1
|
Wang YR, Chang SM, Lin JJ, Chen HC, Lee LT, Tsai DY, Lee SD, Lan CY, Chang CR, Chen CF, Ng CS. A comprehensive study of Z-DNA density and its evolutionary implications in birds. BMC Genomics 2024; 25:1123. [PMID: 39573987 PMCID: PMC11580473 DOI: 10.1186/s12864-024-11039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Z-DNA, a left-handed helical form of DNA, plays a significant role in genomic stability and gene regulation. Its formation, associated with high GC content and repetitive sequences, is linked to genomic instability, potentially leading to large-scale deletions and contributing to phenotypic diversity and evolutionary adaptation. RESULTS In this study, we analyzed the density of Z-DNA-prone motifs of 154 avian genomes using the non-B DNA Motif Search Tool (nBMST). Our findings indicate a higher prevalence of Z-DNA motifs in promoter regions across all avian species compared to other genomic regions. A negative correlation was observed between Z-DNA density and developmental time in birds, suggesting that species with shorter developmental periods tend to have higher Z-DNA densities. This relationship implies that Z-DNA may influence the timing and regulation of development in avian species. Furthermore, Z-DNA density showed associations with traits such as body mass, egg mass, and genome size, highlighting the complex interactions between genome architecture and phenotypic characteristics. Gene Ontology (GO) analysis revealed that Z-DNA motifs are enriched in genes involved in nucleic acid binding, kinase activity, and translation regulation, suggesting a role in fine-tuning gene expression essential for cellular functions and responses to environmental changes. Additionally, the potential of Z-DNA to drive genomic instability and facilitate adaptive evolution underscores its importance in shaping phenotypic diversity. CONCLUSIONS This study emphasizes the role of Z-DNA as a dynamic genomic element contributing to gene regulation, genomic stability, and phenotypic diversity in avian species. Future research should experimentally validate these associations and explore the molecular mechanisms by which Z-DNA influences avian biology.
Collapse
Affiliation(s)
- Yu-Ren Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shao-Ming Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jinn-Jy Lin
- National Center for High-performance Computing, National Applied Research Laboratories, Hsinchu, 300092, Taiwan
| | - Hsiao-Chian Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Marine Research Station, Academia Sinica, Yilan, 262204, Taiwan
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Lo-Tung Lee
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Dien-Yu Tsai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shih-Da Lee
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chuang-Rung Chang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, 300044, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chih-Feng Chen
- Deparment of Animal Sciences, National Chung Hsing University, Taichung, 402202, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Chen Siang Ng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300044, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu, 300044, Taiwan.
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402202, Taiwan.
- Bioresource Conservation Research Center, National Tsing Hua University, Hsinchu, 300044, Taiwan.
| |
Collapse
|
2
|
Papp D, Hernandez LA, Mai TA, Haanen TJ, O’Donnell MA, Duran AT, Hernandez SM, Narvanto JE, Arguello B, Onwukwe MO, Mirkin SM, Kim JC. Massive contractions of myotonic dystrophy type 2-associated CCTG tetranucleotide repeats occur via double-strand break repair with distinct requirements for DNA helicases. G3 (BETHESDA, MD.) 2024; 14:jkad257. [PMID: 37950892 PMCID: PMC10849350 DOI: 10.1093/g3journal/jkad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/06/2023] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
Myotonic dystrophy type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75 to 11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables the selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are involved in these massive contractions, indicating a mechanism that uses homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a short-track control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.
Collapse
Affiliation(s)
- David Papp
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Luis A Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Theresa A Mai
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Terrance J Haanen
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Meghan A O’Donnell
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Ariel T Duran
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Sophia M Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Jenni E Narvanto
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Berenice Arguello
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Marvin O Onwukwe
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Jane C Kim
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA
| |
Collapse
|
3
|
Papp D, Hernandez LA, Mai TA, Haanen TJ, O'Donnell MA, Duran AT, Hernandez SM, Narvanto JE, Arguello B, Onwukwe MO, Kolar K, Mirkin SM, Kim JC. Massive contractions of Myotonic Dystrophy Type 2-associated CCTG tetranucleotide repeats occur via double strand break repair with distinct requirements for helicases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548036. [PMID: 37461657 PMCID: PMC10350092 DOI: 10.1101/2023.07.06.548036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Myotonic Dystrophy Type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75-11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are required for these massive contractions, indicating a mechanism that involves homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a low-repeat control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.
Collapse
Affiliation(s)
- David Papp
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Luis A Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Theresa A Mai
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Terrance J Haanen
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Meghan A O'Donnell
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Ariel T Duran
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Sophia M Hernandez
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Jenni E Narvanto
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Berenice Arguello
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Marvin O Onwukwe
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
- Department of Biology, Tufts University, Medford, MA 02155
| | - Kara Kolar
- Department of Biology, Tufts University, Medford, MA 02155
| | | | - Jane C Kim
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078
| |
Collapse
|
4
|
Brown RE, Su XA, Fair S, Wu K, Verra L, Jong R, Andrykovich K, Freudenreich CH. The RNA export and RNA decay complexes THO and TRAMP prevent transcription-replication conflicts, DNA breaks, and CAG repeat contractions. PLoS Biol 2022; 20:e3001940. [PMID: 36574440 PMCID: PMC9829180 DOI: 10.1371/journal.pbio.3001940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/09/2023] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
Expansion of structure-forming CAG/CTG repetitive sequences is the cause of several neurodegenerative disorders and deletion of repeats is a potential therapeutic strategy. Transcription-associated mechanisms are known to cause CAG repeat instability. In this study, we discovered that Thp2, an RNA export factor and member of the THO (suppressors of transcriptional defects of hpr1Δ by overexpression) complex, and Trf4, a key component of the TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex involved in nuclear RNA polyadenylation and degradation, are necessary to prevent CAG fragility and repeat contractions in a Saccharomyces cerevisiae model system. Depletion of both Thp2 and Trf4 proteins causes a highly synergistic increase in CAG repeat fragility, indicating a complementary role of the THO and TRAMP complexes in preventing genome instability. Loss of either Thp2 or Trf4 causes an increase in RNA polymerase stalling at the CAG repeats and other genomic loci, as well as genome-wide transcription-replication conflicts (TRCs), implicating TRCs as a cause of CAG fragility and instability in their absence. Analysis of the effect of RNase H1 overexpression on CAG fragility, RNAPII stalling, and TRCs suggests that RNAPII stalling with associated R-loops are the main cause of CAG fragility in the thp2Δ mutants. In contrast, CAG fragility and TRCs in the trf4Δ mutant can be compensated for by RPA overexpression, suggesting that excess unprocessed RNA in TRAMP4 mutants leads to reduced RPA availability and high levels of TRCs. Our results show the importance of RNA surveillance pathways in preventing RNAPII stalling, TRCs, and DNA breaks, and show that RNA export and RNA decay factors work collaboratively to maintain genome stability.
Collapse
Affiliation(s)
- Rebecca E. Brown
- Program in Genetics, Tufts University School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
| | - Xiaofeng A. Su
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stacey Fair
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Katherine Wu
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Lauren Verra
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Robyn Jong
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Kristin Andrykovich
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Catherine H. Freudenreich
- Program in Genetics, Tufts University School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Cho IK, Easley CA, Chan AWS. Suppression of trinucleotide repeat expansion in spermatogenic cells in Huntington's disease. J Assist Reprod Genet 2022; 39:2413-2430. [PMID: 36066723 PMCID: PMC9596677 DOI: 10.1007/s10815-022-02594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Trinucleotide repeats (TNRs) are dispersed throughout the human genome. About 20 loci are related to human diseases, such as Huntington's disease (HD). A larger TNR instability is predominantly observed in the paternal germ cells in some TNR disorders. Suppressing the expansion during spermatogenesis can provide a unique opportunity to end the vicious cycle of genetic anticipation. Here, using an in vitro differentiation method to derive advanced spermatogenic cells, we investigated the efficacy of two therapeutic agents, araC (cytarabine) and aspirin, on stabilizing TNRs in spermatogenic cells. Two WT patient-derived induced pluripotent stem cell (iPSC) lines and two HD hiPSC lines, with 44 Q and 180 Q, were differentiated into spermatogonial stem cell-like cells (SSCLCs). Both HD cell lines showed CAG tract expansion in SSCLC. When treated with araC and aspirin, HD1 showed moderate but not statistically significant stabilization of TNR. In HD2, 10 nM of aspirin and araC showed significant stabilization of TNR. All cell lines showed increased DNA damage response (DDR) gene expression in SSCLCs while more genes were significantly induced in HD SSCLC. In HD1, araC and aspirin treatment showed general suppression of DNA damage response genes. In HD2, only FAN1, OGG1, and PCNA showed significant suppression. When the methylation profile of HD cells was analyzed, FAN1 and OGG1 showed significant hypermethylation after the aspirin and araC treatment in SSCLC compared to the control. This study underscores the utility of our in vitro spermatogenesis model to study and develop therapies for TNR disorders such as HD.
Collapse
Affiliation(s)
- In K Cho
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Environmental Health Sciences, College of Public Health, University of Georgia, Athens, GA, USA.
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
- Environmental Health Science and Regenerative Bioscience Center, College of Public Health, University of Georgia, Edgar L. Rhodes Center for Animal and Dairy Science RM 432, 425 River Rd, Athens, GA, 30602, USA.
| | - Charles A Easley
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Environmental Health Sciences, College of Public Health, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Anthony W S Chan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Center of Scientific Review (CSR), National Institutes of Health, Bethesda, USA
| |
Collapse
|
6
|
3D Genome Organization: Causes and Consequences for DNA Damage and Repair. Genes (Basel) 2021; 13:genes13010007. [PMID: 35052348 PMCID: PMC8775012 DOI: 10.3390/genes13010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 01/02/2023] Open
Abstract
The inability to repair damaged DNA severely compromises the integrity of any organism. In eukaryotes, the DNA damage response (DDR) operates within chromatin, a tightly organized DNA–histone complex in a non-random manner within the nucleus. Chromatin thus orchestrates various cellular processes, including repair. Here, we examine the chromatin landscape before, during, and after the DNA damage, focusing on double strand breaks (DSBs). We study how chromatin is modified during the repair process, not only around the damaged region (in cis), but also genome-wide (in trans). Recent evidence has highlighted a complex landscape in which different chromatin parameters (stiffness, compaction, loops) are transiently modified, defining “codes” for each specific stage of the DDR. We illustrate a novel aspect of DDR where chromatin modifications contribute to the movement of DSB-damaged chromatin, as well as undamaged chromatin, ensuring the mobilization of DSBs, their clustering, and their repair processes.
Collapse
|
7
|
Gold MA, Whalen JM, Freon K, Hong Z, Iraqui I, Lambert SAE, Freudenreich CH. Restarted replication forks are error-prone and cause CAG repeat expansions and contractions. PLoS Genet 2021; 17:e1009863. [PMID: 34673780 PMCID: PMC8562783 DOI: 10.1371/journal.pgen.1009863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/02/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
Disease-associated trinucleotide repeats form secondary DNA structures that interfere with replication and repair. Replication has been implicated as a mechanism that can cause repeat expansions and contractions. However, because structure-forming repeats are also replication barriers, it has been unclear whether the instability occurs due to slippage during normal replication progression through the repeat, slippage or misalignment at a replication stall caused by the repeat, or during subsequent replication of the repeat by a restarted fork that has altered properties. In this study, we have specifically addressed the fidelity of a restarted fork as it replicates through a CAG/CTG repeat tract and its effect on repeat instability. To do this, we used a well-characterized site-specific replication fork barrier (RFB) system in fission yeast that creates an inducible and highly efficient stall that is known to restart by recombination-dependent replication (RDR), in combination with long CAG repeat tracts inserted at various distances and orientations with respect to the RFB. We find that replication by the restarted fork exhibits low fidelity through repeat sequences placed 2-7 kb from the RFB, exhibiting elevated levels of Rad52- and Rad8ScRad5/HsHLTF-dependent instability. CAG expansions and contractions are not elevated to the same degree when the tract is just in front or behind the barrier, suggesting that the long-traveling Polδ-Polδ restarted fork, rather than fork reversal or initial D-loop synthesis through the repeat during stalling and restart, is the greatest source of repeat instability. The switch in replication direction that occurs due to replication from a converging fork while the stalled fork is held at the barrier is also a significant contributor to the repeat instability profile. Our results shed light on a long-standing question of how fork stalling and RDR contribute to expansions and contractions of structure-forming trinucleotide repeats, and reveal that tolerance to replication stress by fork restart comes at the cost of increased instability of repetitive sequences.
Collapse
Affiliation(s)
- Michaela A. Gold
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Jenna M. Whalen
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Karine Freon
- Institut Curie, Université PSL, Orsay, France
- Université Paris-Saclay, Orsay, France
| | - Zixin Hong
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Ismail Iraqui
- Institut Curie, Université PSL, Orsay, France
- Université Paris-Saclay, Orsay, France
| | - Sarah A. E. Lambert
- Institut Curie, Université PSL, Orsay, France
- Université Paris-Saclay, Orsay, France
- Equipes Labélisées Ligue Nationale Contre Le Cancer, Orsay, France
| | | |
Collapse
|
8
|
Whalen JM, Dhingra N, Wei L, Zhao X, Freudenreich CH. Relocation of Collapsed Forks to the Nuclear Pore Complex Depends on Sumoylation of DNA Repair Proteins and Permits Rad51 Association. Cell Rep 2021; 31:107635. [PMID: 32402281 DOI: 10.1016/j.celrep.2020.107635] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/07/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022] Open
Abstract
Expanded CAG repeats form stem-loop secondary structures that lead to fork stalling and collapse. Previous work has shown that these collapsed forks relocalize to nuclear pore complexes (NPCs) in late S phase in a manner dependent on replication, the nucleoporin Nup84, and the Slx5 protein, which prevents repeat fragility and instability. Here, we show that binding of the Smc5/6 complex to the collapsed fork triggers Mms21-dependent sumoylation of fork-associated DNA repair proteins, and that RPA, Rad52, and Rad59 are the key sumoylation targets that mediate relocation. The SUMO interacting motifs of Slx5 target collapsed forks to the NPC. Notably, Rad51 foci only co-localize with the repeat after it is anchored to the nuclear periphery and Rad51 exclusion from the early collapsed fork is dependent on RPA sumoylation. This pathway may provide a mechanism to constrain recombination at stalled or collapsed forks until it is required for fork restart.
Collapse
Affiliation(s)
- Jenna M Whalen
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Nalini Dhingra
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lei Wei
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, MA 02155, USA; Program in Genetics, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
9
|
Deshmukh AL, Porro A, Mohiuddin M, Lanni S, Panigrahi GB, Caron MC, Masson JY, Sartori AA, Pearson CE. FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders. J Huntingtons Dis 2021; 10:95-122. [PMID: 33579867 PMCID: PMC7990447 DOI: 10.3233/jhd-200448] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion diseases (Huntington's disease (HD) and certain spinocerebellar ataxias), modification of age of onset is linked to variants of specific DNA repair proteins. FAN1 variants are the strongest modifiers. Non-coding disease-delaying FAN1 variants and coding disease-hastening variants (p.R507H and p.R377W) are known, where the former may lead to increased FAN1 levels and the latter have unknown effects upon FAN1 functions. Current thoughts are that ongoing repeat expansions in disease-vulnerable tissues, as individuals age, promote disease onset. Fan1 is required to suppress against high levels of ongoing somatic CAG and CGG repeat expansions in tissues of HD and FMR1 transgenic mice respectively, in addition to participating in DNA interstrand crosslink repair. FAN1 is also a modifier of autism, schizophrenia, and epilepsy. Coupled with the association of these diseases with repeat expansions, this suggests a common mechanism, by which FAN1 modifies repeat diseases. Yet how any of the FAN1 variants modify disease is unknown. Here, we review FAN1 variants, associated clinical effects, protein structure, and the enzyme's attributed functional roles. We highlight how variants may alter its activities in DNA damage response and/or repeat instability. A thorough awareness of the FAN1 gene and FAN1 protein functions will reveal if and how it may be targeted for clinical benefit.
Collapse
Affiliation(s)
- Amit L. Deshmukh
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Antonio Porro
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mohiuddin Mohiuddin
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Gagan B. Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Marie-Christine Caron
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | - Jean-Yves Masson
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, Quebec, Canada
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, Quebec, Canada
| | | | - Christopher E. Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- University of Toronto, Program of Molecular Genetics, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Nakamori M, Mochizuki H. Targeting Expanded Repeats by Small Molecules in Repeat Expansion Disorders. Mov Disord 2020; 36:298-305. [DOI: 10.1002/mds.28397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| | - Hideki Mochizuki
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
11
|
Kaushal S, Wollmuth CE, Das K, Hile SE, Regan SB, Barnes RP, Haouzi A, Lee SM, House NCM, Guyumdzhyan M, Eckert KA, Freudenreich CH. Sequence and Nuclease Requirements for Breakage and Healing of a Structure-Forming (AT)n Sequence within Fragile Site FRA16D. Cell Rep 2020; 27:1151-1164.e5. [PMID: 31018130 DOI: 10.1016/j.celrep.2019.03.103] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 01/20/2023] Open
Abstract
Common fragile sites (CFSs) are genomic regions that display gaps and breaks in human metaphase chromosomes under replication stress and are often deleted in cancer cells. We studied an ∼300-bp subregion (Flex1) of human CFS FRA16D in yeast and found that it recapitulates characteristics of CFS fragility in human cells. Flex1 fragility is dependent on the ability of a variable-length AT repeat to form a cruciform structure that stalls replication. Fragility at Flex1 is initiated by structure-specific endonuclease Mus81-Mms4 acting together with the Slx1-4/Rad1-10 complex, whereas Yen1 protects Flex1 against breakage. Sae2 is required for healing of Flex1 after breakage. Our study shows that breakage within a CFS can be initiated by nuclease cleavage at forks stalled at DNA structures. Furthermore, our results suggest that CFSs are not just prone to breakage but also are impaired in their ability to heal, and this deleterious combination accounts for their fragility.
Collapse
Affiliation(s)
- Simran Kaushal
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Charles E Wollmuth
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Kohal Das
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Suzanne E Hile
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Samantha B Regan
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Ryan P Barnes
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Alice Haouzi
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Soo Mi Lee
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Nealia C M House
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Michael Guyumdzhyan
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA
| | - Kristin A Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave., Medford, MA 02155, USA; Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
12
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
13
|
Nakamori M, Panigrahi GB, Lanni S, Gall-Duncan T, Hayakawa H, Tanaka H, Luo J, Otabe T, Li J, Sakata A, Caron MC, Joshi N, Prasolava T, Chiang K, Masson JY, Wold MS, Wang X, Lee MYWT, Huddleston J, Munson KM, Davidson S, Layeghifard M, Edward LM, Gallon R, Santibanez-Koref M, Murata A, Takahashi MP, Eichler EE, Shlien A, Nakatani K, Mochizuki H, Pearson CE. A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo. Nat Genet 2020; 52:146-159. [PMID: 32060489 PMCID: PMC7043212 DOI: 10.1038/s41588-019-0575-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/19/2019] [Indexed: 01/07/2023]
Abstract
In many repeat diseases, such as Huntington's disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSβ. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Gagan B Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Terence Gall-Duncan
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hideki Hayakawa
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hana Tanaka
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jennifer Luo
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Takahiro Otabe
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Jinxing Li
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Akihiro Sakata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Quebec, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec, Quebec, Canada
| | - Niraj Joshi
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Quebec, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec, Quebec, Canada
| | - Tanya Prasolava
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Karen Chiang
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Quebec, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec, Quebec, Canada
| | - Marc S Wold
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
| | - John Huddleston
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Scott Davidson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Mehdi Layeghifard
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Lisa-Monique Edward
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Richard Gallon
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Masanori P Takahashi
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Adam Shlien
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada.
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Distinct DNA repair pathways cause genomic instability at alternative DNA structures. Nat Commun 2020; 11:236. [PMID: 31932649 PMCID: PMC6957503 DOI: 10.1038/s41467-019-13878-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
Alternative DNA structure-forming sequences can stimulate mutagenesis and are enriched at mutation hotspots in human cancer genomes, implicating them in disease etiology. However, the mechanisms involved are not well characterized. Here, we discover that Z-DNA is mutagenic in yeast as well as human cells, and that the nucleotide excision repair complex, Rad10-Rad1(ERCC1-XPF), and the mismatch repair complex, Msh2-Msh3, are required for Z-DNA-induced genetic instability in yeast and human cells. Both ERCC1-XPF and MSH2-MSH3 bind to Z-DNA-forming sequences, though ERCC1-XPF recruitment to Z-DNA is dependent on MSH2-MSH3. Moreover, ERCC1-XPF-dependent DNA strand-breaks occur near the Z-DNA-forming region in human cell extracts, and we model these interactions at the sub-molecular level. We propose a relationship in which these complexes recognize and process Z-DNA in eukaryotes, representing a mechanism of Z-DNA-induced genomic instability.
Collapse
|
15
|
Williams GM, Petrides AK, Balakrishnan L, Surtees JA. Tracking Expansions of Stable and Threshold Length Trinucleotide Repeat Tracts In Vivo and In Vitro Using Saccharomyces cerevisiae. Methods Mol Biol 2020; 2056:25-68. [PMID: 31586340 DOI: 10.1007/978-1-4939-9784-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trinucleotide repeat (TNR) tracts are inherently unstable during DNA replication, leading to repeat expansions and/or contractions. Expanded tracts are the cause of over 40 neurodegenerative and neuromuscular diseases. In this chapter, we focus on the (CAG)n and (CTG)n repeat sequences that, when expanded, lead to Huntington's disease (HD) and myotonic dystrophy type 1 (DM1), respectively, as well as a number of other neurodegenerative diseases. TNR tracts in most individuals are relatively small and stable in terms of length. However, TNR tracts become increasingly prone to expansion as tract length increases, eventually leading to very long tracts that disrupt coding (e.g. HD) or noncoding (e.g., DM1) regions of the genome. It is important to understand the early stages in TNR expansions, that is, the transition from small, stable lengths to susceptible threshold lengths. We describe PCR-based in vivo assays, using the model system Saccharomyces cerevisiae, to determine and characterize the dynamic behavior of TNR tracts in the stable and threshold ranges. We also describe a simple in vitro system to assess tract dynamics during 5' single-stranded DNA (ssDNA) flap processing and to assess the role of different DNA metabolism proteins in these dynamics. These assays can ultimately be used to determine factors that influence the early stages of TNR tract expansion.
Collapse
Affiliation(s)
- Gregory M Williams
- Centre for Chromosome Biology, National University of Ireland, Galway, Galway, Ireland
- Galway Neuroscience Centre, National Universityof Ireland, Galway, Galway, Ireland
| | | | - Lata Balakrishnan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jennifer A Surtees
- Department of Biochemistry, JacobsSchool of Medicine and BiomedicalSciences, State University of New York atBuffalo, Buffalo, NY, USA.
- Genetics, Genomics and Bioinformatics Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
16
|
Polleys EJ, Freudenreich CH. Genetic Assays to Study Repeat Fragility in Saccharomyces cerevisiae. Methods Mol Biol 2020; 2056:83-101. [PMID: 31586342 DOI: 10.1007/978-1-4939-9784-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Trinucleotide repeats are common in the human genome and can undergo changes in repeat number and cause length-dependent chromosome fragility. Expanded CAG repeats have been linked to over 14 human diseases and are considered hotspots for breakage and genomic rearrangement. Here we describe two Saccharomyces cerevisiae based assays that evaluate the rate of chromosome breakage that occurs within a repeat tract (fragility), with variations that allow the role of transcription to be evaluated. The first fragility assay utilizes end-loss and subsequent telomere addition as the main mode of repair of a yeast artificial chromosome (YAC). The second fragility assay relies on the fact that a chromosomal break stimulates recombination-mediated repair. A PCR-based assay can be used to evaluate instability of the repeat in the same conditions used to measure repeat fragility. These assays have contributed to understanding the genetic mechanisms that cause chromosome breaks and tract-length changes at unstable trinucleotide repeats.
Collapse
|
17
|
House NC, Polleys EJ, Quasem I, De la Rosa Mejia M, Joyce CE, Takacsi-Nagy O, Krebs JE, Fuchs SM, Freudenreich CH. Distinct roles for S. cerevisiae H2A copies in recombination and repeat stability, with a role for H2A.1 threonine 126. eLife 2019; 8:53362. [PMID: 31804179 PMCID: PMC6927750 DOI: 10.7554/elife.53362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023] Open
Abstract
CAG/CTG trinuncleotide repeats are fragile sequences that when expanded form DNA secondary structures and cause human disease. We evaluated CAG/CTG repeat stability and repair outcomes in histone H2 mutants in S. cerevisiae. Although the two copies of H2A are nearly identical in amino acid sequence, CAG repeat stability depends on H2A copy 1 (H2A.1) but not copy 2 (H2A.2). H2A.1 promotes high-fidelity homologous recombination, sister chromatid recombination (SCR), and break-induced replication whereas H2A.2 does not share these functions. Both decreased SCR and the increase in CAG expansions were due to the unique Thr126 residue in H2A.1 and hta1Δ or hta1-T126A mutants were epistatic to deletion of the Polδ subunit Pol32, suggesting a role for H2A.1 in D-loop extension. We conclude that H2A.1 plays a greater repair-specific role compared to H2A.2 and may be a first step towards evolution of a repair-specific function for H2AX compared to H2A in mammalian cells.
Collapse
Affiliation(s)
- Nealia Cm House
- Department of Biology, Tufts University, Medford, United States
| | - Erica J Polleys
- Department of Biology, Tufts University, Medford, United States
| | | | | | - Cailin E Joyce
- Department of Biology, Tufts University, Medford, United States
| | | | - Jocelyn E Krebs
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, United States
| | - Stephen M Fuchs
- Department of Biology, Tufts University, Medford, United States
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, United States.,Program in Genetics, Graduate School of Biomedical Sciences, Tufts University, Boston, United States
| |
Collapse
|
18
|
Gellon L, Kaushal S, Cebrián J, Lahiri M, Mirkin SM, Freudenreich CH. Mrc1 and Tof1 prevent fragility and instability at long CAG repeats by their fork stabilizing function. Nucleic Acids Res 2019; 47:794-805. [PMID: 30476303 PMCID: PMC6344861 DOI: 10.1093/nar/gky1195] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022] Open
Abstract
Fork stabilization at DNA impediments is key to maintaining replication fork integrity and preventing chromosome breaks. Mrc1 and Tof1 are two known stabilizers that travel with the replication fork. In addition to a structural role, Mrc1 has a DNA damage checkpoint function. Using a yeast model system, we analyzed the role of Mrc1 and Tof1 at expanded CAG repeats of medium and long lengths, which are known to stall replication forks and cause trinucleotide expansion diseases such as Huntington's disease and myotonic dystrophy. We demonstrate that the fork stabilizer but not the checkpoint activation function of Mrc1 is key for preventing DNA breakage and death of cells containing expanded CAG tracts. In contrast, both Mrc1 functions are important in preventing repeat length instability. Mrc1 has a general fork protector role that is evident at forks traversing both repetitive and non-repetitive DNA, though it becomes crucial at long CAG repeat lengths. In contrast, the role of Tof1 in preventing fork breakage is specific to long CAG tracts of 85 or more repeats. Our results indicate that long CAG repeats have a particular need for Tof1 and highlight the importance of fork stabilizers in maintaining fork integrity during replication of structure-forming repeats.
Collapse
Affiliation(s)
- Lionel Gellon
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | - Simran Kaushal
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | - Jorge Cebrián
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | - Mayurika Lahiri
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Suite 4700, 200 Boston Ave, Medford, MA 02155, USA
| | | |
Collapse
|
19
|
Zhao J, Wang G, Del Mundo IM, McKinney JA, Lu X, Bacolla A, Boulware SB, Zhang C, Zhang H, Ren P, Freudenreich CH, Vasquez KM. Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes. Cell Rep 2019; 22:1200-1210. [PMID: 29386108 PMCID: PMC6011834 DOI: 10.1016/j.celrep.2018.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/27/2017] [Accepted: 01/04/2018] [Indexed: 11/18/2022] Open
Abstract
Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases.
Collapse
Affiliation(s)
- Junhua Zhao
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Imee M Del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Jennifer A McKinney
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Xiuli Lu
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Albino Bacolla
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Stephen B Boulware
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA
| | - Changsheng Zhang
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, USA
| | - Haihua Zhang
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX 78712, USA
| | | | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA.
| |
Collapse
|
20
|
Kaushal S, Freudenreich CH. The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer 2019; 58:270-283. [PMID: 30536896 DOI: 10.1002/gcc.22721] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Alternative non-B form DNA structures, also called secondary structures, can form in certain DNA sequences under conditions that produce single-stranded DNA, such as during replication, transcription, and repair. Direct links between secondary structure formation, replication fork stalling, and genomic instability have been found for many repeated DNA sequences that cause disease when they expand. Common fragile sites (CFSs) are known to be AT-rich and break under replication stress, yet the molecular basis for their fragility is still being investigated. Over the past several years, new evidence has linked both the formation of secondary structures and transcription to fork stalling and fragility of CFSs. How these two events may synergize to cause fragility and the role of nuclease cleavage at secondary structures in rare and CFSs are discussed here. We also highlight evidence for a new hypothesis that secondary structures at CFSs not only initiate fragility but also inhibit healing, resulting in their characteristic appearance.
Collapse
Affiliation(s)
- Simran Kaushal
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, Massachusetts.,Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
21
|
Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SAE, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:1-64. [PMID: 30652105 PMCID: PMC6334234 DOI: 10.15698/mic2019.01.664] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L. Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Giedrė Bačinskaja
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jun Che
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Devon M. Fitzgerald
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Belén Gómez-González
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Léa Marie
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Qian Mei
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Judith Miné-Hattab
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France
- Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France
| | - Alicja Piotrowska
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | | | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | | | - Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jun Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Andrés Aguilera
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA USA
- Program in Genetics, Tufts University, Boston, MA, USA
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC USA
| | | | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah AE Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Sang Eun Lee
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Kyle M. Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Zawadzki
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
22
|
Trinucleotide repeat instability during double-strand break repair: from mechanisms to gene therapy. Curr Genet 2018; 65:17-28. [DOI: 10.1007/s00294-018-0865-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/25/2018] [Accepted: 07/01/2018] [Indexed: 12/26/2022]
|
23
|
The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in Saccharomyces cerevisiae. Genetics 2018; 208:963-976. [PMID: 29305386 PMCID: PMC5844344 DOI: 10.1534/genetics.117.300529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/02/2018] [Indexed: 12/23/2022] Open
Abstract
CAG/CTG trinucleotide repeat expansions cause several degenerative neurological and muscular diseases. Koch et al. show that the chromatin remodeling... CAG/CTG trinucleotide repeats are unstable sequences that are difficult to replicate, repair, and transcribe due to their structure-forming nature. CAG repeats strongly position nucleosomes; however, little is known about the chromatin remodeling needed to prevent repeat instability. In a Saccharomyces cerevisiae model system with CAG repeats carried on a YAC, we discovered that the chromatin remodeler Isw1 is required to prevent CAG repeat expansions during transcription. CAG repeat expansions in the absence of Isw1 were dependent on both transcription-coupled repair (TCR) and base-excision repair (BER). Furthermore, isw1∆ mutants are sensitive to methyl methanesulfonate (MMS) and exhibit synergistic MMS sensitivity when combined with BER or TCR pathway mutants. We conclude that CAG expansions in the isw1∆ mutant occur during a transcription-coupled excision repair process that involves both TCR and BER pathways. We observed increased RNA polymerase II (RNAPII) occupancy at the CAG repeat when transcription of the repeat was induced, but RNAPII binding did not change in isw1∆ mutants, ruling out a role for Isw1 remodeling in RNAPII progression. However, nucleosome occupancy over a transcribed CAG tract was altered in isw1∆ mutants. Based on the known role of Isw1 in the reestablishment of nucleosomal spacing after transcription, we suggest that a defect in this function allows DNA structures to form within repetitive DNA tracts, resulting in inappropriate excision repair and repeat-length changes. These results establish a new function for Isw1 in directly maintaining the chromatin structure at the CAG repeat, thereby limiting expansions that can occur during transcription-coupled excision repair.
Collapse
|
24
|
Polleys EJ, Freudenreich CH. Methods to Study Repeat Fragility and Instability in Saccharomyces cerevisiae. Methods Mol Biol 2018; 1672:403-419. [PMID: 29043639 DOI: 10.1007/978-1-4939-7306-4_28] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trinucleotide repeats are common in the human genome and can undergo changes in repeat length. Expanded CAG repeats have been linked to over 14 human diseases and are considered hotspots for breakage and genomic rearrangement. Here, we describe two Saccharomyces cerevisiae based assays that evaluate the rate of chromosome breakage that occurs within a repeat tract (fragility), and a PCR-based assay to evaluate tract length changes (instability). The first fragility assay utilizes end-loss and subsequent telomere addition as the main mode of repair of a yeast artificial chromosome (YAC). The second fragility assay relies on the fact that a chromosomal break stimulates recombination-mediated repair. In addition to understanding the role of fragility at repetitive DNA sequences, both assays can be modified to evaluate instability of a CAG repeat using a PCR-based assay. All three assays have been essential in understanding the genetic mechanisms that cause chromosome breaks and tract-length changes at unstable repeats.
Collapse
Affiliation(s)
- Erica J Polleys
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | | |
Collapse
|
25
|
Cytosine deamination and base excision repair cause R-loop-induced CAG repeat fragility and instability in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2017; 114:E8392-E8401. [PMID: 28923949 DOI: 10.1073/pnas.1711283114] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CAG/CTG repeats are structure-forming repetitive DNA sequences, and expansion beyond a threshold of ∼35 CAG repeats is the cause of several human diseases. Expanded CAG repeats are prone to breakage, and repair of the breaks can cause repeat contractions and expansions. In this study, we found that cotranscriptional R-loops formed at a CAG-70 repeat inserted into a yeast chromosome. R-loops were further elevated upon deletion of yeast RNaseH genes and caused repeat fragility. A significant increase in CAG repeat contractions was also observed, consistent with previous human cell studies. Deletion of yeast cytosine deaminase Fcy1 significantly decreased the rate of CAG repeat fragility and contractions in the rnh1Δrnh201Δ background, indicating that Fcy1-mediated deamination is one cause of breakage and contractions in the presence of R-loops. Furthermore, base excision repair (BER) is responsible for causing CAG repeat contractions downstream of Fcy1, but not fragility. The Rad1/XPF and Rad2/XPG nucleases were also important in protecting against contractions, but through BER rather than nucleotide excision repair. Surprisingly, the MutLγ (Mlh1/Mlh3) endonuclease caused R-loop-dependent CAG fragility, defining an alternative function for this complex. These findings provide evidence that breakage at expanded CAG repeats occurs due to R-loop formation and reveal two mechanisms for CAG repeat instability: one mediated by cytosine deamination of DNA engaged in R-loops and the other by MutLγ cleavage. Since disease-causing CAG repeats occur in transcribed regions, our results suggest that R-loop-mediated fragility is a mechanism that could cause DNA damage and repeat-length changes in human cells.
Collapse
|
26
|
Nguyen JHG, Viterbo D, Anand RP, Verra L, Sloan L, Richard GF, Freudenreich CH. Differential requirement of Srs2 helicase and Rad51 displacement activities in replication of hairpin-forming CAG/CTG repeats. Nucleic Acids Res 2017; 45:4519-4531. [PMID: 28175398 PMCID: PMC5416882 DOI: 10.1093/nar/gkx088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/31/2017] [Indexed: 12/25/2022] Open
Abstract
Trinucleotide repeats are a source of genome instability, causing replication fork stalling, chromosome fragility, and impaired repair. Specialized helicases play an important role in unwinding DNA structures to maintain genome stability. The Srs2 helicase unwinds DNA hairpins, facilitates replication, and prevents repeat instability and fragility. However, since Srs2 is a multifunctional protein with helicase activity and the ability to displace Rad51 recombinase, it was unclear which functions were required for its various protective roles. Here, using SRS2 separation-of-function alleles, we show that in the absence of Srs2 recruitment to PCNA or in helicase-deficient mutants, breakage at a CAG/CTG repeat increases. We conclude that Srs2 interaction with PCNA allows the helicase activity to unwind fork-blocking CAG/CTG hairpin structures to prevent breaks. Independently of PCNA binding, Srs2 also displaces Rad51 from nascent strands to prevent recombination-dependent repeat expansions and contractions. By 2D gel electrophoresis, we detect two different kinds of structured intermediates or joint molecules (JMs). Some JMs are Rad51-independent and exhibit properties of reversed forks, including being processed by the Exo1 nuclease. In addition, in a helicase-deficient mutant, Rad51-dependent JMs are detected, probably corresponding to recombination between sisters. These results clarify the many roles of Srs2 in facilitating replication through fork-blocking hairpin lesions.
Collapse
Affiliation(s)
| | - David Viterbo
- Institut Pasteur, Department Genomes & Genetics, CNRS, UMR3525, Université Pierre et Marie Curie, UFR927, 25 rue du Dr Roux, F-75015 Paris, France
| | - Ranjith P Anand
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Lauren Verra
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Laura Sloan
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Guy-Franck Richard
- Institut Pasteur, Department Genomes & Genetics, CNRS, UMR3525, Université Pierre et Marie Curie, UFR927, 25 rue du Dr Roux, F-75015 Paris, France
| | | |
Collapse
|
27
|
Phosphate steering by Flap Endonuclease 1 promotes 5'-flap specificity and incision to prevent genome instability. Nat Commun 2017; 8:15855. [PMID: 28653660 PMCID: PMC5490271 DOI: 10.1038/ncomms15855] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5′-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5′-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5′polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via ‘phosphate steering’, basic residues energetically steer an inverted ss 5′-flap through a gateway over FEN1’s active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA)n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5′-flap specificity and catalysis, preventing genomic instability. Flap Endonuclease 1 is a DNA replication and repair enzyme indispensable for maintaining genomic stability. Here the authors provide mechanistic details on how FEN1 selects for 5′-flaps and promotes catalysis to avoid large-scale repeat expansion by a process termed ‘phosphate steering’.
Collapse
|
28
|
The role of break-induced replication in large-scale expansions of (CAG) n/(CTG) n repeats. Nat Struct Mol Biol 2016; 24:55-60. [PMID: 27918542 PMCID: PMC5215974 DOI: 10.1038/nsmb.3334] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Expansions of (CAG)n•(CTG)n trinucleotide repeats are responsible for over a dozen neuromuscular and neurodegenerative disorders. Large-scale expansions are typical for human pedigrees and may be explained by iterative small-scale events such as strand slippage during replication or repair DNA synthesis. Alternatively, a distinct mechanism could lead to a large-scale repeat expansion at a step. To distinguish between these possibilities, we developed a novel experimental system specifically tuned to analyze large-scale expansions of (CAG)n•(CTG)n repeats in Saccharomyces cerevisiae. The median size of repeat expansions was ~60 triplets, though additions in excess of 150 triplets were also observed. Genetic analysis revealed that Rad51, Rad52, Mre11, Pol32, Pif1, and Mus81 and/or Yen1 proteins are required for large-scale expansions, whereas proteins previously implicated in small-scale expansions are not involved. Based on these results, we propose a new model for large-scale expansions based on recovery of replication forks broken at (CAG)n•(CTG)n repeats via break-induced replication.
Collapse
|
29
|
Gadgil R, Barthelemy J, Lewis T, Leffak M. Replication stalling and DNA microsatellite instability. Biophys Chem 2016; 225:38-48. [PMID: 27914716 DOI: 10.1016/j.bpc.2016.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/05/2016] [Accepted: 11/05/2016] [Indexed: 01/08/2023]
Abstract
Microsatellites are short, tandemly repeated DNA motifs of 1-6 nucleotides, also termed simple sequence repeats (SRSs) or short tandem repeats (STRs). Collectively, these repeats comprise approximately 3% of the human genome Subramanian et al. (2003), Lander and Lander (2001) [1,2], and represent a large reservoir of loci highly prone to mutations Sun et al. (2012), Ellegren (2004) [3,4] that contribute to human evolution and disease. Microsatellites are known to stall and reverse replication forks in model systems Pelletier et al. (2003), Samadashwily et al. (1997), Kerrest et al. (2009) [5-7], and are hotspots of chromosomal double strand breaks (DSBs). We briefly review the relationship of these repeated sequences to replication stalling and genome instability, and present recent data on the impact of replication stress on DNA fragility at microsatellites in vivo.
Collapse
Affiliation(s)
- R Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - J Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - T Lewis
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - M Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
30
|
The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination. DNA Repair (Amst) 2016; 43:1-8. [PMID: 27173583 DOI: 10.1016/j.dnarep.2016.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 11/24/2022]
Abstract
Trinucleotide repeats (TNRs) are tandem arrays of three nucleotides that can expand in length to cause at least 17 inherited human diseases. Somatic expansions in patients can occur in differentiated tissues where DNA replication is limited and cannot be a primary source of somatic mutation. Instead, mouse models of TNR diseases have shown that both inherited and somatic expansions can be suppressed by the loss of certain DNA repair factors. It is generally believed that these repair factors cause misprocessing of TNRs, leading to expansions. Here we extend this idea to show that the Mre11-Rad50-Xrs2 (MRX) complex of Saccharomyces cerevisiae is a causative factor in expansions of short TNRs. Mutations that eliminate MRX subunits led to significant suppression of expansions whereas mutations that inactivate Rad51 had only a minor effect. Coupled with previous evidence, this suggests that MRX drives expansions of short TNRs through a process distinct from homologous recombination. The nuclease function of Mre11 was dispensable for expansions, suggesting that expansions do not occur by Mre11-dependent nucleolytic processing of the TNR. Epistasis between MRX and post-replication repair (PRR) was tested. PRR protects against expansions, so a rad5 mutant gave a high expansion rate. In contrast, the mre11 rad5 double mutant gave a suppressed expansion rate, indistinguishable from the mre11 single mutant. This suggests that MRX creates a TNR substrate for PRR. Protein acetylation was also tested as a mechanism regulating MRX activity in expansions. Six acetylation sites were identified in Rad50. Mutation of all six lysine residues to arginine gave partial bypass of a sin3 HDAC mutant, suggesting that Rad50 acetylation is functionally important for Sin3-mediated expansions. Overall we conclude that yeast MRX helps drive expansions of short TNRs by a mechanism distinct from its role in homologous recombination and independent of the nuclease function of Mre11.
Collapse
|
31
|
Becker JR, Pons C, Nguyen HD, Costanzo M, Boone C, Myers CL, Bielinsky AK. Genetic Interactions Implicating Postreplicative Repair in Okazaki Fragment Processing. PLoS Genet 2015; 11:e1005659. [PMID: 26545110 PMCID: PMC4636136 DOI: 10.1371/journal.pgen.1005659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/19/2015] [Indexed: 01/28/2023] Open
Abstract
Ubiquitination of the replication clamp proliferating cell nuclear antigen (PCNA) at the conserved residue lysine (K)164 triggers postreplicative repair (PRR) to fill single-stranded gaps that result from stalled DNA polymerases. However, it has remained elusive as to whether cells engage PRR in response to replication defects that do not directly impair DNA synthesis. To experimentally address this question, we performed synthetic genetic array (SGA) analysis with a ubiquitination-deficient K164 to arginine (K164R) mutant of PCNA against a library of S. cerevisiae temperature-sensitive alleles. The SGA signature of the K164R allele showed a striking correlation with profiles of mutants deficient in various aspects of lagging strand replication, including rad27Δ and elg1Δ. Rad27 is the primary flap endonuclease that processes 5' flaps generated during lagging strand replication, whereas Elg1 has been implicated in unloading PCNA from chromatin. We observed chronic ubiquitination of PCNA at K164 in both rad27Δ and elg1Δ mutants. Notably, only rad27Δ cells exhibited a decline in cell viability upon elimination of PRR pathways, whereas elg1Δ mutants were not affected. We further provide evidence that K164 ubiquitination suppresses replication stress resulting from defective flap processing during Okazaki fragment maturation. Accordingly, ablation of PCNA ubiquitination increased S phase checkpoint activation, indicated by hyperphosphorylation of the Rad53 kinase. Furthermore, we demonstrate that alternative flap processing by overexpression of catalytically active exonuclease 1 eliminates PCNA ubiquitination. This suggests a model in which unprocessed flaps may directly participate in PRR signaling. Our findings demonstrate that PCNA ubiquitination at K164 in response to replication stress is not limited to DNA synthesis defects but extends to DNA processing during lagging strand replication.
Collapse
Affiliation(s)
- Jordan R. Becker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Carles Pons
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hai Dang Nguyen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael Costanzo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Chad L. Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
32
|
Géli V, Lisby M. Recombinational DNA repair is regulated by compartmentalization of DNA lesions at the nuclear pore complex. Bioessays 2015; 37:1287-92. [PMID: 26422820 DOI: 10.1002/bies.201500084] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The nuclear pore complex (NPC) is emerging as a center for recruitment of a class of "difficult to repair" lesions such as double-strand breaks without a repair template and eroded telomeres in telomerase-deficient cells. In addition to such pathological situations, a recent study by Su and colleagues shows that also physiological threats to genome integrity such as DNA secondary structure-forming triplet repeat sequences relocalize to the NPC during DNA replication. Mutants that fail to reposition the triplet repeat locus to the NPC cause repeat instability. Here, we review the types of DNA lesions that relocalize to the NPC, the putative mechanisms of relocalization, and the types of recombinational repair that are stimulated by the NPC, and present a model for NPC-facilitated repair.
Collapse
Affiliation(s)
- Vincent Géli
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, LNCC (Equipe labellisée), Marseille, France
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Su XA, Dion V, Gasser SM, Freudenreich CH. Regulation of recombination at yeast nuclear pores controls repair and triplet repeat stability. Genes Dev 2015; 29:1006-17. [PMID: 25940904 PMCID: PMC4441049 DOI: 10.1101/gad.256404.114] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, Su et al. find that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery and that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process. Secondary structure-forming DNA sequences such as CAG repeats interfere with replication and repair, provoking fork stalling, chromosome fragility, and recombination. In budding yeast, we found that expanded CAG repeats are more likely than unexpanded repeats to localize to the nuclear periphery. This positioning is transient, occurs in late S phase, requires replication, and is associated with decreased subnuclear mobility of the locus. In contrast to persistent double-stranded breaks, expanded CAG repeats at the nuclear envelope associate with pores but not with the inner nuclear membrane protein Mps3. Relocation requires Nup84 and the Slx5/8 SUMO-dependent ubiquitin ligase but not Rad51, Mec1, or Tel1. Importantly, the presence of the Nup84 pore subcomplex and Slx5/8 suppresses CAG repeat fragility and instability. Repeat instability in nup84, slx5, or slx8 mutant cells arises through aberrant homologous recombination and is distinct from instability arising from the loss of ligase 4-dependent end-joining. Genetic and physical analysis of Rad52 sumoylation and binding at the CAG tract suggests that Slx5/8 targets sumoylated Rad52 for degradation at the pore to facilitate recovery from acute replication stress by promoting replication fork restart. We thereby confirmed that the relocation of damage to nuclear pores plays an important role in a naturally occurring repair process.
Collapse
Affiliation(s)
- Xiaofeng A Su
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | - Vincent Dion
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA; Program in Genetics, Tufts University, Medford, Massachusetts 02155, USA;
| |
Collapse
|
34
|
Usdin K, House NCM, Freudenreich CH. Repeat instability during DNA repair: Insights from model systems. Crit Rev Biochem Mol Biol 2015; 50:142-67. [PMID: 25608779 DOI: 10.3109/10409238.2014.999192] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expansion of repeated sequences is the cause of over 30 inherited genetic diseases, including Huntington disease, myotonic dystrophy (types 1 and 2), fragile X syndrome, many spinocerebellar ataxias, and some cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat expansions are dynamic, and disease inheritance and progression are influenced by the size and the rate of expansion. Thus, an understanding of the various cellular mechanisms that cooperate to control or promote repeat expansions is of interest to human health. In addition, the study of repeat expansion and contraction mechanisms has provided insight into how repair pathways operate in the context of structure-forming DNA, as well as insights into non-canonical roles for repair proteins. Here we review the mechanisms of repeat instability, with a special emphasis on the knowledge gained from the various model systems that have been developed to study this topic. We cover the repair pathways and proteins that operate to maintain genome stability, or in some cases cause instability, and the cross-talk and interactions between them.
Collapse
Affiliation(s)
- Karen Usdin
- Laboratory of Cell and Molecular Biology, NIDDK, NIH , Bethesda, MD , USA
| | | | | |
Collapse
|
35
|
House NCM, Koch MR, Freudenreich CH. Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet 2014; 5:296. [PMID: 25250043 PMCID: PMC4155812 DOI: 10.3389/fgene.2014.00296] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 08/08/2014] [Indexed: 12/28/2022] Open
Abstract
DNA repair must take place in the context of chromatin, and chromatin modifications and DNA repair are intimately linked. The study of double-strand break repair has revealed numerous histone modifications that occur after induction of a DSB, and modification of the repair factors themselves can also occur. In some cases the function of the modification is at least partially understood, but in many cases it is not yet clear. Although DSB repair is a crucial activity for cell survival, DSBs account for only a small percentage of the DNA lesions that occur over the lifetime of a cell. Repair of single-strand gaps, nicks, stalled forks, alternative DNA structures, and base lesions must also occur in a chromatin context. There is increasing evidence that these repair pathways are also regulated by histone modifications and chromatin remodeling. In this review, we will summarize the current state of knowledge of chromatin modifications that occur during non-DSB repair, highlighting similarities and differences to DSB repair as well as remaining questions.
Collapse
Affiliation(s)
| | - Melissa R Koch
- Department of Biology, Tufts University Medford, MA, USA
| | - Catherine H Freudenreich
- Department of Biology, Tufts University Medford, MA, USA ; Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University Boston, MA, USA
| |
Collapse
|
36
|
Frizzell A, Nguyen JHG, Petalcorin MIR, Turner KD, Boulton SJ, Freudenreich CH, Lahue RS. RTEL1 inhibits trinucleotide repeat expansions and fragility. Cell Rep 2014; 6:827-35. [PMID: 24561255 PMCID: PMC5783307 DOI: 10.1016/j.celrep.2014.01.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/20/2013] [Accepted: 01/24/2014] [Indexed: 02/06/2023] Open
Abstract
Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG) repeat expansions and fragility, likely by unwinding problematic hairpins.
Collapse
Affiliation(s)
- Aisling Frizzell
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Newcastle Road, Galway, Ireland
| | | | - Mark I R Petalcorin
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | - Katherine D Turner
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Newcastle Road, Galway, Ireland; NCBES Galway Neuroscience Centre, National University of Ireland Galway, Newcastle Road, Galway, Ireland
| | - Simon J Boulton
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | | | - Robert S Lahue
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Newcastle Road, Galway, Ireland; NCBES Galway Neuroscience Centre, National University of Ireland Galway, Newcastle Road, Galway, Ireland.
| |
Collapse
|
37
|
Kim JC, Mirkin SM. The balancing act of DNA repeat expansions. Curr Opin Genet Dev 2013; 23:280-8. [PMID: 23725800 DOI: 10.1016/j.gde.2013.04.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
Expansions of microsatellite DNA repeats contribute to the inheritance of nearly 30 developmental and neurological disorders. Significant progress has been made in elucidating the molecular mechanisms of repeat expansions using various model organisms and mammalian cell culture, and models implicating nearly all DNA transactions such as replication, repair, recombination, and transcription have been proposed. It is likely that different models of repeat expansions are not mutually exclusive and may explain repeat instability for different developmental stages and tissues. This review focuses on the contributions from studies in budding yeast toward unraveling the mechanisms and genetic control of repeat expansions, highlighting similarities and differences of replication models and describing a balancing act hypothesis to account for apparent discrepancies.
Collapse
Affiliation(s)
- Jane C Kim
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | | |
Collapse
|
38
|
Stimulation of gross chromosomal rearrangements by the human CEB1 and CEB25 minisatellites in Saccharomyces cerevisiae depends on G-quadruplexes or Cdc13. PLoS Genet 2012; 8:e1003033. [PMID: 23133402 PMCID: PMC3486850 DOI: 10.1371/journal.pgen.1003033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
Genomes contain tandem repeats that are at risk of internal rearrangements and a threat to genome integrity. Here, we investigated the behavior of the human subtelomeric minisatellites HRAS1, CEB1, and CEB25 in Saccharomyces cerevisiae. In mitotically growing wild-type cells, these GC-rich tandem arrays stimulate the rate of gross chromosomal rearrangements (GCR) by 20, 1,620, and 276,000-fold, respectively. In the absence of the Pif1 helicase, known to inhibit GCR by telomere addition and to unwind G-quadruplexes, the GCR rate is further increased in the presence of CEB1, by 385-fold compared to the pif1Δ control strain. The behavior of CEB1 is strongly dependent on its capacity to form G-quadruplexes, since the treatment of WT cells with the Phen-DC(3) G-quadruplex ligand has a 52-fold stimulating effect while the mutation of the G-quadruplex-forming motif reduced the GCR rate 30-fold in WT and 100-fold in pif1Δ cells. The GCR events are telomere additions within CEB1. Differently, the extreme stimulation of CEB25 GCR depends on its affinity for Cdc13, which binds the TG-rich ssDNA telomere overhang. This property confers a biased orientation-dependent behavior to CEB25, while CEB1 and HRAS1 increase GCR similarly in either orientation. Furthermore, we analyzed the minisatellites' distribution in the human genome and discuss their potential role to trigger subtelomeric rearrangements.
Collapse
|
39
|
Liu G, Myers S, Chen X, Bissler JJ, Sinden RR, Leffak M. Replication fork stalling and checkpoint activation by a PKD1 locus mirror repeat polypurine-polypyrimidine (Pu-Py) tract. J Biol Chem 2012; 287:33412-23. [PMID: 22872635 DOI: 10.1074/jbc.m112.402503] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA sequences prone to forming noncanonical structures (hairpins, triplexes, G-quadruplexes) cause DNA replication fork stalling, activate DNA damage responses, and represent hotspots of genomic instability associated with human disease. The 88-bp asymmetric polypurine-polypyrimidine (Pu-Py) mirror repeat tract from the human polycystic kidney disease (PKD1) intron 21 forms non-B DNA secondary structures in vitro. We show that the PKD1 mirror repeat also causes orientation-dependent fork stalling during replication in vitro and in vivo. When integrated alongside the c-myc replicator at an ectopic chromosomal site in the HeLa genome, the Pu-Py mirror repeat tract elicits a polar replication fork barrier. Increased replication protein A (RPA), Rad9, and ataxia telangiectasia- and Rad3-related (ATR) checkpoint protein binding near the mirror repeat sequence suggests that the DNA damage response is activated upon replication fork stalling. Moreover, the proximal c-myc origin of replication was not required to cause orientation-dependent checkpoint activation. Cells expressing the replication fork barrier display constitutive Chk1 phosphorylation and continued growth, i.e. checkpoint adaptation. Excision of the Pu-Py mirror repeat tract abrogates the DNA damage response. Adaptation to Chk1 phosphorylation in cells expressing the replication fork barrier may allow the accumulation of mutations that would otherwise be remediated by the DNA damage response.
Collapse
Affiliation(s)
- Guoqi Liu
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Liu G, Leffak M. Instability of (CTG)n•(CAG)n trinucleotide repeats and DNA synthesis. Cell Biosci 2012; 2:7. [PMID: 22369689 PMCID: PMC3310812 DOI: 10.1186/2045-3701-2-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/27/2012] [Indexed: 12/21/2022] Open
Abstract
Expansion of (CTG)n•(CAG)n trinucleotide repeat (TNR) microsatellite sequences is the cause of more than a dozen human neurodegenerative diseases. (CTG)n and (CAG)n repeats form imperfectly base paired hairpins that tend to expand in vivo in a length-dependent manner. Yeast, mouse and human models confirm that (CTG)n•(CAG)n instability increases with repeat number, and implicate both DNA replication and DNA damage response mechanisms in (CTG)n•(CAG)n TNR expansion and contraction. Mutation and knockdown models that abrogate the expression of individual genes might also mask more subtle, cumulative effects of multiple additional pathways on (CTG)n•(CAG)n instability in whole animals. The identification of second site genetic modifiers may help to explain the variability of (CTG)n•(CAG)n TNR instability patterns between tissues and individuals, and offer opportunities for prognosis and treatment.
Collapse
Affiliation(s)
- Guoqi Liu
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| | | |
Collapse
|
41
|
Sundararajan R, Freudenreich CH. Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae. PLoS Genet 2011; 7:e1001339. [PMID: 21437275 PMCID: PMC3060079 DOI: 10.1371/journal.pgen.1001339] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 02/15/2011] [Indexed: 11/18/2022] Open
Abstract
Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases. Expansion of a CAG/CTG trinucleotide repeat is the causative mutation for multiple neurodegenerative diseases, including Huntington's disease, myotonic dystrophy, and multiple types of spinocerebellar ataxias. Two reasons for the cell death that occurs in these diseases are toxicity of the repeat-containing RNA and of the polyglutamine-containing protein product. Although the expanded repeat can interfere with DNA replication and repair, it was not known whether the presence of the repeat within the DNA causes any additional cellular toxicity. In this study, we show that an expanded CAG/CTG tract placed within the chromosome of the model eukaryote, budding yeast, elicits a cellular response that interferes with cell growth and division. The effect is enhanced when DNA repair pathways, particularly double-strand break repair, are compromised. Moreover, cells experiencing an arrest were more likely to have undergone further repeat expansions. We show that the conserved MRX protein complex locates to the expanded repeat and is required to sense the damage and activate the DNA damage response. Our results suggest that DNA damage at expanded CAG/CTG repeats could contribute to both tissue degeneration and further repeat instability in affected individuals.
Collapse
|
42
|
Gellon L, Razidlo DF, Gleeson O, Verra L, Schulz D, Lahue RS, Freudenreich CH. New functions of Ctf18-RFC in preserving genome stability outside its role in sister chromatid cohesion. PLoS Genet 2011; 7:e1001298. [PMID: 21347277 PMCID: PMC3037408 DOI: 10.1371/journal.pgen.1001298] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 01/07/2011] [Indexed: 12/30/2022] Open
Abstract
Expansion of DNA trinucleotide repeats causes at least 15 hereditary neurological diseases, and these repeats also undergo contraction and fragility. Current models to explain this genetic instability invoke erroneous DNA repair or aberrant replication. Here we show that CAG/CTG tracts are stabilized in Saccharomyces cerevisiae by the alternative clamp loader/unloader Ctf18-Dcc1-Ctf8-RFC complex (Ctf18-RFC). Mutants in Ctf18-RFC increased all three forms of triplet repeat instability--expansions, contractions, and fragility--with effect over a wide range of allele lengths from 20-155 repeats. Ctf18-RFC predominated among the three alternative clamp loaders, with mutants in Elg1-RFC or Rad24-RFC having less effect on trinucleotide repeats. Surprisingly, chl1, scc1-73, or scc2-4 mutants defective in sister chromatid cohesion (SCC) did not increase instability, suggesting that Ctf18-RFC protects triplet repeats independently of SCC. Instead, three results suggest novel roles for Ctf18-RFC in facilitating genomic stability. First, genetic instability in mutants of Ctf18-RFC was exacerbated by simultaneous deletion of the fork stabilizer Mrc1, but suppressed by deletion of the repair protein Rad52. Second, single-cell analysis showed that mutants in Ctf18-RFC had a slowed S phase and a striking G2/M accumulation, often with an abnormal multi-budded morphology. Third, ctf18 cells exhibit increased Rad52 foci in S phase, often persisting into G2, indicative of high levels of DNA damage. The presence of a repeat tract greatly magnified the ctf18 phenotypes. Together these results indicate that Ctf18-RFC has additional important functions in preserving genome stability, besides its role in SCC, which we propose include lesion bypass by replication forks and post-replication repair.
Collapse
Affiliation(s)
- Lionel Gellon
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - David F. Razidlo
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Olive Gleeson
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Lauren Verra
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Danae Schulz
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Robert S. Lahue
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- * E-mail: (CHF); (RSL)
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- * E-mail: (CHF); (RSL)
| |
Collapse
|
43
|
Expansions, contractions, and fragility of the spinocerebellar ataxia type 10 pentanucleotide repeat in yeast. Proc Natl Acad Sci U S A 2011; 108:2843-8. [PMID: 21282659 DOI: 10.1073/pnas.1009409108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Spinocerebellar ataxia 10 (SCA10) is an autosomal dominant disease caused by large-scale expansions of the (ATTCT)(n) repeat within an intron of the human ATXN10 gene. In contrast to other expandable repeats, this pentanucleotide repeat does not form stable intra- or interstranded DNA structures, being a DNA unwinding element instead. We analyzed the instability of the (ATTCT)(n) repeat in a yeast experimental system, where its expansions led to inactivation of the URA3 reporter gene. The inactivation was due to a dramatic decrease in the mRNA levels owing to premature transcription termination and RNA polyadenylation at the repeat. The rates of expansions strongly increased with the repeat's length, mimicking genetic anticipation in human pedigrees. A first round of genetic analysis showed that a functional TOF1 gene precludes, whereas a functional RAD5 gene promotes, expansions of the (ATTCT)(n) repeat. We hypothesize that repeat expansions could occur upon fortuitous template switching during DNA replication. The rate of repeat contractions was elevated in the Tof1 knockout strain, but it was not affected by the RAD5 gene. Supporting the notion of replication irregularities, we found that (ATTCT)(n) repeats also cause length-dependent chromosomal fragility in yeast. Repeat-mediated fragility was also affected by the Tof1 and Rad5 proteins, being reduced in their absence.
Collapse
|
44
|
Abstract
It has been more than 17 years since the causative mutation for Huntington's disease was discovered as the expansion of the triplet repeat in the N-terminal portion of the Huntingtin (HTT) gene. In the intervening time, researchers have discovered a great deal about Huntingtin's involvement in a number of cellular processes. However, the role of Huntingtin in the key pathogenic mechanism leading to neurodegeneration in the disease process has yet to be discovered. Here, we review the body of knowledge that has been uncovered since gene discovery and include discussions of the HTT gene, CAG triplet repeat expansion, HTT expression, protein features, posttranslational modifications, and many of its known protein functions and interactions. We also highlight potential pathogenic mechanisms that have come to light in recent years.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL 32610-0236, USA.
| | | |
Collapse
|
45
|
Abstract
Myotonic dystrophies (dystrophia myotonica, or DM) are inherited disorders characterized by myotonia and progressive muscle degeneration, which are variably associated with a multisystemic phenotype. To date, two types of myotonic dystrophy, type 1 (DM1) and type 2 (DM2), are known to exist; both are autosomal dominant disorders caused by expansion of an untranslated short tandem repeat DNA sequence (CTG)(n) and (CCTG)(n), respectively. These expanded repeats in DM1 and DM2 show different patterns of repeat-size instability. Phenotypes of DM1 and DM2 are similar but there are some important differences, most conspicuously in the severity of the disease (including the presence or absence of the congenital form), muscles primarily affected (distal versus proximal), involved muscle fiber types (type 1 versus type 2 fibers), and some associated multisystemic phenotypes. The pathogenic mechanism of DM1 and DM2 is thought to be mediated by the mutant RNA transcripts containing expanded CUG and CCUG repeats. Strong evidence supports the hypothesis that sequestration of muscle-blind like (MBNL) proteins by these expanded repeats leads to misregulated splicing of many gene transcripts in corroboration with the raised level of CUG-binding protein 1. However, additional mechanisms, such as changes in the chromatin structure involving CTCN-binding site and gene expression dysregulations, are emerging. Although treatment of DM1 and DM2 is currently limited to supportive therapies, new therapeutic approaches based on pathogenic mechanisms may become feasible in the near future.
Collapse
Affiliation(s)
- Tetsuo Ashizawa
- Department of Neurology, McKnight Brain Institute, The University of Texas Medical Branch, Galveston, TX, USA.
| | | |
Collapse
|
46
|
Entezam A, Lokanga AR, Le W, Hoffman G, Usdin K. Potassium bromate, a potent DNA oxidizing agent, exacerbates germline repeat expansion in a fragile X premutation mouse model. Hum Mutat 2010; 31:611-6. [PMID: 20213777 DOI: 10.1002/humu.21237] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tandem repeat expansion is responsible for the Repeat Expansion Diseases, a group of human genetic disorders that includes Fragile X syndrome (FXS). FXS results from expansion of a premutation (PM) allele having 55-200 CGG.CCG-repeats in the 5' UTR of the FMR1 gene. The mechanism of expansion is unknown. We have treated FX PM mice with potassium bromate (KBrO(3)), a potent DNA oxidizing agent. We then monitored the germline and somatic expansion frequency in the progeny of these animals. We show here that KBrO(3) increased both the level of 8-oxoG in the oocytes of treated animals and the germline expansion frequency. Our data thus suggest that oxidative damage may be a factor that could affect expansion risk in humans.
Collapse
Affiliation(s)
- Ali Entezam
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
47
|
Vallur AC, Maizels N. Complementary roles for exonuclease 1 and Flap endonuclease 1 in maintenance of triplet repeats. J Biol Chem 2010; 285:28514-9. [PMID: 20643645 DOI: 10.1074/jbc.m110.132738] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trinucleotide repeats can form stable secondary structures that promote genomic instability. To determine how such structures are resolved, we have defined biochemical activities of the related RAD2 family nucleases, FEN1 (Flap endonuclease 1) and EXO1 (exonuclease 1), on substrates that recapitulate intermediates in DNA replication. Here, we show that, consistent with its function in lagging strand replication, human (h) FEN1 could cleave 5'-flaps bearing structures formed by CTG or CGG repeats, although less efficiently than unstructured flaps. hEXO1 did not exhibit endonuclease activity on 5'-flaps bearing structures formed by CTG or CGG repeats, although it could excise these substrates. Neither hFEN1 nor hEXO1 was affected by the stem-loops formed by CTG repeats interrupting duplex regions adjacent to 5'-flaps, but both enzymes were inhibited by G4 structures formed by CGG repeats in analogous positions. Hydroxyl radical footprinting showed that hFEN1 binding caused hypersensitivity near the flap/duplex junction, whereas hEXO1 binding caused hypersensitivity very close to the 5'-end, correlating with the predominance of hFEN1 endonucleolytic activity versus hEXO1 exonucleolytic activity on 5'-flap substrates. These results show that FEN1 and EXO1 can eliminate structures formed by trinucleotide repeats in the course of replication, relying on endonucleolytic and exonucleolytic activities, respectively. These results also suggest that unresolved G4 DNA may prevent key steps in normal post-replicative DNA processing.
Collapse
Affiliation(s)
- Aarthy C Vallur
- Department of Immunology, University of Washington Medical School, Seattle, Washington 98195-7650, USA
| | | |
Collapse
|
48
|
Kang YH, Lee CH, Seo YS. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit Rev Biochem Mol Biol 2010; 45:71-96. [PMID: 20131965 DOI: 10.3109/10409230903578593] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA replication is a primary mechanism for maintaining genome integrity, but it serves this purpose best by cooperating with other proteins involved in DNA repair and recombination. Unlike leading strand synthesis, lagging strand synthesis has a greater risk of faulty replication for several reasons: First, a significant part of DNA is synthesized by polymerase alpha, which lacks a proofreading function. Second, a great number of Okazaki fragments are synthesized, processed and ligated per cell division. Third, the principal mechanism of Okazaki fragment processing is via generation of flaps, which have the potential to form a variety of structures in their sequence context. Finally, many proteins for the lagging strand interact with factors involved in repair and recombination. Thus, lagging strand DNA synthesis could be the best example of a converging place of both replication and repair proteins. To achieve the risky task with extraordinary fidelity, Okazaki fragment processing may depend on multiple layers of redundant, but connected pathways. An essential Dna2 endonuclease/helicase plays a pivotal role in processing common structural intermediates that occur during diverse DNA metabolisms (e.g. lagging strand synthesis and telomere maintenance). Many roles of Dna2 suggest that the preemptive removal of long or structured flaps ultimately contributes to genome maintenance in eukaryotes. In this review, we describe the function of Dna2 in Okazaki fragment processing, and discuss its role in the maintenance of genome integrity with an emphasis on its functional interactions with other factors required for genome maintenance.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | |
Collapse
|
49
|
Yang JH, Freudenreich CH. The Rtt109 histone acetyltransferase facilitates error-free replication to prevent CAG/CTG repeat contractions. DNA Repair (Amst) 2010; 9:414-20. [PMID: 20083442 DOI: 10.1016/j.dnarep.2009.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/23/2009] [Accepted: 12/29/2009] [Indexed: 10/20/2022]
Abstract
Lysine 56 is acetylated on newly synthesized histone H3 in yeast, Drosophila and mammalian cells. All of the proteins involved in histone H3 lysine 56 (H3K56) acetylation are important for maintaining genome integrity. These include Rtt109, a histone acetyltransferase, responsible for acetylating H3K56, Asf1, a histone H3/H4 chaperone, and Hst3 and Hst4, histone deacetylases which remove the acetyl group from H3K56. Here we demonstrate a new role for Rtt109 and H3K56 acetylation in maintaining repetitive DNA sequences in Saccharomyces cerevisiae. We found that cells lacking RTT109 had a high level of CAG/CTG repeat contractions and a twofold increase in breakage at CAG/CTG repeats. In addition, repeat contractions were significantly increased in cells lacking ASF1 and in an hst3Deltahst4Delta double mutant. Because the Rtt107/Rtt101 complex was previously shown to be recruited to stalled replication forks in an Rtt109-dependent manner, we tested whether this complex was involved. However, contractions in rtt109Delta cells were not due to an inability to recruit the Rtt107/Rtt101 complex to repeats, as absence of these proteins had no effect on repeat stability. On the other hand, Dnl4 and Rad51-dependent pathways did play a role in creating some of the repeat contractions in rtt109Delta cells. Our results show that H3K56 acetylation by Rtt109 is important for stabilizing DNA repeats, likely by facilitating proper nucleosome assembly at the replication fork to prevent DNA structure formation and subsequent slippage events or fork breakage.
Collapse
Affiliation(s)
- Jiahui H Yang
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
50
|
Abstract
Transcription stimulates the genetic instability of trinucleotide repeat sequences. However, the mechanisms leading to transcription-dependent repeat length variation are unclear. We demonstrate, using biochemical and genetic approaches, that the formation of stable RNA.DNA hybrids enhances the instability of CTG.CAG repeat tracts. In vitro transcribed CG-rich repeating sequences, unlike AT-rich repeats and nonrepeating sequences, form stable, ribonuclease A-resistant structures. These RNA.DNA hybrids are eliminated by ribonuclease H treatment. Mutation in the rnhA1 gene that decreases the activity of ribonuclease HI stimulates the instability of CTG.CAG repeats in E. coli. Importantly, the effect of ribonuclease HI depletion on repeat instability requires active transcription. We also showed that transcription-dependent CTG.CAG repeat instability in human cells is stimulated by siRNA knockdown of RNase H1 and H2. In addition, we used bisulfite modification, which detects single-stranded DNA, to demonstrate that the nontemplate DNA strand at transcribed CTG.CAG repeats remains partially single-stranded in human genomic DNA, thus indicating that it is displaced by an RNA.DNA hybrid. These studies demonstrate that persistent hybrids between the nascent RNA transcript and the template DNA strand at CTG.CAG tracts promote instability of DNA trinucleotide repeats.
Collapse
|