23. [DOI: 10.1016/j.theriogenology.2010.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
29
|
Choi I, Lee JH, Fisher P, Campbell KH. Caffeine treatment of ovine cytoplasts regulates gene expression and foetal development of embryos produced by somatic cell nuclear transfer. Mol Reprod Dev 2010; 77:876-87. [DOI: 10.1002/mrd.21230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Gendelman M, Aroyo A, Yavin S, Roth Z. Seasonal effects on gene expression, cleavage timing, and developmental competence of bovine preimplantation embryos. Reproduction 2010; 140:73-82. [DOI: 10.1530/rep-10-0055] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examined the association between season and expression of genes involved in early embryonic development with an emphasis on cleavage rate and timing of the first embryonic cleavage. In Exp. 1, oocytes were aspirated during the cold (Dec–Apr) and hot (May–Nov) seasons. Matured oocytes were chemically activated and culturedin vitro. The developmental peak to the two- and four-cell stages occurred earlier, with a higher proportion of first-cleaved embryos, during the cold season relative to the hot season (P<0.01). In Exp. 2, a time-lapse system was employed to characterize the delayed cleavage noted for the hot season. Cleavage to the two-cell stage occurred in two distinct waves: early cleavage occurred between 18 and 25 h post activation, and late cleavage occurred between 27 and 40 h post activation. In Exp. 3, oocytes were aspirated during the cold and hot seasons, maturedin vitro, fertilized, and cultured for 8 days. In each season, early- and late-cleaved two-cell stage embryos were collected. Total RNA was isolated, and semi-quantitative and real-time PCRs were carried out with primers forGDF9,POU5F1, andGAPDHusing18S rRNAas the reference gene. In both seasons, the expression of all examined genes was higher (P<0.05) in early- versus late-cleaved embryos.POU5F1expression was higher (P<0.05) in early-cleaved embryos developed in the cold season versus the hot season counterparts. The findings suggest a deleterious seasonal effect on oocyte developmental competence with delayed cleavage and variation in gene expression.
Collapse
|
31
|
Bai H, Sakurai T, Kim MS, Muroi Y, Ideta A, Aoyagi Y, Nakajima H, Takahashi M, Nagaoka K, Imakawa K. Involvement of GATA transcription factors in the regulation of endogenous bovine interferon-tau gene transcription. Mol Reprod Dev 2010; 76:1143-52. [PMID: 19598245 DOI: 10.1002/mrd.21082] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Expression of interferon-tau (IFNT), necessary for pregnancy establishment in ruminant ungulates, is regulated in a temporal and spatial manner. However, molecular mechanisms by which IFNT gene transcription is regulated in this manner have not been firmly established. In this study, DNA microarray/RT-PCR analysis between bovine trophoblast CT-1 and Mardin-Darby bovine kidney (MDBK) cells was initially performed, finding that transcription factors GATA2, GATA3, and GATA6 mRNAs were specific to CT-1 cells. These mRNAs were also found in Days 17, 20, and 22 (Day 0 = day of estrus) bovine conceptuses. In examining other bovine cell lines, ovary cumulus granulosa (oCG) and ear fibroblast (EF) cells, GATA2 and GATA3, but not GATA6, were found specific to the bovine trophoblast cells. In transient transfection analyses using the upstream region (-631 to +59 bp) of bovine IFNT gene (bIFNT, IFN-tau-c1), over-expression of GATA2/GATA3 did not affect the transcription of bIFNT-reporter construct in human choriocarcinoma JEG3 cells. Transfection of GATA2, GATA3, ETS2, and/or CDX2, however, was effective in the up-regulation of the bIFNT construct transfected into bovine oCG and EF cells. One Point mutation studies revealed that among six potential GATA binding sites located on the upstream region of the bIFNT gene, the one next to ETS2 site exhibited reduced luciferase activity. In CT-1 cells, endogenous bIFNT gene transcription was up-regulated by over-expression of GATA2 or GATA3, but down-regulated by siRNA specific to GATA2 mRNA. These data suggest that GATA2/3 is involved in trophoblast-specific regulation of bIFNT gene transcription.
Collapse
Affiliation(s)
- Hanako Bai
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Walker AM, Kimura K, Roberts MR. Expression of bovine interferon-tau variants according to sex and age of conceptuses. Theriogenology 2009; 72:44-53. [PMID: 19324401 PMCID: PMC2692756 DOI: 10.1016/j.theriogenology.2009.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/21/2009] [Accepted: 01/24/2009] [Indexed: 10/21/2022]
Abstract
Interferon-tau (IFNT), which plays a major role in maternal recognition of pregnancy in cattle, is transcribed from multiple genes. Moreover, there are at least 12 cDNA variants, many presumably allelic. Although the IFNT locus is autosomal, Day 8 female blastocysts produced approximately twice as much antiviral activity as males. The questions addressed here are whether male and female blastocysts differed in the kind and number of IFNT they expressed, and whether this pattern changed over development. Day 8, in vitro-produced blastocysts were bisected, and one half of each was sexed by PCR. Demi-embryos (n=64) were grouped according to whether they were male or female, to provide two pools of each sex. Individual cDNA were sequenced after RT-PCR amplification and shot-gun cloning to provide comparisons between male and female blastocysts, elongating conceptuses of various developmental ages (Days 14-19), and a female trophoblast cell line (CT-1). A total of 376 cDNA clones were sequenced. Six additional cDNA were identified, in addition to the forms described earlier. There were no differences between male and female blastocysts (P=0.54), and between blastocysts and a trophoblast model system (CT-1 cells; P=0.24) in the IFNT transcripts expressed, indicating that sexual dimorphism was not correlated with particular IFNT variants. There were differences in variant frequencies (P<0.001) among conceptuses of different age, although two, representing boIFN1a and boIFN3c, predominated throughout development. Notably, no alteration in overall IFNT variant diversity was detected in CT-1 cells over time (P=0.124).
Collapse
Affiliation(s)
- Angela M. Walker
- Department of Veterinary Pathobiology, University of Missouri, Columbia MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia MO 65211, USA
| | - Koji Kimura
- National Institute of Livestock and Grassland Science, Reproductive Physiology Laboratory, Tochigi 329-2793, Japan
| | - Michael R. Roberts
- Department of Veterinary Pathobiology, University of Missouri, Columbia MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia MO 65211, USA
| |
Collapse
|
33
|
Lim HY, Do HJ, Lee WY, Kim DK, Seo HG, Chung HJ, Park JK, Chang WK, Kim JH, Kim JH. Implication of human OCT4 transactivation domains for self-regulatory transcription. Biochem Biophys Res Commun 2009; 385:148-53. [PMID: 19445899 DOI: 10.1016/j.bbrc.2009.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 05/08/2009] [Indexed: 01/27/2023]
Abstract
OCT4 plays a crucial role in pluripotency and self-renewal of embryonic stem cells. OCT4 is also expressed in testicular germ cell tumors (GCTs), suggesting the important function of OCT4 as an oncogenic factor in GCTs. To understand the molecular mechanism of human OCT4 (hOCT4) in tumorigenesis as well as stemness, we identified hOCT4 transactivation domains in human embryonic carcinoma cells. Context analyses of heterologous GAL4 and natural hOCT4 revealed that each N-terminal domain or C-terminal domain independently stimulated transcriptional activity, and that both domains are required for synergistic transactivation by deletion mapping analysis. Dose-dependent overexpression of exogenous hOCT4 significantly decreased the transcriptional activity of the hOCT4 promoter. This inhibition was reversed by the removal of one or both domains. These results suggest that the inhibitory effect of hOCT4 is mediated by transactivation domains, and that the self-regulation of hOCT4 may be mediated via a negative feedback loop in pluripotent cells.
Collapse
Affiliation(s)
- Hye-Young Lim
- Department of Biomedical Science, CHA Stem Cell Institute, College of Life Science, CHA University, Pochon-si, Gyeonggi-do, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim S, Lee J, Kim JY, Lim B, Shin EK, Han YM, Kim SS, Song JH, Kim J. Mutation in the DNA-binding domain of the EWS-Oct-4 oncogene results in dominant negative activity that interferes with EWS-Oct-4-mediated transactivation. Int J Cancer 2009; 124:2312-22. [PMID: 19170206 DOI: 10.1002/ijc.24228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The EWS-Oct-4 protein is a chimeric molecule in which the amino terminal domain (NTD) of the EWS becomes fused to the carboxy terminal domain (CTD) of the Oct-4 transcription factor. It was identified in human bone and soft-tissue tumors associated with t(6;22)(p21;q12). Using in vitro and in vivo systems, we found that the EWS-Oct-4 protein self-associates. The major domains required for self-association mapped to the EWS NTD (amino acids 70-163) and the POU DNA-binding domain. EWS-Oct-4 protein also associated with EWS-Oct-4 (V351P), which contains a mutation in the POU DNA-binding domain. Using electrophoretic mobility shift assays, we found that the EWS-Oct-4 (V351P) mutant interfered with wild-type EWS-Oct-4 DNA-binding activity. In addition, we found that EWS-Oct-4-mediated transcriptional activation was inhibited by EWS-Oct-4 (V351P) protein in vivo. Thus, this mutation in the POU DNA-binding domain results in a dominant negative protein. These findings suggest that the biological functions of the EWS-Oct-4 oncogene can be modulated by the dominant negative mutant EWS-Oct-4 (V351P).
Collapse
Affiliation(s)
- Sol Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rodina TM, Cooke FN, Hansen PJ, Ealy AD. Oxygen tension and medium type actions on blastocyst development and interferon-tau secretion in cattle. Anim Reprod Sci 2009; 111:173-88. [DOI: 10.1016/j.anireprosci.2008.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 02/06/2008] [Accepted: 02/21/2008] [Indexed: 12/01/2022]
|
36
|
Sakurai T, Sakamoto A, Muroi Y, Bai H, Nagaoka K, Tamura K, Takahashi T, Hashizume K, Sakatani M, Takahashi M, Godkin JD, Imakawa K. Induction of endogenous interferon tau gene transcription by CDX2 and high acetylation in bovine nontrophoblast cells. Biol Reprod 2009; 80:1223-31. [PMID: 19211809 DOI: 10.1095/biolreprod.108.073916] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Interferon tau gene (IFNT) is expressed only by mononuclear trophectoderm cells in ruminant ungulates. To our knowledge, its epigenetic regulation and interaction with trophectoderm lineage-specific caudal-related homeobox 2 transcription factor (CDX2) have not been characterized. Herein, we studied differences in chromatin structures and transcription of endogenous bovine IFNT in bovine trophoblast BT-1 and CT-1 cells and in nontrophoblast MDBK cells. Transcripts from endogenous IFNT and CDX2 genes were found in BT-1 and CT-1 cells but not in MDBK cells. Chromatin immunoprecipitation study revealed that CDX2 binding sites exist in proximal upstream regions of IFNT (IFN-tau-c1). Endogenous IFNT transcription in BT-1 cells was increased with CDX2 overexpression but was reduced with short interfering RNA specific for the CDX2 transcript. In chromatin immunoprecipitation studies, histone H3K18 acetylation of IFNT was higher in CT-1 cells than in MDBK cells, while histone H3K9 methylation was lower in CT-1 cells than in nontrophoblast cells. In MDBK cells (but not in CT-1 cells), histone deacetylases were bound to IFNT, which was reversed with trichostatin A treatment; treatment with trichostatin A and CDX2 then increased IFNT mRNA levels that resulted from abundant CDX2 mRNA expression. These data provide evidence that significant increase in endogenous IFNT transcription in MDBK cells (which do not normally express IFNT) can be induced through CDX2 overexpression and high H3K18 acetylation, but lowering of H3K9 methylation could also be required for the degree of IFNT transcription seen in trophoblast cells.
Collapse
Affiliation(s)
- Toshihiro Sakurai
- Laboratory of Animal Breeding, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ealy AD, Yang QE. REVIEW ARTICLE: Control of Interferon-Tau Expression During Early Pregnancy in Ruminants. Am J Reprod Immunol 2009; 61:95-106. [DOI: 10.1111/j.1600-0897.2008.00673.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Ezashi T, Das P, Gupta R, Walker A, Roberts RM. The Role of Homeobox Protein Distal-Less 3 and Its Interaction with ETS2 in Regulating Bovine Interferon-Tau Gene Expression-Synergistic Transcriptional Activation with ETS21. Biol Reprod 2008; 79:115-24. [DOI: 10.1095/biolreprod.107.066647] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
39
|
ZHOU YY. Two vital transcriptional factors Oct-4 and Nanog to keep the pluripotency and self-renewal of stem cells and related regulation network. YI CHUAN = HEREDITAS 2008; 30:529-36. [DOI: 10.3724/sp.j.1005.2008.00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Kurosaka S, Eckardt S, Ealy AD, McLaughlin KJ. Regulation of blastocyst stage gene expression and outgrowth interferon tau activity of somatic cell clone aggregates. CLONING AND STEM CELLS 2008; 9:630-41. [PMID: 18154522 DOI: 10.1089/clo.2007.0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The inefficiency of mammalian somatic cell cloning is associated with abnormal gene expression presumably caused by errors in reprogramming of the transplanted genome. In the mouse, aggregation of four-cell stage clones leads to an improvement of both gene expression and development. To determine whether clone-clone aggregation at postgenomic activation stages influences gene expression in bovine clones, we profiled, in single and aggregated embryos at the blastocyst stage, expression of developmentally relevant genes namely Oct4, Dnmt1, Dnmt3, Glut1, Glut3, and a housekeeping gene, Poly(A) polymerase (PolyA) by real-time RT-PCR. Compared to embryos generated by in vitro fertilization (IVF), individual clones more frequently exhibited transcript levels that were more than twofold higher or lower than the average value of IVF embryos. This was observed less often in clone aggregates for Oct4, Dnmt1, Dnmt3, and PolyA, but not for Glut1 and Glut3. The analysis of interferon tau bioactivity as a marker of trophectoderm function in blastocyst outgrowths showed that both single clones and clone aggregates have less extraembryonic potential in vitro compared to IVF embryos, with no apparent consequence of aggregation. These findings indicate that aggregation of bovine clones with each other at later cleavage stages can change gene expression patterns at preimplantation stages, but does not rescue trophectoderm function in vitro.
Collapse
Affiliation(s)
- Satoshi Kurosaka
- Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania, Kennett Square, Pennsylvania 19348, USA
| | | | | | | |
Collapse
|
41
|
Roberts RM, Chen Y, Ezashi T, Walker AM. Interferons and the maternal-conceptus dialog in mammals. Semin Cell Dev Biol 2008; 19:170-7. [PMID: 18032074 PMCID: PMC2278044 DOI: 10.1016/j.semcdb.2007.10.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 09/25/2007] [Accepted: 10/10/2007] [Indexed: 02/08/2023]
Abstract
Two-way communication between the conceptus and the mother during early pregnancy is essential if the pregnancy is to survive. In this review, our primary focus is on biochemical communication between the conceptus and mother in the ruminant ungulate species. We emphasize, in particular, the role played by interferon-tau (IFNT) in triggering maternal responses in cattle and sheep and how maternal factors intervene to up-regulate IFNT gene (IFNT) expression in trophoblast. However, we also consider the possibility that different signaling cytokines or the physical presence of trophoblast may induce a partial IFN response in endometrium of those species where there is no evidence for large scale trophoblast IFN production. Conceivably, disparate signaling mechanisms trigger common downstream events necessary to secure a successful pregnancy.
Collapse
Affiliation(s)
- R Michael Roberts
- Department of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
42
|
Blomberg L, Hashizume K, Viebahn C. Blastocyst elongation, trophoblastic differentiation, and embryonic pattern formation. Reproduction 2008; 135:181-95. [DOI: 10.1530/rep-07-0355] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The molecular basis of ungulate and non-rodent conceptus elongation and gastrulation remains poorly understood; however, use of state-of-the-art genomic technologies is beginning to elucidate the mechanisms regulating these complicated processes. For instance, transcriptome analysis of elongating porcine concepti indicates that protein synthesis and trafficking, cell growth and proliferation, and cellular morphology are major regulated processes. Furthermore, potential autocrine roles of estrogen and interleukin-1-β in regulating porcine conceptus growth and remodeling and metabolism have become evident. The importance of estrogen in pig is emphasized by the altered expression of essential steroidogenic and trophoblast factors in lagging ovoid concepti. In ruminants, the characteristic mononucleate trophoblast cells differentiate into a second lineage important for implantation, the binucleate trophoblast, and transcriptome profiling of bovine concepti has revealed a gene cluster associated with rapid trophoblast proliferation and differentiation. Gene cluster analysis has also provided evidence of correlated spatiotemporal expression and emphasized the significance of the bovine trophoblast cell lineage and the regulatory mechanism of trophoblast function. As a part of the gastrulation process in the mammalian conceptus, specification of the germ layers and hence definitive body axes occur in advance of primitive streak formation. Processing of the transforming growth factor-β-signaling molecules nodal and BMP4 by specific proteases is emerging as a decisive step in the initial patterning of the pre-gastrulation embryo. The topography of expression of these and other secreted molecules with reference to embryonic and extraembryonic tissues determines their local interaction potential. Their ensuing signaling leads to the specification of axial epiblast and hypoblast compartments through cellular migration and differentiation and, in particular, the specification of the early germ layer tissues in the epiblast via gene expression characteristic of endoderm and mesoderm precursor cells.
Collapse
|
43
|
Lee J, Kim HK, Han YM, Kim J. Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int J Biochem Cell Biol 2007; 40:1043-54. [PMID: 18191611 DOI: 10.1016/j.biocel.2007.11.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/07/2007] [Accepted: 11/11/2007] [Indexed: 11/25/2022]
Abstract
The Oct-4 gene encodes a transcription factor that plays an important role in maintaining the pluripotent state of embryonic stem cells and may prevent expression of genes activated during differentiation. Although its role in maintaining embryonic stem cell pluripotency is well established, there is still little known about the binding partners that regulate its function. To identify proteins that control Oct-4 function, we used affinity chromatography on immobilized Oct-4 (POU) together with MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS (mass spectrometry) and isolated a novel Oct-4-interacting protein, pyruvate kinase type M2 (PKM2 or M2-PK). PKM2 is an isozyme of pyruvate kinase that is specifically expressed in proliferating cells, such as embryonic stem cells, embryonic carcinoma cells, as well as cancer cells. Oct-4 and PKM2 were co-affinity precipitated from cell extracts, and glutathione S-transferase pull-down assays revealed that the POU DNA binding domain of Oct-4 was required for interaction with PKM2. In addition, the C-terminal domain of PKM2 (amino acids 307-531) was involved in binding to Oct-4. Moreover, ectopic expression of the PKM2 enhanced Oct-4-mediated transcription. These observations indicate that the transactivation potential of the Oct-4 transcription factor is positively modulated by PKM2.
Collapse
Affiliation(s)
- Jungwoon Lee
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | | | | | | |
Collapse
|
44
|
Das P, Ezashi T, Gupta R, Roberts RM. Combinatorial roles of protein kinase A, Ets2, and 3',5'-cyclic-adenosine monophosphate response element-binding protein-binding protein/p300 in the transcriptional control of interferon-tau expression in a trophoblast cell line. Mol Endocrinol 2007; 22:331-43. [PMID: 17975022 DOI: 10.1210/me.2007-0300] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In ruminants, conceptus interferon-tau (IFNT) production is necessary for maintenance of pregnancy. We examined the role of protein kinase A (PKA) in regulating IFNT expression through the activation of Ets2 in JAr choriocarcinoma cells. Although overexpression of the catalytic subunit of PKA or the addition of 8-bromo-cAMP had little ability to up-regulate boIFNT1 reporter constructs on their own, coexpression with Ets2 led to a large increase in gene expression. Progressive truncation of reporter constructs indicated that the site of PKA/Ets2 responsiveness lay in a region of the promoter between -126 and -67, which lacks a cAMP response element but contains the functional Ets2-binding site and an activator protein 1 (AP1) site. Specific mutation of the former reduced the PKA/Ets2 effects by more than 98%, whereas mutation of an AP1-binding site adjacent to the Ets2 site or pharmacological inhibition of MAPK kinase 2 led to a doubling of the combined Ets2/PKA effects, suggesting there is antagonism between the Ras/MAPK pathway and the PKA signal transduction pathway. Although Ets2 is not a substrate for PKA, lowering the effective concentrations of the coactivators, cAMP response element-binding protein-binding protein (CBP)/p300, known PKA targets, reduced the ability of PKA to synergize with Ets2, suggesting that PKA effects on IFNT regulation might be mediated through CBP/p300 coactivation, particularly as CBP and Ets2 occupy the proximal promoter region of IFNT in bovine trophoblast CT-1 cells. The up-regulation of IFNT in the elongating bovine conceptus is likely due to the combinatorial effects of PKA, Ets2, and CBP/p300 and triggered via growth factors released from maternal endometrium.
Collapse
Affiliation(s)
- Padmalaya Das
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, 1201 East Rollins Street, Columbia, MO 65211-7310, USA
| | | | | | | |
Collapse
|
45
|
Lee J, Kim J, Kang I, Kim H, Han YM, Kim J. The EWS-Oct-4 fusion gene encodes a transforming gene. Biochem J 2007; 406:519-26. [PMID: 17564582 PMCID: PMC2049031 DOI: 10.1042/bj20070243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The t(6;22)(p21;q12) translocation associated with human bone and soft-tissue tumours results in a chimaeric molecule fusing the NTD (N-terminal domain) of the EWS (Ewing's sarcoma) gene to the CTD (C-terminal domain) of the Oct-4 (octamer-4) embryonic gene. Since the N-terminal domains of EWS and Oct-4 are structurally different, in the present study we have assessed the functional consequences of the EWS-Oct-4 fusion. We find that this chimaeric gene encodes a nuclear protein which binds DNA with the same sequence specificity as the parental Oct-4 protein. Comparison of the transactivation properties of EWS-Oct-4 and Oct-4 indicates that the former has higher transactivation activity for a known target reporter gene containing Oct-4 binding. Deletion analysis of the functional domains of EWS-Oct-4 indicates that the EWS (NTD), the POU domain and the CTD of EWS-Oct-4 are necessary for full transactivation potential. EWS-Oct-4 induced the expression of fgf-4 (fibroblast growth factor 4) and nanog, which are potent mitogens as well as Oct-4 downstream target genes whose promoters contain potential Oct-4-binding sites. Finally, ectopic expression of EWS-Oct-4 in Oct-4-null ZHBTc4 ES (embryonic stem) cells resulted in increased tumorigenic growth potential in nude mice. These results suggest that the oncogenic effect of the t(6;22) translocation is due to the EWS-Oct-4 chimaeric protein and that fusion of the EWS NTD to the Oct-4 DNA-binding domain produces a transforming chimaeric product.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic
- Chromosomes, Human, Pair 22/genetics
- Chromosomes, Human, Pair 6/genetics
- DNA-Binding Proteins
- Embryonic Stem Cells/metabolism
- Gene Expression Regulation
- Humans
- Mice
- Mice, Nude
- Octamer Transcription Factor-3/genetics
- Octamer Transcription Factor-3/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogenes/physiology
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/metabolism
- Sarcoma, Ewing
- Translocation, Genetic
Collapse
Affiliation(s)
- Jungwoon Lee
- *Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul 121-742, South Korea
| | - Ja Young Kim
- *Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul 121-742, South Korea
| | - In Young Kang
- *Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul 121-742, South Korea
| | - Hye Kyoung Kim
- *Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul 121-742, South Korea
| | - Yong-Mahn Han
- †Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | - Jungho Kim
- *Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul 121-742, South Korea
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Abstract
Interferon-tau is a major product of ovine and bovine conceptuses during the period before the trophoblast makes firm attachment to the uterine wall and begins to form a placenta. Its primary function is in preventing a return to ovarian cyclicity and hence ensuring the pregnancy continues, although it undoubtedly has other roles in ensuring receptivity of the maternal endometrium. Despite having properties similar to those of other Type 1, IFN-tau is not virally inducible and functions in a constitutive process unrelated to pathogenesis. The genes for IFN-tau (IFNT), which are confined to ruminant ungulate species, would appear to be the most recently evolved mammalian Type 1 gene family and are primarily under the transcriptional control of Ets2 and signal transduction pathways that target that transcription factor. The IFNT provide an illustration of how a gene control region can be commandeered and then refined to provide a radically changed pattern of expression.
Collapse
Affiliation(s)
- R Michael Roberts
- Department of Animal Sciences, University of Missouri-Columbia, 240B CS Bond Life Sciences Center, 1201 Rollins Street, Columbia, MO 65211, United States.
| |
Collapse
|
47
|
Wuensch A, Habermann FA, Kurosaka S, Klose R, Zakhartchenko V, Reichenbach HD, Sinowatz F, McLaughlin KJ, Wolf E. Quantitative Monitoring of Pluripotency Gene Activation after Somatic Cloning in Cattle1. Biol Reprod 2007; 76:983-91. [PMID: 17314316 DOI: 10.1095/biolreprod.106.058776] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The development of somatic cell nuclear transfer (SCNT) embryos critically depends on appropriate reprogramming and expression of pluripotency genes, such as Pou5f1/POU5F1 (previously known as Oct4/OCT4). To study POU5F1 transcription activation in living bovine SCNT embryos without interference by maternal POU5F1 mRNA, we generated chromosomally normal fetal fibroblast donor cells stably carrying a mouse Pou5f1 promoter-driven enhanced green fluorescent protein (EGFP) reporter gene at a single integration site without detectable EGFP expression. Morphologic and quantitative analyses of whole-mount SCNT embryos by confocal microscopy revealed robust initial activation of the Pou5f1 reporter gene during the fourth cell cycle. In Day 6 SCNT embryos EGFP expression levels were markedly higher than in Day 4 embryos but varied substantially between individual embryos, even at comparable cell numbers. Embryos with low EGFP levels had far more morphologically abnormal cell nuclei than those with high EGFP levels. Our data strongly suggest that bovine SCNT embryos consistently start activation of the POU5F1 promoter during the fourth cell cycle, whereas later in development the expression level substantially differs between individual embryos, which may be associated with developmental potential. In fibroblasts from phenotypically normal SCNT fetuses recovered on Day 34, the Pou5f1 reporter promoter was silent but was activated by a second round of SCNT. The restoration of pluripotency can be directly observed in living cells or SCNT embryos from such Pou5f1-EGFP transgenic fetuses, providing an attractive model for systematic investigation of epigenetic reprogramming in large mammals.
Collapse
Affiliation(s)
- Annegret Wuensch
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University, Feodor-Lynen-Strasse 22, D-81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Neira JA, Tainturier D, L'Haridon RM, Martal J. Comparative IFN-tau secretion after hatching by bovine blastocysts derived ex vivo and completely produced in vitro. Reprod Domest Anim 2007; 42:68-75. [PMID: 17214777 DOI: 10.1111/j.1439-0531.2006.00732.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The interferon-tau (IFN-tau) secretion levels after hatching by bovine blastocysts derived from in vitro maturated oocytes (Group A) and from in vivo (Group B) were investigated considering embryo quality. Only very homogeneous blastocysts of excellent or good quality were considered from day 7 of culture (Group A) and day 7 after artificial insemination with frozen-thawed from the same bull used for in vitro fertilization (Group B). All embryos were individually cultured into a 50 microl droplet of synthetic oviduct fluid medium with 10% fetal calf serum. After 24-h culture both Group A (n=44) and B (n=40) secreted <54 pm IFN-tau. After 48-, 72-, 96- and 120-h culture, Group A daily secreted 143 +/- 24 pm IFN-tau (n=19) vs 85 +/- 12 pm IFN-tau (n=21) for Group B (p < 0.01), 491 +/- 128 pm IFN-tau (n=29) vs 216 +/- 37 pm IFN-tau (n=23) (NS), 499 +/- 135 pm IFN-tau (n=26) vs 353 +/- 93 pm IFN-tau (n=21) (NS), 559 +/- 136 pm IFN-tau (n=22) vs 333 +/- 75 pm IFN-tau (n=20) (NS), respectively. Taken all together during 5 days, Group A produced per embryo 1690 +/- 290 pm IFN-tau (n=22) vs 982 +/- 182 pm IFN-tau (n=20) for Group B (p < 0.05). For all culture time there were sizable percentages of embryos that did not produce concentrations of IFN-tau above a certain cut-off level, and as such were not used to compute the means. In respect of the embryo quality whatever the groups after days 7-12 of culture, IFN-tau secretions were 1815 +/- 453 pm (n=10) for the embryos of excellent quality vs 1356 +/- 200 pm (n=28) for those of good quality (NS) and 360 +/- 188 pm (n=4) (p < 0.05) for embryos of fair quality. A positive relationship between IFN-tau production and in vitro development of quality I embryos was observed, whatever the embryos origins and, the embryos completely produced in vitro secreted more IFN-tau than the embryos produced in vivo.
Collapse
Affiliation(s)
- J A Neira
- Programa Nacional de Recursos Genéticos y biotecnología Animal, CORPOICA, Grupo Biología del desarrollo, Universidad de la Salle, Bogotá-DC, Colombia
| | | | | | | |
Collapse
|
49
|
Ets-2 and C/EBP-beta are important mediators of ovine trophoblast Kunitz domain protein-1 gene expression in trophoblast. BMC Mol Biol 2007; 8:14. [PMID: 17326832 PMCID: PMC1817651 DOI: 10.1186/1471-2199-8-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 02/27/2007] [Indexed: 11/22/2022] Open
Abstract
Background The trophoblast Kunitz domain proteins (TKDPs) constitute a highly expressed, placenta-specific, multigene family restricted to ruminant ungulates and characterized by a C-terminal "Kunitz" domain, preceded by one or more unique N-terminal domains. TKDP-1 shares an almost identical expression pattern with interferon-tau, the "maternal recognition of pregnancy protein" in ruminants. Our goal here has been to determine whether the ovine (ov) Tkdp-1 and IFNT genes possess a similar transcriptional code. Results The ovTkdp-1 promoter has been cloned and characterized. As with the IFNT promoter, the Tkdp-1 promoter is responsive to Ets-2, and promoter-driven reporter activity can be increased over 700-fold in response to over-expression of Ets-2 and a constitutively active form of protein Kinase A (PKA). Unexpectedly, the promoter element of Tkdp-1 responsible for this up-regulation, unlike that of the IFNT, does not bind Ets-2. However, mutation of a CCAAT/enhancer binding element within this control region not only reduced basal transcriptional activity, but prevented Ets-2 as well as cyclic adenosine 5'-monophosphate (cAMP)/PKA and Ras/mitogen-activated protein kinase (MAPK) responsiveness. In vitro binding experiments and in vivo protein-protein interaction assays implicated CCAAT/enhancer binding protein-beta (C/EBP-β) as involved in up-regulating the Tkdp-1 promoter activity. A combination of Ets-2 and C/EBP-β can up-regulate expression of the minimal Tkdp-1 promoter as much as 930-fold in presence of a cAMP analog. An AP-1-like element adjacent to the CCAAT enhancer, which binds Jun family members, is required for basal and cAMP/ C/EBP-β-dependent activation of the gene, but not for Ets-2-dependent activity. Conclusion This paper demonstrates how Ets-2, a key transcription factor for trophoblast differentiation and function, can control expression of two genes (Tkdp-1 and IFNT) having similar spatial and temporal expression patterns via very different mechanisms.
Collapse
|
50
|
Bickenbach JR, Stern MM. Plasticity of epidermal stem cells: survival in various environments. ACTA ACUST UNITED AC 2007; 1:71-7. [PMID: 17132878 DOI: 10.1385/scr:1:1:071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The keratinocyte cell compartment in the continuously renewing epidermis of the skin is maintained by undifferentiated, self-renewing stem cells. We show that a small subpopulation of epidermal stem cells (EpiSCs) have the capacity to integrate into multiple tissues. These EpiSCs can change their phenotype in direct response of changes in cytokines in vitro, changes in cocultured cells, after injection into damaged environments in vivo. These changes appear to be unrelated to the age of the EpiSC. Even though we can isolate these cells and show that the age of thses cells appears to be irrelevant to this multipotent function, we still do not know how such cells are defined within a tissue or what the life span of a multipotent stem cell is.
Collapse
Affiliation(s)
- Jackie R Bickenbach
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|