1
|
Ash1 and Tup1 dependent repression of the Saccharomyces cerevisiae HO promoter requires activator-dependent nucleosome eviction. PLoS Genet 2020; 16:e1009133. [PMID: 33382702 PMCID: PMC7806131 DOI: 10.1371/journal.pgen.1009133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/13/2021] [Accepted: 11/25/2020] [Indexed: 11/30/2022] Open
Abstract
Transcriptional regulation of the Saccharomyces cerevisiae HO gene is highly complex, requiring a balance of multiple activating and repressing factors to ensure that only a few transcripts are produced in mother cells within a narrow window of the cell cycle. Here, we show that the Ash1 repressor associates with two DNA sequences that are usually concealed within nucleosomes in the HO promoter and recruits the Tup1 corepressor and the Rpd3 histone deacetylase, both of which are required for full repression in daughters. Genome-wide ChIP identified greater than 200 additional sites of co-localization of these factors, primarily within large, intergenic regions from which they could regulate adjacent genes. Most Ash1 binding sites are in nucleosome depleted regions (NDRs), while a small number overlap nucleosomes, similar to HO. We demonstrate that Ash1 binding to the HO promoter does not occur in the absence of the Swi5 transcription factor, which recruits coactivators that evict nucleosomes, including the nucleosomes obscuring the Ash1 binding sites. In the absence of Swi5, artificial nucleosome depletion allowed Ash1 to bind, demonstrating that nucleosomes are inhibitory to Ash1 binding. The location of binding sites within nucleosomes may therefore be a mechanism for limiting repressive activity to periods of nucleosome eviction that are otherwise associated with activation of the promoter. Our results illustrate that activation and repression can be intricately connected, and events set in motion by an activator may also ensure the appropriate level of repression and reset the promoter for the next activation cycle. Nucleosomes inhibit both gene expression and DNA-binding by regulatory factors. Here we examine the role of nucleosomes in regulating the binding of repressive transcription factors to the complex promoter for the yeast HO gene. Ash1 is a sequence-specific DNA-binding protein, and we show that it recruits the Tup1 global repressive factor to the HO promoter. Using a method to determine where Ash1 and Tup1 are bound to DNA throughout the genome, we discovered that Tup1 is also present at most places where Ash1 binds. The majority of these sites are in “Nucleosome Depleted Regions,” or NDRs, where the absence of chromatin makes factor binding easier. We discovered that the HO promoter is an exception, in that the two places where Ash1 binds overlap nucleosomes. Activation of the HO promoter is a complex, multi-step process, and we demonstrated that chromatin factors transiently evict these nucleosomes from the HO promoter during the cell cycle, allowing Ash1 to bind and recruit Tup1. Thus, activators must evict nucleosomes from the promoter to allow the repressive machinery to bind.
Collapse
|
2
|
Chen Y, Zhao G, Zahumensky J, Honey S, Futcher B. Differential Scaling of Gene Expression with Cell Size May Explain Size Control in Budding Yeast. Mol Cell 2020; 78:359-370.e6. [PMID: 32246903 DOI: 10.1016/j.molcel.2020.03.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 12/14/2019] [Accepted: 03/10/2020] [Indexed: 01/25/2023]
Abstract
Yeast cells must grow to a critical size before committing to division. It is unknown how size is measured. We find that as cells grow, mRNAs for some cell-cycle activators scale faster than size, increasing in concentration, while mRNAs for some inhibitors scale slower than size, decreasing in concentration. Size-scaled gene expression could cause an increasing ratio of activators to inhibitors with size, triggering cell-cycle entry. Consistent with this, expression of the CLN2 activator from the promoter of the WHI5 inhibitor, or vice versa, interfered with cell size homeostasis, yielding a broader distribution of cell sizes. We suggest that size homeostasis comes from differential scaling of gene expression with size. Differential regulation of gene expression as a function of cell size could affect many cellular processes.
Collapse
Affiliation(s)
- Yuping Chen
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Gang Zhao
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Jakub Zahumensky
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 142 20, Czech Republic
| | - Sangeet Honey
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Bruce Futcher
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794-5222, USA.
| |
Collapse
|
3
|
Hillenbrand P, Maier KC, Cramer P, Gerland U. Inference of gene regulation functions from dynamic transcriptome data. eLife 2016; 5. [PMID: 27652904 PMCID: PMC5072840 DOI: 10.7554/elife.12188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 09/20/2016] [Indexed: 11/17/2022] Open
Abstract
To quantify gene regulation, a function is required that relates transcription factor binding to DNA (input) to the rate of mRNA synthesis from a target gene (output). Such a ‘gene regulation function’ (GRF) generally cannot be measured because the experimental titration of inputs and simultaneous readout of outputs is difficult. Here we show that GRFs may instead be inferred from natural changes in cellular gene expression, as exemplified for the cell cycle in the yeast S. cerevisiae. We develop this inference approach based on a time series of mRNA synthesis rates from a synchronized population of cells observed over three cell cycles. We first estimate the functional form of how input transcription factors determine mRNA output and then derive GRFs for target genes in the CLB2 gene cluster that are expressed during G2/M phase. Systematic analysis of additional GRFs suggests a network architecture that rationalizes transcriptional cell cycle oscillations. We find that a transcription factor network alone can produce oscillations in mRNA expression, but that additional input from cyclin oscillations is required to arrive at the native behaviour of the cell cycle oscillator. DOI:http://dx.doi.org/10.7554/eLife.12188.001 Living cells rely on networks of genes to control their behavior, including how they grow, develop and respond to stress. Genes encode instructions needed to make proteins and other molecules, and much of the control is exerted at the first stage of protein production, known as transcription. During this process, a gene is copied to make molecules known as transcripts that may later be used as templates to make proteins. Many genes encode proteins that act to regulate transcription. Therefore, an individual gene may receive inputs from other genes, and these inputs affect how much transcript the gene produces, which can be considered as the gene’s output. While these inputs and outputs can often be wired together to form a network, it is less clear exactly how all the different inputs at a gene interact to determine its output. These interactions are known as “gene regulation functions”, and knowing them would be an important step towards understanding gene networks, which would help us to predict how cells will behave in different situations. Gene regulation functions are difficult to measure directly, so researchers would like to find other ways to assess them indirectly. A recently developed experimental technique called “dynamic transcriptome analysis” seemed promising as it measures both the inputs and outputs of all genes in a cell over time. Hillenbrand et al. used this technique to infer gene regulation functions with one or two inputs in yeast cells. Comparing these estimates with experimental data from previous studies showed that these inferred gene regulation functions could successfully predict the output of a gene based on its inputs. Hillenbrand et al. then used these estimates to search and model a well-known genetic network that is thought to be part of the molecular clockwork that controls the timing of events that cause a cell to divide. Currently, the approach used by Hillenbrand et al. treats gene regulation functions like “black boxes”. This means that, while an output can be predicted if the inputs are known, it cannot reveal all of the detailed mechanisms behind it. Gaining insights into the inner workings of these black boxes will require taking more data into account, such as how abundant the proteins that regulate transcription are, where they are located within cells or whether they are active or not. Therefore, the next challenge is to incorporate these kinds of data to gain a fuller picture of how gene networks operate within cells. DOI:http://dx.doi.org/10.7554/eLife.12188.002
Collapse
Affiliation(s)
- Patrick Hillenbrand
- Lehrstuhl für Theorie komplexer Biosysteme, Physik-Department, Technische Universität München, Garching, Germany
| | - Kerstin C Maier
- Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ulrich Gerland
- Lehrstuhl für Theorie komplexer Biosysteme, Physik-Department, Technische Universität München, Garching, Germany
| |
Collapse
|
4
|
Suárez MB, Alonso-Nuñez ML, del Rey F, McInerny CJ, Vázquez de Aldana CR. Regulation of Ace2-dependent genes requires components of the PBF complex in Schizosaccharomyces pombe. Cell Cycle 2015; 14:3124-37. [PMID: 26237280 DOI: 10.1080/15384101.2015.1078035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The division cycle of unicellular yeasts is completed with the activation of a cell separation program that results in the dissolution of the septum assembled during cytokinesis between the 2 daughter cells, allowing them to become independent entities. Expression of the eng1(+) and agn1(+) genes, encoding the hydrolytic enzymes responsible for septum degradation, is activated at the end of each cell cycle by the transcription factor Ace2. Periodic ace2(+) expression is regulated by the transcriptional complex PBF (PCB Binding Factor), composed of the forkhead-like proteins Sep1 and Fkh2 and the MADS box-like protein Mbx1. In this report, we show that Ace2-dependent genes contain several combinations of motifs for Ace2 and PBF binding in their promoters. Thus, Ace2, Fkh2 and Sep1 were found to bind in vivo to the eng1(+) promoter. Ace2 binding was coincident with maximum level of eng1(+) expression, whereas Fkh2 binding was maximal when mRNA levels were low, supporting the notion that they play opposing roles. In addition, we found that the expression of eng1(+) and agn1(+) was differentially affected by mutations in PBF components. Interestingly, agn1(+) was a major target of Mbx1, since its ectopic expression resulted in the suppression of Mbx1 deletion phenotypes. Our results reveal a complex regulation system through which the transcription factors Ace2, Fkh2, Sep1 and Mbx1 in combination control the expression of the genes involved in separation at the end of the cell division cycle.
Collapse
Affiliation(s)
- M Belén Suárez
- a Instituto de Biología Funcional y Genómica; CSIC/Universidad de Salamanca ; Salamanca , Spain
| | | | - Francisco del Rey
- a Instituto de Biología Funcional y Genómica; CSIC/Universidad de Salamanca ; Salamanca , Spain
| | | | | |
Collapse
|
5
|
Abstract
Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls.
Collapse
|
6
|
Mathiasen DP, Lisby M. Cell cycle regulation of homologous recombination inSaccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:172-84. [DOI: 10.1111/1574-6976.12066] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 11/29/2022] Open
|
7
|
Bastajian N, Friesen H, Andrews BJ. Bck2 acts through the MADS box protein Mcm1 to activate cell-cycle-regulated genes in budding yeast. PLoS Genet 2013; 9:e1003507. [PMID: 23675312 PMCID: PMC3649975 DOI: 10.1371/journal.pgen.1003507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 03/27/2013] [Indexed: 11/19/2022] Open
Abstract
The Bck2 protein is a potent genetic regulator of cell-cycle-dependent gene expression in budding yeast. To date, most experiments have focused on assessing a potential role for Bck2 in activation of the G1/S-specific transcription factors SBF (Swi4, Swi6) and MBF (Mbp1, Swi6), yet the mechanism of gene activation by Bck2 has remained obscure. We performed a yeast two-hybrid screen using a truncated version of Bck2 and discovered six novel Bck2-binding partners including Mcm1, an essential protein that binds to and activates M/G1 promoters through Early Cell cycle Box (ECB) elements as well as to G2/M promoters. At M/G1 promoters Mcm1 is inhibited by association with two repressors, Yox1 or Yhp1, and gene activation ensues once repression is relieved by an unknown activating signal. Here, we show that Bck2 interacts physically with Mcm1 to activate genes during G1 phase. We used chromatin immunoprecipitation (ChIP) experiments to show that Bck2 localizes to the promoters of M/G1-specific genes, in a manner dependent on functional ECB elements, as well as to the promoters of G1/S and G2/M genes. The Bck2-Mcm1 interaction requires valine 69 on Mcm1, a residue known to be required for interaction with Yox1. Overexpression of BCK2 decreases Yox1 localization to the early G1-specific CLN3 promoter and rescues the lethality caused by overexpression of YOX1. Our data suggest that Yox1 and Bck2 may compete for access to the Mcm1-ECB scaffold to ensure appropriate activation of the initial suite of genes required for cell cycle commitment.
Collapse
Affiliation(s)
- Nazareth Bastajian
- The Donnelly Centre and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Helena Friesen
- The Donnelly Centre and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Brenda J. Andrews
- The Donnelly Centre and the Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
8
|
Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2013; 110:7318-23. [PMID: 23589851 DOI: 10.1073/pnas.1302490110] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In budding yeast cells, nutrient repletion induces rapid exit from quiescence and entry into a round of growth and division. The G1 cyclin CLN3 is one of the earliest genes activated in response to nutrient repletion. Subsequent to its activation, hundreds of cell-cycle genes can then be expressed, including the cyclins CLN1/2 and CLB5/6. Although much is known regarding how CLN3 functions to activate downstream targets, the mechanism through which nutrients activate CLN3 transcription in the first place remains poorly understood. Here we show that a central metabolite of glucose catabolism, acetyl-CoA, induces CLN3 transcription by promoting the acetylation of histones present in its regulatory region. Increased rates of acetyl-CoA synthesis enable the Gcn5p-containing Spt-Ada-Gcn5-acetyltransferase transcriptional coactivator complex to catalyze histone acetylation at the CLN3 locus alongside ribosomal and other growth genes to promote entry into the cell division cycle.
Collapse
|
9
|
Zelin E, Zhang Y, Toogun OA, Zhong S, Freeman BC. The p23 molecular chaperone and GCN5 acetylase jointly modulate protein-DNA dynamics and open chromatin status. Mol Cell 2012; 48:459-70. [PMID: 23022381 DOI: 10.1016/j.molcel.2012.08.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/04/2012] [Accepted: 08/23/2012] [Indexed: 11/24/2022]
Abstract
Cellular processes function through multistep pathways that are reliant on the controlled association and disassociation of sequential protein complexes. While dynamic action is critical to propagate and terminate work, the mechanisms used to disassemble biological structures are not fully understood. Here we show that the p23 molecular chaperone initiates disassembly of protein-DNA complexes and that the GCN5 acetyltransferase prolongs the dissociated state through lysine acetylation. By modulating the DNA-bound state, we found that the conserved and essential joint activities of p23 and GCN5 impacted transcription factor activation potential and response time to an environmental cue. Notably, p23 and GCN5 were required to maintain open chromatin regions along the genome, indicating that dynamic protein behavior is a critical feature of various DNA-associated events. Our data support a model in which p23 and GCN5 regulate diverse multistep pathways by controlling the longevity of protein-DNA complexes.
Collapse
Affiliation(s)
- Elena Zelin
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Morillo-Huesca M, Maya D, Muñoz-Centeno MC, Singh RK, Oreal V, Reddy GU, Liang D, Géli V, Gunjan A, Chávez S. FACT prevents the accumulation of free histones evicted from transcribed chromatin and a subsequent cell cycle delay in G1. PLoS Genet 2010; 6:e1000964. [PMID: 20502685 PMCID: PMC2873916 DOI: 10.1371/journal.pgen.1000964] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 04/20/2010] [Indexed: 11/18/2022] Open
Abstract
The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3) in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA–damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication. Lengthy genomic DNA is packed in a highly organized nucleoprotein structure called chromatin, whose basic subunit is the nucleosome which is formed by DNA wrapped around an octamer of proteins called histones. Nucleosomes need to be disassembled to allow DNA transcription by RNA polymerases. An essential factor for the disassembly/reassembly process during DNA transcription is the FACT complex. We investigated a phenotype of yeast FACT mutants, a delay in a specific step of the cell cycle division process immediately prior to starting DNA replication. The dysfunction caused by the FACT mutation causes a downregulation of a gene, CLN3, which controls the length of that specific step of the cell cycle. FACT dysfunction also increases the level of the free histones released from chromatin during transcription, and the phenotype of the Spt16 mutant is enhanced by a second mutation affecting a protein that regulates DNA repair and excess histone degradation. Moreover, we show that the overexpression of histones causes a cell cycle delay before DNA replication in wild-type cells. Our results point out a so-far unknown connection between chromatin dynamics and the regulation of the cell cycle.
Collapse
Affiliation(s)
| | - Douglas Maya
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | | | - Rakesh Kumar Singh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Vincent Oreal
- Laboratoire d'Instabilité Génétique et Cancérogenèse, Institut de Biologie Struturale et Microbiologie, Centre National de la Recherche Scientifique, Marseille, France
| | - Gajjalaiahvari Ugander Reddy
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Dun Liang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Vincent Géli
- Laboratoire d'Instabilité Génétique et Cancérogenèse, Institut de Biologie Struturale et Microbiologie, Centre National de la Recherche Scientifique, Marseille, France
| | - Akash Gunjan
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- * E-mail: (SC); (MCM-C)
| |
Collapse
|
12
|
Abstract
Darieva and coworkers (Darieva et al., 2010) have shown that the repressor Yox1 and the activator Fkh2-Ndd1 associate with opposite sides of the dimeric Mcm1 transcription factor but nevertheless compete for binding; the outcome determines expression of late mitotic genes in yeast.
Collapse
|
13
|
A competitive transcription factor binding mechanism determines the timing of late cell cycle-dependent gene expression. Mol Cell 2010; 38:29-40. [PMID: 20385087 PMCID: PMC3566586 DOI: 10.1016/j.molcel.2010.02.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/10/2009] [Accepted: 02/21/2010] [Indexed: 12/28/2022]
Abstract
Transcriptional control is exerted by the antagonistic activities of activator and repressor proteins. In Saccharomyces cerevisiae, transcription factor complexes containing the MADS box protein Mcm1p are key regulators of cell cycle-dependent transcription at both the G2/M and M/G1 transitions. The homeodomain repressor protein Yox1p acts in a complex with Mcm1p to control the timing of gene expression. Here, we show that Yox1p interacts with Mcm1p through a motif located N terminally to its homeodomain. Yox1p functions as a transcriptional repressor by competing with the forkhead transcription activator protein Fkh2p for binding to Mcm1p through protein-protein interactions at promoters of a subset of Mcm1p-regulated genes. Importantly, this competition is not through binding the same DNA site that is commonly observed. Thus, this study describes a different mechanism for determining the timing of cell cycle-dependent gene expression that involves competition between short peptide motifs in repressor and activator proteins for interaction with a common binding partner.
Collapse
|
14
|
Aligianni S, Lackner DH, Klier S, Rustici G, Wilhelm BT, Marguerat S, Codlin S, Brazma A, de Bruin RAM, Bähler J. The fission yeast homeodomain protein Yox1p binds to MBF and confines MBF-dependent cell-cycle transcription to G1-S via negative feedback. PLoS Genet 2009; 5:e1000626. [PMID: 19714215 PMCID: PMC2726434 DOI: 10.1371/journal.pgen.1000626] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 07/31/2009] [Indexed: 12/31/2022] Open
Abstract
The regulation of the G1- to S-phase transition is critical for cell-cycle progression. This transition is driven by a transient transcriptional wave regulated by transcription factor complexes termed MBF/SBF in yeast and E2F-DP in mammals. Here we apply genomic, genetic, and biochemical approaches to show that the Yox1p homeodomain protein of fission yeast plays a critical role in confining MBF-dependent transcription to the G1/S transition of the cell cycle. The yox1 gene is an MBF target, and Yox1p accumulates and preferentially binds to MBF-regulated promoters, via the MBF components Res2p and Nrm1p, when they are transcriptionally repressed during the cell cycle. Deletion of yox1 results in constitutively high transcription of MBF target genes and loss of their cell cycle–regulated expression, similar to deletion of nrm1. Genome-wide location analyses of Yox1p and the MBF component Cdc10p reveal dozens of genes whose promoters are bound by both factors, including their own genes and histone genes. In addition, Cdc10p shows promiscuous binding to other sites, most notably close to replication origins. This study establishes Yox1p as a new regulatory MBF component in fission yeast, which is transcriptionally induced by MBF and in turn inhibits MBF-dependent transcription. Yox1p may function together with Nrm1p to confine MBF-dependent transcription to the G1/S transition of the cell cycle via negative feedback. Compared to the orthologous budding yeast Yox1p, which indirectly functions in a negative feedback loop for cell-cycle transcription, similarities but also notable differences in the wiring of the regulatory circuits are evident. Cells proliferate by growth and division, which is supported by different gene groups that are periodically induced at specific times when they are required during the cell cycle. These genes not only need to be induced at the right time but also repressed when they are no longer required; mistakes in gene regulation can lead to problems in cell proliferation and diseases such as cancer. A well-known regulatory complex functions just before cells replicate their DNA to induce genes required for this important transition. We show that in fission yeast this regulatory complex (MBF) induces a gene whose encoded protein (Yox1p) in turn binds to MBF and represses MBF-regulated genes. In the absence of Yox1p, the MBF-regulated genes do not fluctuate during the cell cycle but remain constantly induced. Thus, MBF sets up not only the induction but also the timely repression of its target genes via Yox1p. We also provide a global analysis of all the genes regulated by Yox1p and MBF. Together, our data uncover a new negative control loop, further highlighting the sophistication of gene regulation during the cell cycle, and illustrating regulatory similarities and differences between organisms.
Collapse
Affiliation(s)
- Sofia Aligianni
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
| | - Daniel H. Lackner
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
| | - Steffi Klier
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Gabriella Rustici
- EMBL Outstation–Hinxton, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Brian T. Wilhelm
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
| | - Samuel Marguerat
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
| | - Sandra Codlin
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
| | - Alvis Brazma
- EMBL Outstation–Hinxton, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Robertus A. M. de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Jürg Bähler
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Coupling phosphate homeostasis to cell cycle-specific transcription: mitotic activation of Saccharomyces cerevisiae PHO5 by Mcm1 and Forkhead proteins. Mol Cell Biol 2009; 29:4891-905. [PMID: 19596791 DOI: 10.1128/mcb.00222-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cells devote considerable resources to nutrient homeostasis, involving nutrient surveillance, acquisition, and storage at physiologically relevant concentrations. Many Saccharomyces cerevisiae transcripts coding for proteins with nutrient uptake functions exhibit peak periodic accumulation during M phase, indicating that an important aspect of nutrient homeostasis involves transcriptional regulation. Inorganic phosphate is a central macronutrient that we have previously shown oscillates inversely with mitotic activation of PHO5. The mechanism of this periodic cell cycle expression remains unknown. To date, only two sequence-specific activators, Pho4 and Pho2, were known to induce PHO5 transcription. We provide here evidence that Mcm1, a MADS-box protein, is essential for PHO5 mitotic activation. In addition, we found that cells simultaneously lacking the forkhead proteins, Fkh1 and Fkh2, exhibited a 2.5-fold decrease in PHO5 expression. The Mcm1-Fkh2 complex, first shown to transactivate genes within the CLB2 cluster that drive G(2)/M progression, also associated directly at the PHO5 promoter in a cell cycle-dependent manner in chromatin immunoprecipitation assays. Sds3, a component specific to the Rpd3L histone deacetylase complex, was also recruited to PHO5 in G(1). These findings provide (i) further mechanistic insight into PHO5 mitotic activation, (ii) demonstrate that Mcm1-Fkh2 can function combinatorially with other activators to yield late M/G(1) induction, and (iii) couple the mitotic cell cycle progression machinery to cellular phosphate homeostasis.
Collapse
|
16
|
Côte P, Hogues H, Whiteway M. Transcriptional analysis of the Candida albicans cell cycle. Mol Biol Cell 2009; 20:3363-73. [PMID: 19477921 DOI: 10.1091/mbc.e09-03-0210] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We have examined the periodic expression of genes through the cell cycle in cultures of the human pathogenic fungus Candida albicans synchronized by mating pheromone treatment. Close to 500 genes show increased expression during the G1, S, G2, or M transitions of the C. albicans cell cycle. Comparisons of these C. albicans periodic genes with those already found in the budding and fission yeasts and in human cells reveal that of 2200 groups of homologous genes, close to 600 show periodicity in at least one organism, but only 11 are periodic in all four species. Overall, the C. albicans regulatory circuit most closely resembles that of Saccharomyces cerevisiae but contains a simplified structure. Although the majority of the C. albicans periodically regulated genes have homologues in the budding yeast, 20% (100 genes), most of which peak during the G1/S or M/G1 transitions, are unique to the pathogenic yeast.
Collapse
Affiliation(s)
- Pierre Côte
- Genetics Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Québec H4P 2R2, Canada
| | | | | |
Collapse
|
17
|
Abstract
A gapped transcription factor-binding site (TFBS) contains one or more highly degenerate positions. Discovering gapped motifs is difficult, because allowing highly degenerate positions in a motif greatly enlarges the search space and complicates the discovery process. Here, we propose a method for discovering TFBSs, especially gapped motifs. We use ChIP-chip data to judge the binding strength of a TF to a putative target promoter and use orthologous sequences from related species to judge the degree of evolutionary conservation of a predicted TFBS. Candidate motifs are constructed by growing compact motif blocks and by concatenating two candidate blocks, allowing 0-15 degenerate positions in between. The resultant patterns are statistically evaluated for their ability to distinguish between target and nontarget genes. Then, a position-based ranking procedure is proposed to enhance the signals of true motifs by collecting position concurrences. Empirical tests on 32 known yeast TFBSs show that the method is highly accurate in identifying gapped motifs, outperforming current methods, and it also works well on ungapped motifs. Predictions on additional 54 TFs successfully discover 11 gapped and 38 ungapped motifs supported by literature. Our method achieves high sensitivity and specificity for predicting experimentally verified TFBSs.
Collapse
|
18
|
Lee HG, Lee HS, Jeon SH, Chung TH, Lim YS, Huh WK. High-resolution analysis of condition-specific regulatory modules in Saccharomyces cerevisiae. Genome Biol 2008; 9:R2. [PMID: 18171483 PMCID: PMC2395236 DOI: 10.1186/gb-2008-9-1-r2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 10/15/2007] [Accepted: 01/03/2008] [Indexed: 01/11/2023] Open
Abstract
A novel approach for identifying condition-specific regulatory modules in yeast reveals functionally distinct coregulated submodules. We present an approach for identifying condition-specific regulatory modules by using separate units of gene expression profiles along with ChIP-chip and motif data from Saccharomyces cerevisiae. By investigating the unique and common features of the obtained condition-specific modules, we detected several important properties of transcriptional network reorganization. Our approach reveals the functionally distinct coregulated submodules embedded in a coexpressed gene module and provides an effective method for identifying various condition-specific regulatory events at high resolution.
Collapse
Affiliation(s)
- Hun-Goo Lee
- School of Biological Sciences and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University, Seoul 151-747, Republic of Korea
| | | | | | | | | | | |
Collapse
|
19
|
Alternative mechanisms by which mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor gamma-stimulated adipogenesis and target gene expression. Mol Cell Biol 2007; 28:1081-91. [PMID: 18039840 DOI: 10.1128/mcb.00967-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mediator is a general coactivator complex connecting transcription activators and RNA polymerase II. Recent work has shown that the nuclear receptor-interacting MED1/TRAP220 subunit of Mediator is required for peroxisome proliferator-activated receptor gamma (PPARgamma)-stimulated adipogenesis of mouse embryonic fibroblasts (MEFs). However, the molecular mechanisms remain undefined. Here, we show an intracellular PPARgamma-Mediator interaction that requires the two LXXLL nuclear receptor recognition motifs on MED1/TRAP220 and, furthermore, we show that the intact LXXLL motifs are essential for optimal PPARgamma function in a reconstituted cell-free transcription system. Surprisingly, a conserved N-terminal region of MED1/TRAP220 that lacks the LXXLL motifs but gets incorporated into Mediator fully supports PPARgamma-stimulated adipogenesis. Moreover, in undifferentiated MEFs, MED1/TRAP220 is dispensable both for PPARgamma-mediated target gene activation and for recruitment of Mediator to a PPAR response element on the aP2 target gene promoter. However, PPARgamma shows significantly reduced transcriptional activity in cells deficient for a subunit (MED24/TRAP100) important for the integrity of the Mediator complex, indicating a general Mediator requirement for PPARgamma function. These results indicate that there is a conditional requirement for MED1/TRAP220 and that a direct interaction between PPARgamma and Mediator through MED1/TRAP220 is not essential either for PPARgamma-stimulated adipogenesis or for PPARgamma target gene expression in cultured fibroblasts. As Mediator is apparently essential for PPARgamma transcriptional activity, our data indicate the presence of alternative mechanisms for Mediator recruitment, possibly through intermediate cofactors or other cofactors that are functionally redundant with MED1/TRAP220.
Collapse
|
20
|
Jannière L, Canceill D, Suski C, Kanga S, Dalmais B, Lestini R, Monnier AF, Chapuis J, Bolotin A, Titok M, Le Chatelier E, Ehrlich SD. Genetic evidence for a link between glycolysis and DNA replication. PLoS One 2007; 2:e447. [PMID: 17505547 PMCID: PMC1866360 DOI: 10.1371/journal.pone.0000447] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 04/23/2007] [Indexed: 12/02/2022] Open
Abstract
Background A challenging goal in biology is to understand how the principal cellular functions are integrated so that cells achieve viability and optimal fitness in a wide range of nutritional conditions. Methodology/Principal Findings We report here a tight link between glycolysis and DNA synthesis. The link, discovered during an analysis of suppressors of thermosensitive replication mutants in bacterium Bacillus subtilis, is very strong as some metabolic alterations fully restore viability to replication mutants in which a lethal arrest of DNA synthesis otherwise occurs at a high, restrictive, temperature. Full restoration of viability by such alterations was limited to cells with mutations in three elongation factors (the lagging strand DnaE polymerase, the primase and the helicase) out of a large set of thermosensitive mutants affected in most of the replication proteins. Restoration of viability resulted, at least in part, from maintenance of replication protein activity at high temperature. Physiological studies suggested that this restoration depended on the activity of the three-carbon part of the glycolysis/gluconeogenesis pathway and occurred in both glycolytic and gluconeogenic regimens. Restoration took place abruptly over a narrow range of expression of genes in the three-carbon part of glycolysis. However, the absolute value of this range varied greatly with the allele in question. Finally, restoration of cell viability did not appear to be the result of a decrease in growth rate or an induction of major stress responses. Conclusions/Significance Our findings provide the first evidence for a genetic system that connects DNA chain elongation to glycolysis. Its role may be to modulate some aspect of DNA synthesis in response to the energy provided by the environment and the underlying mechanism is discussed. It is proposed that related systems are ubiquitous.
Collapse
Affiliation(s)
- Laurent Jannière
- Laboratoire de Génétique Microbienne, INRA, Jouy en Josas, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kaplan Y, Kupiec M. A role for the yeast cell cycle/splicing factor Cdc40 in the G1/S transition. Curr Genet 2006; 51:123-40. [PMID: 17171376 DOI: 10.1007/s00294-006-0113-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 11/26/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
The CDC40 (PRP17) gene of S. cerevisiae encodes a splicing factor required for multiple events in the mitotic and meiotic cell cycles, linking splicing with cell cycle control. cdc40 mutants exhibit a delayed G(1)/S transition, progress slowly through S-phase and arrest at a restrictive temperature in the G(2) phase. In addition, they are hypersensitive to genotoxic agents such as methylmethane sulfonate (MMS) and Hydroxyurea (HU). CDC40 has been suggested to control cell cycle through splicing of intron-containing pre-mRNAs that encode proteins important for cell cycle progression. We screened a cDNA overexpression library and isolated cDNAs that specifically suppress the HU/MMS-sensitivity of cdc40 mutants. Most of these cDNAs surprisingly encode chaperones, translation initiation factors and glycolytic enzymes, and none of them is encoded by an intron-containing gene. Interestingly, the cDNAs suppress the G(1)/S transition delay of cdc40 cells, which is exacerbated by HU, suggesting that cdc40 mutants are HU/MMS-sensitive due to their S-phase entry defect. A role of Cdc40p in passage through G(1)/S (START) is further supported by the enhanced temperature sensitivity and G(1)/S transition phenotype of a cdc40 strain lacking the G(1) cyclin, Cln2p. We provide evidence that the mechanism of suppression by the isolated cDNAs does not (at least solely) involve up-regulation of the known positive START regulators CLN2, CLN3, DCR2 and GID8, or of the large and small essential ribonucleotide reductase (RNR) subunits, RNR1 and RNR2. Finally, we discuss possible mechanisms of suppression by the cDNAs that imply cell cycle regulation by apparently unrelated processes, such as splicing, translation initiation and glycolysis.
Collapse
Affiliation(s)
- Yosef Kaplan
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | | |
Collapse
|
22
|
Lai LC, Kosorukoff AL, Burke PV, Kwast KE. Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:1468-89. [PMID: 16963631 PMCID: PMC1563586 DOI: 10.1128/ec.00107-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We conducted a comprehensive genomic analysis of the temporal response of yeast to anaerobiosis (six generations) and subsequent aerobic recovery ( approximately 2 generations) to reveal metabolic-state (galactose versus glucose)-dependent differences in gene network activity and function. Analysis of variance showed that far fewer genes responded (raw P value of <or=10(-8)) to the O(2) shifts in glucose (1,603 genes) than in galactose (2,388 genes). Gene network analysis reveals that this difference is due largely to the failure of "stress"-activated networks controlled by Msn2/4, Fhl1, MCB, SCB, PAC, and RRPE to transiently respond to the shift to anaerobiosis in glucose as they did in galactose. After approximately 1 generation of anaerobiosis, the response was similar in both media, beginning with the deactivation of Hap1 and Hap2/3/4/5 networks involved in mitochondrial functions and the concomitant derepression of Rox1-regulated networks for carbohydrate catabolism and redox regulation and ending (>or=2 generations) with the activation of Upc2- and Mot3-regulated networks involved in sterol and cell wall homeostasis. The response to reoxygenation was rapid (<5 min) and similar in both media, dominated by Yap1 networks involved in oxidative stress/redox regulation and the concomitant activation of heme-regulated ones. Our analyses revealed extensive networks of genes subject to combinatorial regulation by both heme-dependent (e.g., Hap1, Hap2/3/4/5, Rox1, Mot3, and Upc2) and heme-independent (e.g., Yap1, Skn7, and Puf3) factors under these conditions. We also uncover novel functions for several cis-regulatory sites and trans-acting factors and define functional regulons involved in the physiological acclimatization to changes in oxygen availability.
Collapse
Affiliation(s)
- Liang-Chuan Lai
- Department of Molecular and Integrative Physiology, University of Illinois, 524 Burrill Hall, 407 S. Goodwin Ave., Urbana, 61801, USA
| | | | | | | |
Collapse
|
23
|
Su JS, Tsai TF, Chang HM, Chao KM, Su TS, Tsai SF. Distant HNF1 site as a master control for the human class I alcohol dehydrogenase gene expression. J Biol Chem 2006; 281:19809-21. [PMID: 16675441 DOI: 10.1074/jbc.m603638200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene duplication and divergence have contributed to the biochemical diversity of the alcohol dehydrogenase (ADH) family. Class I ADH is the major enzyme that catalyzes alcohol to acetaldehyde in the liver. To investigate the mechanism(s) controlling tissue-specific and temporal regulation of the three human class I ADH genes (ADH1A, ADH1B, and ADH1C), we compared genomic sequences for the human and mouse ADH loci and analyzed human ADH gene expression in BAC transgenic mice carrying different lengths of the upstream sequences of the class I ADH. A conserved noncoding sequence, located between the class I and class IV ADH (ADH7) genes, was found to be essential for directing class I ADH gene expression in fetal and adult livers. Within this region, a 275-bp fragment displaying liver-specific DNase I hypersensitivity was bound by HNF1. The HNF1-containing upstream sequence enhanced all three class I ADH promoters in an orientation-dependent manner, and the transcriptional activation depended on binding to the HNF1 site. Deletion of the conserved HNF1 site in the BAC led to the shutdown of human class I ADH gene expression in the transgenic livers, leaving ADH1C gene expression in the stomach unchanged. Moreover, interaction between the upstream element and the class I ADH gene promoters was demonstrated by chromosome conformation capture, suggesting a DNA looping mechanism is involved in gene activation. Taken together, our data indicate that HNF1 binding, at approximately 51 kb upstream, plays a master role in controlling human class I ADH gene expression and may govern alcohol metabolism in the liver.
Collapse
Affiliation(s)
- Jih-Shyun Su
- Faculty of Life Sciences and Institute of Genetics, National Yang-Ming University, Taipei 112
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Cell-cycle control of transcription seems to be a universal feature of proliferating cells, although relatively little is known about its biological significance and conservation between organisms. The two distantly related yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have provided valuable complementary insight into the regulation of periodic transcription as a function of the cell cycle. More recently, genome-wide studies of proliferating cells have identified hundreds of periodically expressed genes and underlying mechanisms of transcriptional control. This review discusses the regulation of three major transcriptional waves, which roughly coincide with three main cell-cycle transitions (initiation of DNA replication, entry into mitosis, and exit from mitosis). I also compare and contrast the transcriptional regulatory networks between the two yeasts and discuss the evolutionary conservation and possible roles for cell cycle-regulated transcription.
Collapse
Affiliation(s)
- Jürg Bähler
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom.
| |
Collapse
|
25
|
Law GL, Bickel KS, MacKay VL, Morris DR. The undertranslated transcriptome reveals widespread translational silencing by alternative 5' transcript leaders. Genome Biol 2006; 6:R111. [PMID: 16420678 PMCID: PMC1414110 DOI: 10.1186/gb-2005-6-13-r111] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/17/2005] [Accepted: 11/21/2005] [Indexed: 11/21/2022] Open
Abstract
Eight per cent of yeast transcripts, mostly involved in responses to stress or external stimuli, were found to be under-loaded with ribosomes, and most of them exhibited structural changes in their 5’ transcript leaders in response to the environmental signal. Background Translational efficiencies in Saccharomyces cerevisiae vary from transcript to transcript by approximately two orders of magnitude. Many of the poorly translated transcripts were found to respond to the appropriate external stimulus by recruiting ribosomes. Unexpectedly, a high frequency of these transcripts showed the appearance of altered 5' leaders that coincide with increased ribosome loading. Results Of the detectable transcripts in S. cerevisiae, 8% were found to be underloaded with ribosomes. Gene ontology categories of responses to stress or external stimuli were overrepresented in this population of transcripts. Seventeen poorly loaded transcripts involved in responses to pheromone, nitrogen starvation, and osmotic stress were selected for detailed study and were found to respond to the appropriate environmental signal with increased ribosome loading. Twelve of these regulated transcripts exhibited structural changes in their 5' transcript leaders in response to the environmental signal. In many of these the coding region remained intact, whereas regulated shortening of the 5' end truncated the open reading frame in others. Colinearity between the gene and transcript sequences eliminated regulated splicing as a mechanism for these alterations in structure. Conclusion Frequent occurrence of coordinated changes in transcript structure and translation efficiency, in at least three different gene regulatory networks, suggests a widespread phenomenon. It is likely that many of these altered 5' leaders arose from changes in promoter usage. We speculate that production of translationally silenced transcripts may be one mechanism for allowing low-level transcription activity necessary for maintaining an open chromatin structure while not allowing inappropriate protein production.
Collapse
Affiliation(s)
- G Lynn Law
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kellie S Bickel
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Vivian L MacKay
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David R Morris
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Li L, Quinton T, Miles S, Breeden LL. Genetic interactions between mediator and the late G1-specific transcription factor Swi6 in Saccharomyces cerevisiae. Genetics 2005; 171:477-88. [PMID: 15998722 PMCID: PMC1456765 DOI: 10.1534/genetics.105.043893] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Swi6 associates with Swi4 to activate HO and many other late G(1)-specific transcripts in budding yeast. Genetic screens for suppressors of SWI6 mutants have been carried out. A total of 112 of these mutants have been identified and most fall into seven complementation groups. Six of these genes have been cloned and identified and they all encode subunits of the mediator complex. These mutants restore transcription to the HO-lacZ reporter in the absence of Swi6 and have variable effects on other Swi6 target genes. Deletions of other nonessential mediator components have been tested directly for suppression of, or genetic interaction with, swi6. Mutations in half of the known subunits of mediator show suppression and/or growth defects in combination with swi6. These phenotypes are highly variable and do not correlate with a specific module of the mediator. Mutations in tail module components sin4 and pgd1 showed both growth defects and suppression when combined with swi6, but a third tail component, gal11, showed neither. A truncated form of the essential Srb7 mediator subunit also suppresses swi6 mutations and shows a defect in recruitment of the tail module components Sin4, Pgd1, and Gal11 to the mediator complex.
Collapse
Affiliation(s)
- Lihong Li
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | |
Collapse
|
27
|
Zhang LV, King OD, Wong SL, Goldberg DS, Tong AHY, Lesage G, Andrews B, Bussey H, Boone C, Roth FP. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J Biol 2005; 4:6. [PMID: 15982408 PMCID: PMC1175995 DOI: 10.1186/jbiol23] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 02/21/2005] [Accepted: 04/08/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Large-scale studies have revealed networks of various biological interaction types, such as protein-protein interaction, genetic interaction, transcriptional regulation, sequence homology, and expression correlation. Recurring patterns of interconnection, or 'network motifs', have revealed biological insights for networks containing either one or two types of interaction. RESULTS To study more complex relationships involving multiple biological interaction types, we assembled an integrated Saccharomyces cerevisiae network in which nodes represent genes (or their protein products) and differently colored links represent the aforementioned five biological interaction types. We examined three- and four-node interconnection patterns containing multiple interaction types and found many enriched multi-color network motifs. Furthermore, we showed that most of the motifs form 'network themes' -- classes of higher-order recurring interconnection patterns that encompass multiple occurrences of network motifs. Network themes can be tied to specific biological phenomena and may represent more fundamental network design principles. Examples of network themes include a pair of protein complexes with many inter-complex genetic interactions -- the 'compensatory complexes' theme. Thematic maps -- networks rendered in terms of such themes -- can simplify an otherwise confusing tangle of biological relationships. We show this by mapping the S. cerevisiae network in terms of two specific network themes. CONCLUSION Significantly enriched motifs in an integrated S. cerevisiae interaction network are often signatures of network themes, higher-order network structures that correspond to biological phenomena. Representing networks in terms of network themes provides a useful simplification of complex biological relationships.
Collapse
Affiliation(s)
- Lan V Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| | - Oliver D King
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| | - Sharyl L Wong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| | - Debra S Goldberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| | - Amy HY Tong
- Banting and Best Department of Medical Research and Department of Medical Genetics and Microbiology, University of Toronto, Toronto ON M5G 1L6, Canada
| | - Guillaume Lesage
- Department of Biology, McGill University, Montreal PQ H3A 1B1, Canada
| | - Brenda Andrews
- Banting and Best Department of Medical Research and Department of Medical Genetics and Microbiology, University of Toronto, Toronto ON M5G 1L6, Canada
| | - Howard Bussey
- Department of Biology, McGill University, Montreal PQ H3A 1B1, Canada
| | - Charles Boone
- Banting and Best Department of Medical Research and Department of Medical Genetics and Microbiology, University of Toronto, Toronto ON M5G 1L6, Canada
| | - Frederick P Roth
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
28
|
Tomishige N, Noda Y, Adachi H, Shimoi H, Yoda K. SKG1, a suppressor gene of synthetic lethality ofkex2?gas1? mutations, encodes a novel membrane protein that affects cell wall composition. Yeast 2005; 22:141-55. [PMID: 15645486 DOI: 10.1002/yea.1206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The fungal GAS1-related genes encode GPI-anchored beta-1,3-glucanosyltransferase, and their loss causes a defect in the assembly of the cell wall. The KEX2 gene encodes a processing protease in the late Golgi compartment and its loss also results in defects in the cell wall. Simultaneous mutations of these genes are lethal in Saccharomyces cerevisiae. To understand the basis of this synthetic lethality, we screened for multicopy suppressors and identified 13 SKG (suppressor of kex2 gas1 synthetic lethality) genes. SKG1 encodes a transmembrane protein that localizes on the inner surface of the plasma membrane at the bud and in the daughter cell. The multicopy SKG1 increases the sensitivity of cells to zymolyase, and the skg1Delta null mutation increases resistance to it. This zymolyase susceptibility corresponds to an increase of alkali-soluble beta-1,3-glucan and a decrease of chitin in the cell wall. Thus SKG1 encodes a novel protein that affects the cell wall polymer composition in the growing region of the cell.
Collapse
Affiliation(s)
- Nario Tomishige
- Department of Biotechnology, University of Tokyo, Bunkyo-Ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
29
|
Abstract
Cooperativity between transcription factors is critical to gene regulation. Current computational methods do not take adequate account of this salient aspect. To address this issue, we present a computational method based on multivariate adaptive regression splines to correlate the occurrences of transcription factor binding motifs in the promoter DNA and their interactions to the logarithm of the ratio of gene expression levels. This allows us to discover both the individual motifs and synergistic pairs of motifs that are most likely to be functional, and enumerate their relative contributions at any arbitrary time point for which mRNA expression data are available. We present results of simulations and focus specifically on the yeast cell-cycle data. Inclusion of synergistic interactions can increase the prediction accuracy over linear regression to as much as 1.5- to 3.5-fold. Significant motifs and combinations of motifs are appropriately predicted at each stage of the cell cycle. We believe our multivariate adaptive regression splines-based approach will become more significant when applied to higher eukaryotes, especially mammals, where cooperative control of gene regulation is absolutely essential.
Collapse
Affiliation(s)
- Debopriya Das
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
30
|
Messenguy F, Dubois E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 2003; 316:1-21. [PMID: 14563547 DOI: 10.1016/s0378-1119(03)00747-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In all organisms, correct development, growth and function depends on the precise and integrated control of the expression of their genes. Often, gene regulation depends upon the cooperative binding of proteins to DNA and upon protein-protein interactions. Eukaryotes have widely exploited combinatorial strategies to create gene regulatory networks. MADS box proteins constitute the perfect example of cellular coordinators. These proteins belong to a large family of transcription factors present in most eukaryotic organisms and are involved in diverse and important biological functions. MADS box proteins are combinatorial transcription factors in that they often derive their regulatory specificity from other DNA binding or accessory factors. This review is aimed at analyzing how MADS box proteins combine with a variety of cofactors to achieve functional diversity.
Collapse
Affiliation(s)
- Francine Messenguy
- Institut de Recherches Microbiologiques J-M Wiame, Université Libre de Bruxelles, Avenue Emile Gryzon 1, 1070 Brussels, Belgium.
| | | |
Collapse
|
31
|
Laabs TL, Markwardt DD, Slattery MG, Newcomb LL, Stillman DJ, Heideman W. ACE2 is required for daughter cell-specific G1 delay in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2003; 100:10275-80. [PMID: 12937340 PMCID: PMC193551 DOI: 10.1073/pnas.1833999100] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae cells reproduce by budding to yield a mother cell and a smaller daughter cell. Although both mother and daughter begin G1 simultaneously, the mother cell progresses through G1 more rapidly. Daughter cell G1 delay has long been thought to be due to a requirement for attaining a certain critical cell size before passing the commitment point in the cell cycle known as START. We present an alternative model in which the daughter cell-specific Ace2 transcription factor delays G1 in daughter cells. Deletion of ACE2 produces daughter cells that proceed through G1 at the same rate as mother cells, whereas a mutant Ace2 protein that is not restricted to daughter cells delays G1 equally in both mothers and daughters. The differential in G1 length between mothers and daughters requires the Cln3 G1 cyclin, and CLN3-GFP reporter expression is reduced in daughters in an ACE2-dependent manner. Specific daughter delay elements in the CLN3 promoter are required for normal daughter G1 delay, and these elements bind to an unidentified 127-kDa protein. This DNA-binding activity is enhanced by deletion of ACE2. These results support a model in which daughter cell G1 delay is determined not by cell size but by an intrinsic property of the daughter cell generated by asymmetric cell division.
Collapse
Affiliation(s)
- Tracy L Laabs
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|
32
|
Van Slyke C, Grayhack EJ. The essential transcription factor Reb1p interacts with the CLB2 UAS outside of the G2/M control region. Nucleic Acids Res 2003; 31:4597-607. [PMID: 12888520 PMCID: PMC169905 DOI: 10.1093/nar/gkg638] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regulation of CLB2 is important both for completion of the normal vegetative cell cycle in Saccharomyces cerevisiae and for departure from the vegetative cell cycle upon nitrogen deprivation. Cell cycle-regulated transcription of CLB2 in the G2/M phase is known to be brought about by a set of proteins including Mcm1p, Fkh2/1p and Ndd1p that associate with a 35 bp G2/M-specific sequence common to a set of co-regulated genes. CLB2 transcription is regulated by additional signals, including by nitrogen levels, by positive feedback from the Clb2-Cdc28 kinase, and by osmotic stress, but the corresponding regulatory sequences and proteins have not been identified. We have found that the essential Reb1 transcription factor binds with high affinity to a sequence upstream of CLB2, within a region implicated previously by others in regulated expression, but upstream of the known G2/M-specific site. CLB2 sequence from the region around the Reb1p site blocks activation by the Gal4 protein when positioned downstream of the Gal4-binding site. Since a mutation in the Reb1p site abrogates this effect, we suggest that Reb1p is likely to occupy this site in vivo.
Collapse
Affiliation(s)
- Ceri Van Slyke
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
33
|
Fitch MJ, Donato JJ, Tye BK. Mcm7, a subunit of the presumptive MCM helicase, modulates its own expression in conjunction with Mcm1. J Biol Chem 2003; 278:25408-16. [PMID: 12738768 DOI: 10.1074/jbc.m300699200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae Mcm7 protein is a subunit of the presumed heteromeric MCM helicase that melts origin DNA and unwinds replication forks. Previous work showed that Mcm1 binds constitutively to the MCM7 promoter and regulates MCM7 expression. Here, we identify Mcm7 as a novel cofactor of Mcm1 in the regulation of MCM7 expression. Transcription of MCM7 is increased in the mcm7-1 mutant and decreased in the mcm1-1 mutant, suggesting that Mcm7 modulates its own expression in conjunction with Mcm1. Indeed, Mcm7 stimulates Mcm1 binding to the early cell cycle box upstream of the promoters of MCM7 as well as CDC6 and MCM5. Whereas Mcm1 binds these promoters constitutively, Mcm7 is recruited during late M phase, consistent with Mcm7 playing a direct role in modulating the periodic expression of early cell cycle genes. The multiple roles of Mcm7 in replication initiation, replication elongation, and autoregulation parallel those of the oncoprotein, the large T-antigen of the SV40 virus.
Collapse
Affiliation(s)
- Michael J Fitch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | |
Collapse
|
34
|
Chang VK, Fitch MJ, Donato JJ, Christensen TW, Merchant AM, Tye BK. Mcm1 binds replication origins. J Biol Chem 2003; 278:6093-100. [PMID: 12473677 DOI: 10.1074/jbc.m209827200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mcm1 is an essential protein required for the efficient replication of minichromosomes and the transcriptional regulation of early cell cycle genes in Saccharomyces cerevisiae. In this study, we report that Mcm1 is an abundant protein that associates globally with chromatin in a punctate pattern. We show that Mcm1 is localized at replication origins and plays an important role in the initiation of DNA synthesis at a chromosomal replication origin in vivo. Using purified Mcm1 protein, we show that Mcm1 binds cooperatively to multiple sites at autonomously replicating sequences. These results suggest that, in addition to its role as a transcription factor for the expression of replication genes, Mcm1 may influence the local structure of replication origins by direct binding.
Collapse
Affiliation(s)
- Victoria K Chang
- Department of Chemistry, Drew University, Madison, New Jersey 07940, USA
| | | | | | | | | | | |
Collapse
|
35
|
Rottmann M, Dieter S, Brunner H, Rupp S. A screen in Saccharomyces cerevisiae identified CaMCM1, an essential gene in Candida albicans crucial for morphogenesis. Mol Microbiol 2003; 47:943-59. [PMID: 12581351 DOI: 10.1046/j.1365-2958.2003.03358.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphogenesis in Saccharomyces cerevisiae and the pathogenic yeast Candida albicans is governed in part by the same molecular circuits. In S. cerevisiae, FLO11/MUC1 expression has been shown to be modulated by multiple signalling pathways required for pseudohyphal development. We have established a screen in S. cerevisiae to identify regulators of fungal development in C. albicans based on FLO11::lacZ expression as a reporter. This screen identified both known components of the mitogen-activated protein kinase (MAPK) cascade and the cAMP cascade that are important for hyphal development in C. albicans, as well as genes not yet known to be involved in morphogenesis. The Candida homologue of MCM1 is one of the novel factors identified in this screen as being important for morphogenesis. CaMcm1p levels do not vary significantly in different cell types and respond to an autoregulatory feedback mechanism, arguing that CaMcm1p activity is regulated by post-translational modifications. Both overexpression and repression of this essential gene led to the induction of hyphae. Moreover, we found that the expression of HWP1, a hyphae-specific gene, was induced by repression of CaMCM1. The changes in morphology and HWP1 expression were not the result of a change in expression levels of NRG1 or TUP1, known repressors of hyphal development. Thus, CaMcm1p is a component of a hitherto unknown regulatory mechanism of hyphal growth.
Collapse
Affiliation(s)
- M Rottmann
- Fraunhofer IGB, Nobelstr. 12, 70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
36
|
Pramila T, Miles S, GuhaThakurta D, Jemiolo D, Breeden LL. Conserved homeodomain proteins interact with MADS box protein Mcm1 to restrict ECB-dependent transcription to the M/G1 phase of the cell cycle. Genes Dev 2002; 16:3034-45. [PMID: 12464633 PMCID: PMC187489 DOI: 10.1101/gad.1034302] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2002] [Accepted: 10/09/2002] [Indexed: 01/28/2023]
Abstract
Two homeodomain proteins, Yox1 and Yhp1, act as repressors at early cell cycle boxes (ECBs) to restrict their activity to the M/G1 phase of the cell cycle in budding yeast. These proteins bind to Mcm1 and to a typical homeodomain binding site. The expression of Yox1 is periodic and directly correlated with its binding to, and repression of, ECB activity. The absence of Yox1 and Yhp1 or the constitutive expression of Yox1 leads to the loss of cell-cycle regulation of ECB activity. Therefore, the cell-cycle-regulated expression of these repressors defines the interval of ECB-dependent transcription. Twenty-eight genes, including MCM2-7, CDC6, SWI4, CLN3, and a number of genes required during late M phase have been identified that are coordinately regulated by this pathway.
Collapse
Affiliation(s)
- Tata Pramila
- Fred Hutchinson Cancer Research Center, Basic Sciences Division, Seattle, Washington 98109-1024, USA
| | | | | | | | | |
Collapse
|
37
|
Sudarsanam P, Pilpel Y, Church GM. Genome-wide co-occurrence of promoter elements reveals a cis-regulatory cassette of rRNA transcription motifs in Saccharomyces cerevisiae. Genome Res 2002; 12:1723-31. [PMID: 12421759 PMCID: PMC187556 DOI: 10.1101/gr.301202] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Accepted: 09/10/2002] [Indexed: 11/25/2022]
Abstract
Combinatorial regulation is an important feature of eukaryotic transcription. However, only a limited number of studies have characterized this aspect on a whole-genome level. We have conducted a genome-wide computational survey to identify cis-regulatory motif pairs that co-occur in a significantly high number of promoters in the S. cerevisiae genome. A pair of novel motifs, mRRPE and PAC, co-occur most highly in the genome, primarily in the promoters of genes involved in rRNA transcription and processing. The two motifs show significant positional and orientational bias with mRRPE being closer to the ATG than PAC in most promoters. Two additional rRNA-related motifs, mRRSE3 and mRRSE10, also co-occur with mRRPE and PAC. mRRPE and PAC are the primary determinants of expression profiles while mRRSE3 and mRRSE10 modulate these patterns. We describe a new computational approach for studying the functional significance of the physical locations of promoter elements that combine analyses of genome sequence and microarray data. Applying this methodology to the regulatory cassette containing the four rRNA motifs demonstrates that the relative promoter locations of these elements have a profound effect on the expression patterns of the downstream genes. These findings provide a function for these novel motifs and insight into the mechanism by which they regulate gene expression. The methodology introduced here should prove particularly useful for analyzing transcriptional regulation in more complex genomes.
Collapse
Affiliation(s)
- Priya Sudarsanam
- Department of Genetics and Lipper Center for Computational Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|