1
|
He Z, Wu N, Yao R, Tan H, Sun Y, Chen J, Xue L, Chen X, Yang S, Hurst LD, Wang L, Huang J. RID is required for both repeat-induced point mutation and nucleation of a novel transitional heterochromatic state for euchromatic repeats. Nucleic Acids Res 2025; 53:gkaf263. [PMID: 40183634 PMCID: PMC11969663 DOI: 10.1093/nar/gkaf263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
To maintain genome integrity, repeat sequences are subject to heterochromatin inactivation and, in Neurospora, repeat-induced point mutation (RIP). The initiating factors behind both are poorly understood. We resolve the paradoxical observation that newly introduced Repeat-Linker-Repeat (R-L-R) constructs require RID alone for RIP, while genomic repeats are RIPed in the absence of RID, showing that eu- and hetero- chromatic repeats are handled differently, the latter additionally requiring DIM-2. The differences between mechanisms associated with older and newer duplicates caution against extrapolation from mechanisms inferred from model experimental systems. Additionally, while chromatin status affects RIP, we also show that RID, when tethered with LexA, acts as a nucleation center for the transition from euchromatin to heterochromatin in an HDA-1 dependent fashion. Constitutive heterochromatin by contrast is largely HDA1 independent and depends on HDA-1 paralogs. RID is thus a dual function initiator of both RIP and the transition to heterochromatin.
Collapse
Affiliation(s)
- Zhen He
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Nannan Wu
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ruonan Yao
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Huawei Tan
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yingying Sun
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jingxuan Chen
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lan Xue
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaonan Chen
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Sihai Yang
- School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Laurence D Hurst
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Long Wang
- School of Life Sciences, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Ju Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Chen YY, Zhu C, Zhao JH, Liu T, Gao F, Zhang YC, Duan CG. DNA methylation-dependent epigenetic regulation of Verticillium dahliae virulence in plants. ABIOTECH 2023; 4:185-201. [PMID: 37970467 PMCID: PMC10638132 DOI: 10.1007/s42994-023-00117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/31/2023] [Indexed: 11/17/2023]
Abstract
As a conserved epigenetic mark, DNA cytosine methylation, at the 5' position (5-mC), plays important roles in multiple biological processes, including plant immunity. However, the involvement of DNA methylation in the determinants of virulence of phytopathogenic fungi remains elusive. In this study, we profiled the DNA methylation patterns of the phytopathogenic fungus Verticillium dahliae, one of the major causal pathogens of Verticillium wilt disease that causes great losses in many crops, and explored its contribution in fungal pathogenicity. We reveal that DNA methylation modification is present in V. dahliae and is required for its full virulence in host plants. The major enzymes responsible for the establishment of DNA methylation in V. dahliae were identified. We provided evidence that DNA methyltransferase-mediated establishment of DNA methylation pattern positively regulates fungal virulence, mainly through repressing a conserved protein kinase VdRim15-mediated Ca2+ signaling and ROS production, which is essential for the penetration activity of V. dahliae. In addition, we further demonstrated that histone H3 lysine 9 trimethylation (H3K9me3), another heterochromatin marker that is closely associated with 5-mC in eukaryotes, also participates in the regulation of V. dahliae pathogenicity, through a similar mechanism. More importantly, DNA methyltransferase genes VdRid, VdDnmt5, as well as H3K9me3 methyltransferase genes, were greatly induced during the early infection phase, implying that a dynamic regulation of 5-mC and H3K9me3 homeostasis is required for an efficient infection. Collectively, our findings uncover an epigenetic mechanism in the regulation of phytopathogenic fungal virulence. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00117-5.
Collapse
Affiliation(s)
- Yun-Ya Chen
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Science, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chen Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Science, Shanghai, 200032 China
- College of Life Sciences, Anhui Normal University, Wuhu, 241000 China
| | - Jian-Hua Zhao
- University of Chinese Academy of Sciences, Beijing, 100049 China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ting Liu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Science, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Feng Gao
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan, 250000 China
| | - Ying-Chao Zhang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Science, Shanghai, 200032 China
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Science, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
3
|
Tini F, Beccari G, Marconi G, Porceddu A, Sulyok M, Gardiner DM, Albertini E, Covarelli L. Identification of Putative Virulence Genes by DNA Methylation Studies in the Cereal Pathogen Fusarium graminearum. Cells 2021; 10:cells10051192. [PMID: 34068122 PMCID: PMC8152758 DOI: 10.3390/cells10051192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 01/17/2023] Open
Abstract
DNA methylation mediates organisms’ adaptations to environmental changes in a wide range of species. We investigated if a such a strategy is also adopted by Fusarium graminearum in regulating virulence toward its natural hosts. A virulent strain of this fungus was consecutively sub-cultured for 50 times (once a week) on potato dextrose agar. To assess the effect of subculturing on virulence, wheat seedlings and heads (cv. A416) were inoculated with subcultures (SC) 1, 23, and 50. SC50 was also used to re-infect (three times) wheat heads (SC50×3) to restore virulence. In vitro conidia production, colonies growth and secondary metabolites production were also determined for SC1, SC23, SC50, and SC50×3. Seedling stem base and head assays revealed a virulence decline of all subcultures, whereas virulence was restored in SC50×3. The same trend was observed in conidia production. The DNA isolated from SC50 and SC50×3 was subject to a methylation content-sensitive enzyme and double-digest, restriction-site-associated DNA technique (ddRAD-MCSeEd). DNA methylation analysis indicated 1024 genes, whose methylation levels changed in response to the inoculation on a healthy host after subculturing. Several of these genes are already known to be involved in virulence by functional analysis. These results demonstrate that the physiological shifts following sub-culturing have an impact on genomic DNA methylation levels and suggest that the ddRAD-MCSeEd approach can be an important tool for detecting genes potentially related to fungal virulence.
Collapse
Affiliation(s)
- Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| | - Gianpiero Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
- Correspondence:
| | - Andrea Porceddu
- Department of Agriculture, University of Sassari, Viale Italia, 39a, 07100 Sassari, Italy;
| | - Micheal Sulyok
- Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Applied Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse, 20, A-3430 Tulln, Austria;
| | - Donald M. Gardiner
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, 306 Carmody Road, St Lucia, QLD 4067, Australia;
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| |
Collapse
|
4
|
Klocko AD, Summers CA, Glover ML, Parrish R, Storck WK, McNaught KJ, Moss ND, Gotting K, Stewart A, Morrison AM, Payne L, Hatakeyama S, Selker EU. Selection and Characterization of Mutants Defective in DNA Methylation in Neurospora crassa. Genetics 2020; 216:671-688. [PMID: 32873602 PMCID: PMC7648584 DOI: 10.1534/genetics.120.303471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
DNA methylation, a prototypical epigenetic modification implicated in gene silencing, occurs in many eukaryotes and plays a significant role in the etiology of diseases such as cancer. The filamentous fungus Neurospora crassa places DNA methylation at regions of constitutive heterochromatin such as in centromeres and in other A:T-rich regions of the genome, but this modification is dispensable for normal growth and development. This and other features render N. crassa an excellent model to genetically dissect elements of the DNA methylation pathway. We implemented a forward genetic selection on a massive scale, utilizing two engineered antibiotic-resistance genes silenced by DNA methylation, to isolate mutants d efective i n m ethylation (dim). Hundreds of potential mutants were characterized, yielding a rich collection of informative alleles of 11 genes important for DNA methylation, most of which were already reported. In parallel, we characterized the pairwise interactions in nuclei of the DCDC, the only histone H3 lysine 9 methyltransferase complex in Neurospora, including those between the DIM-5 catalytic subunit and other complex members. We also dissected the N- and C-termini of the key protein DIM-7, required for DIM-5 histone methyltransferase localization and activation. Lastly, we identified two alleles of a novel gene, dim-10 - a homolog of Clr5 in Schizosaccharomyces pombe - that is not essential for DNA methylation, but is necessary for repression of the antibiotic-resistance genes used in the selection, which suggests that both DIM-10 and DNA methylation promote silencing of constitutive heterochromatin.
Collapse
Affiliation(s)
- Andrew D Klocko
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Calvin A Summers
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Marissa L Glover
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Robert Parrish
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - William K Storck
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Kevin J McNaught
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Nicole D Moss
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Kirsten Gotting
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Aurelian Stewart
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Ariel M Morrison
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Laurel Payne
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Shin Hatakeyama
- Laboratory of Genetics, Faculty of Science, Shimo-ohkubo 255, Saitama University, Sakura-ward, 338-8570, JAPAN
| | - Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
5
|
Hosseini S, Meunier C, Nguyen D, Reimegård J, Johannesson H. Comparative analysis of genome-wide DNA methylation in Neurospora. Epigenetics 2020; 15:972-987. [PMID: 32228351 PMCID: PMC7518705 DOI: 10.1080/15592294.2020.1741758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
DNA methylation is an epigenetic mark that plays an important role in genetic regulation in eukaryotes. Major progress has been made in dissecting the molecular pathways that regulate DNA methylation. Yet, little is known about DNA methylation variation over evolutionary time. Here we present an investigation of the variation of DNA methylation and transposable element (TE) content in species of the filamentous ascomycetes Neurospora. We generated genome-wide DNA methylation data at single-base resolution, together with genomic TE content and gene expression data, of 10 individuals representing five closely related Neurospora species. We found that the methylation levels were low (ranging from 1.3% to 2.5%) and varied among the genomes in a species-specific way. Furthermore, we found that the TEs over 400 bp long were targeted by DNA methylation, and in all genomes, high methylation correlated with low GC, confirming a conserved link between DNA methylation and Repeat Induced Point (RIP) mutations in this group of fungi. Both TE content and DNA methylation pattern showed phylogenetic signal, and the species with the highest TE load (N. crassa) also exhibited the highest methylation level per TE. Our results suggest that DNA methylation is an evolvable trait and indicate that the genomes of Neurospora are shaped by an evolutionary arms race between TEs and host defence.
Collapse
Affiliation(s)
- Sara Hosseini
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Cécile Meunier
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department ECOBIO, UMR CNRS 6553, Université Rennes 1, Rennes, France
| | - Diem Nguyen
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Johan Reimegård
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Xu L, Jiang H. Writing and Reading Histone H3 Lysine 9 Methylation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:452. [PMID: 32435252 PMCID: PMC7218100 DOI: 10.3389/fpls.2020.00452] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/27/2020] [Indexed: 05/05/2023]
Abstract
In eukaryotes, histone H3 lysine 9 methylation (H3K9me) mediates the silencing of invasive and repetitive sequences by preventing the expression of aberrant gene products and the activation of transposition. In Arabidopsis, while it is well known that dimethylation of histone H3 at lysine 9 (H3K9me2) is maintained through a feedback loop between H3K9me2 and DNA methylation, the details of the H3K9me2-dependent silencing pathway have not been fully elucidated. Recently, the regulation and the function of H3K9 methylation have been extensively characterized. In this review, we summarize work from the recent studies regarding the regulation of H3K9me2, emphasizing the process of deposition and reading and the biological significance of H3K9me2 in Arabidopsis.
Collapse
Affiliation(s)
| | - Hua Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
7
|
Schmitz RJ, Lewis ZA, Goll MG. DNA Methylation: Shared and Divergent Features across Eukaryotes. Trends Genet 2019; 35:818-827. [PMID: 31399242 DOI: 10.1016/j.tig.2019.07.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 02/02/2023]
Abstract
Chemical modification of nucleotide bases in DNA provides one mechanism for conveying information in addition to the genetic code. 5-methylcytosine (5mC) represents the most common chemically modified base in eukaryotic genomes. Sometimes referred to simply as DNA methylation, in eukaryotes 5mC is most prevalent at CpG dinucleotides and is frequently associated with transcriptional repression of transposable elements. However, 5mC levels and distributions are variable across phylogenies, and emerging evidence suggests that the functions of DNA methylation may be more diverse and complex than was previously appreciated. We summarize the current understanding of DNA methylation profiles and functions in different eukaryotic lineages.
Collapse
Affiliation(s)
- Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Zachary A Lewis
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Mary G Goll
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
8
|
Bertazzoni S, Williams AH, Jones DA, Syme RA, Tan KC, Hane JK. Accessories Make the Outfit: Accessory Chromosomes and Other Dispensable DNA Regions in Plant-Pathogenic Fungi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:779-788. [PMID: 29664319 DOI: 10.1094/mpmi-06-17-0135-fi] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Fungal pathogen genomes can often be divided into core and accessory regions. Accessory regions ARs) may be comprised of either ARs (within core chromosomes (CCs) or wholly dispensable (accessory) chromosomes (ACs). Fungal ACs and ARs typically accumulate mutations and structural rearrangements more rapidly over time than CCs and many harbor genes relevant to host-pathogen interactions. These regions are of particular interest in plant pathology and include host-specific virulence factors and secondary metabolite synthesis gene clusters. This review outlines known ACs and ARs in fungal genomes, methods used for their detection, their common properties that differentiate them from the core genome, and what is currently known of their various roles in pathogenicity. Reports on the evolutionary processes generating and shaping AC and AR compartments are discussed, including repeat induced point mutation and breakage fusion bridge cycles. Previously ACs have been studied extensively within key genera, including Fusarium, Zymoseptoria, and Alternaria, but are growing in frequency of observation and perceived importance across a wider range of fungal species. Recent advances in sequencing technologies permit affordable genome assembly and resequencing of populations that will facilitate further discovery and routine screening of ACs.
Collapse
Affiliation(s)
- Stefania Bertazzoni
- 1 Centre for Crop & Disease Management, Curtin University, Perth, Western Australia, Australia; and
| | - Angela H Williams
- 1 Centre for Crop & Disease Management, Curtin University, Perth, Western Australia, Australia; and
| | - Darcy A Jones
- 1 Centre for Crop & Disease Management, Curtin University, Perth, Western Australia, Australia; and
| | - Robert A Syme
- 1 Centre for Crop & Disease Management, Curtin University, Perth, Western Australia, Australia; and
| | - Kar-Chun Tan
- 1 Centre for Crop & Disease Management, Curtin University, Perth, Western Australia, Australia; and
| | - James K Hane
- 1 Centre for Crop & Disease Management, Curtin University, Perth, Western Australia, Australia; and
- 2 Curtin Institute for Computation, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Induction of H3K9me3 and DNA methylation by tethered heterochromatin factors in Neurospora crassa. Proc Natl Acad Sci U S A 2017; 114:E9598-E9607. [PMID: 29078403 DOI: 10.1073/pnas.1715049114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Functionally different chromatin domains display distinct chemical marks. Constitutive heterochromatin is commonly associated with trimethylation of lysine 9 on histone H3 (H3K9me3), hypoacetylated histones, and DNA methylation, but the contributions of and interplay among these features are not fully understood. To dissect the establishment of heterochromatin, we investigated the relationships among these features using an in vivo tethering system in Neurospora crassa Artificial recruitment of the H3K9 methyltransferase DIM-5 (defective in methylation-5) induced H3K9me3 and DNA methylation at a normally active, euchromatic locus but did not bypass the requirement of DIM-7, previously implicated in the localization of DIM-5, indicating additional DIM-7 functionality. Tethered heterochromatin protein 1 (HP1) induced H3K9me3, DNA methylation, and gene silencing. The induced heterochromatin required histone deacetylase 1 (HDA-1), with an intact catalytic domain, but HDA-1 was not essential for de novo heterochromatin formation at native heterochromatic regions. Silencing did not require H3K9me3 or DNA methylation. However, DNA methylation contributed to establishment of H3K9me3 induced by tethered HP1. Our analyses also revealed evidence of regulatory mechanisms, dependent on HDA-1 and DIM-5, to control the localization and catalytic activity of the DNA methyltransferase DIM-2. Our study clarifies the interrelationships among canonical aspects of heterochromatin and supports a central role of HDA-1-mediated histone deacetylation in heterochromatin spreading and gene silencing.
Collapse
|
10
|
Möller M, Stukenbrock EH. Evolution and genome architecture in fungal plant pathogens. Nat Rev Microbiol 2017; 15:756-771. [DOI: 10.1038/nrmicro.2017.76] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Clutterbuck AJ. Genomic CG dinucleotide deficiencies associated with transposable element hypermutation in Basidiomycetes, some lower fungi, a moss and a clubmoss. Fungal Genet Biol 2017; 104:16-28. [PMID: 28438577 DOI: 10.1016/j.fgb.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 12/15/2022]
Abstract
Many Basidiomycete genomes include substantial fractions that are deficient in CG dinucleotides, in extreme cases amounting to 70% of the genome. CG deficiency is variable and correlates with genome size and, more closely, with transposable element (TE) content. Many species have limited CG deficiency; it is therefore likely that there are other mechanisms that can control TE proliferation. Examination of TEs confirms that C-to-T transition mutations in CG dinucleotides may comprise a conspicuous proportion of differences between paired elements, however transition/transversion ratios are never as high as those due to RIP in some Ascomycetes, suggesting that repeat-associated CG mutation is not totally pervasive. This has allowed gene family expansion in Basidiomycetes, although CG transition differences are often prominent in paired gene family members, and are evidently responsible for destruction of some copies. A few lower fungal genomes exhibit similar evidence of repeat-associated CG mutation, as do the genomes of the two lower plants Physcomitrella patens and Selaginella moellendorffii, in both of which mutation parallels published methylation of CHG as well as CG nucleotides. In Basidiomycete DNA methylation has been reported to be largely confined to CG dinucleotides in repetitive DNA, but while methylation and mutation are evidently associated, it is not clear which is cause and which effect.
Collapse
Affiliation(s)
- A John Clutterbuck
- Wolfson Link Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
12
|
Dual chromatin recognition by the histone deacetylase complex HCHC is required for proper DNA methylation in Neurospora crassa. Proc Natl Acad Sci U S A 2016; 113:E6135-E6144. [PMID: 27681634 DOI: 10.1073/pnas.1614279113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA methylation, heterochromatin protein 1 (HP1), histone H3 lysine 9 (H3K9) methylation, histone deacetylation, and highly repeated sequences are prototypical heterochromatic features, but their interrelationships are not fully understood. Prior work showed that H3K9 methylation directs DNA methylation and histone deacetylation via HP1 in Neurospora crassa and that the histone deacetylase complex HCHC is required for proper DNA methylation. The complex consists of the chromodomain proteins HP1 and chromodomain protein 2 (CDP-2), the histone deacetylase HDA-1, and the AT-hook motif protein CDP-2/HDA-1-associated protein (CHAP). We show that the complex is required for proper chromosome segregation, dissect its function, and characterize interactions among its components. Our analyses revealed the existence of an HP1-based DNA methylation pathway independent of its chromodomain. The pathway partially depends on CHAP but not on the CDP-2 chromodomain. CDP-2 serves as a bridge between the recognition of H3K9 trimethylation (H3K9me3) by HP1 and the histone deacetylase activity of HDA-1. CHAP is also critical for HDA-1 localization to heterochromatin. Specifically, the CHAP zinc finger interacts directly with the HDA-1 argonaute-binding protein 2 (Arb2) domain, and the CHAP AT-hook motifs recognize heterochromatic regions by binding to AT-rich DNA. Our data shed light on the interrelationships among the prototypical heterochromatic features and support a model in which dual recognition by the HP1 chromodomain and the CHAP AT-hooks are required for proper heterochromatin formation.
Collapse
|
13
|
Wang YL, Wang ZX, Liu C, Wang SB, Huang B. Genome-wide analysis of DNA methylation in the sexual stage of the insect pathogenic fungus Cordyceps militaris. Fungal Biol 2015; 119:1246-1254. [PMID: 26615747 DOI: 10.1016/j.funbio.2015.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/12/2015] [Accepted: 08/26/2015] [Indexed: 11/19/2022]
Abstract
DNA methylation is a basic epigenetic mechanism found in eukaryotes, but its patterns and roles vary significantly among diverse taxa. In fungi, DNA methylation has various effects on diverse biological processes. However, its function in the sexual development of fungi remains unclear. Cordyceps militaris, readily performs sexual reproduction and thus provides a remarkably rich model for understanding epigenetic processes in sexual development. Here, we surveyed the methylome of C. militaris at single-base resolution to assess DNA methylation patterns during sexual development using genomic bisulfite sequencing (BS-Seq). The results showed that approximately 0.4 % of cytosines are methylated, similar to the DNA methylation level (0.39 %) during asexual development. Importantly, we found that DNA methylation in the fungi undergoes global reprogramming during fungal development. Moreover, RNA-Seq analysis indicated that the differentially methylated regions (DMRs) have no correlation with the genes that have roles during fungal sexual development in C. militaris. These results provide a comprehensive characterization of DNA methylation in the sexual development of C. militaris, which will contribute to future investigations of epigenetics in fungi.
Collapse
Affiliation(s)
- Yu-Long Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China
| | - Zhang-Xun Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Chun Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Si-Bao Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
14
|
Aghcheh RK, Kubicek CP. Epigenetics as an emerging tool for improvement of fungal strains used in biotechnology. Appl Microbiol Biotechnol 2015; 99:6167-81. [PMID: 26115753 DOI: 10.1007/s00253-015-6763-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/07/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Filamentous fungi are today a major source of industrial biotechnology for the production of primary and secondary metabolites, as well as enzymes and recombinant proteins. All of them have undergone extensive improvement strain programs, initially by classical mutagenesis and later on by genetic manipulation. Thereby, strategies to overcome rate-limiting or yield-reducing reactions included manipulating the expression of individual genes, their regulatory genes, and also their function. Yet, research of the last decade clearly showed that cells can also undergo heritable changes in gene expression that do not involve changes in the underlying DNA sequences (=epigenetics). This involves three levels of regulation: (i) DNA methylation, (ii) chromatin remodeling by histone modification, and (iii) RNA interference. The demonstration of the occurrence of these processes in fungal model organisms such as Aspergillus nidulans and Neurospora crassa has stimulated its recent investigation as a tool for strain improvement in industrially used fungi. This review describes the progress that has thereby been obtained.
Collapse
Affiliation(s)
- Razieh Karimi Aghcheh
- Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/166-5, 1060, Vienna, Austria,
| | | |
Collapse
|
15
|
Epigenetics of Fungal Secondary Metabolism Related Genes. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Hane JK, Williams AH, Taranto AP, Solomon PS, Oliver RP. Repeat-Induced Point Mutation: A Fungal-Specific, Endogenous Mutagenesis Process. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10503-1_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Montanini B, Chen PY, Morselli M, Jaroszewicz A, Lopez D, Martin F, Ottonello S, Pellegrini M. Non-exhaustive DNA methylation-mediated transposon silencing in the black truffle genome, a complex fungal genome with massive repeat element content. Genome Biol 2014; 15:411. [PMID: 25091826 PMCID: PMC4165359 DOI: 10.1186/s13059-014-0411-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We investigated how an extremely transposon element (TE)-rich organism such as the plant-symbiotic ascomycete truffle Tuber melanosporum exploits DNA methylation to cope with the more than 45,000 repeated elements that populate its genome. RESULTS Whole-genome bisulfite sequencing performed on different developmental stages reveals a high fraction of methylated cytosines with a strong preference for CpG sites. The methylation pattern is highly similar among samples and selectively targets TEs rather than genes. A marked trend toward hypomethylation is observed for TEs located within a 1 kb distance from expressed genes, rather than segregated in TE-rich regions of the genome. Approximately 300 hypomethylated or unmethylated TEs are transcriptionally active, with higher expression levels in free-living mycelium compared to fruitbody. Indeed, multiple TE-enriched, copy number variant regions bearing a significant fraction of hypomethylated and expressed TEs are found almost exclusively in free-living mycelium. A reduction of DNA methylation, restricted to non-CpG sites and accompanied by an increase in TE expression, is observed upon treatment of free-living mycelia with 5-azacytidine. CONCLUSIONS Evidence derived from analysis of the T. melanosporum methylome indicates that a non-exhaustive, partly reversible, methylation process operates in truffles. This allows for the existence of hypomethylated, transcriptionally active TEs that are associated with copy number variant regions of the genome. Non-exhaustive TE methylation may reflect a role of active TEs in promoting genome plasticity and the ability to adapt to sudden environmental changes.
Collapse
Affiliation(s)
- Barbara Montanini
- />Laboratory of Functional Genomics and Protein Engineering, Biochemistry and Molecular Biology Unit, Department of Life Sciences, University of Parma, Parma, 43124 Italy
| | - Pao-Yang Chen
- />Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan
- />Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095 USA
| | - Marco Morselli
- />Laboratory of Functional Genomics and Protein Engineering, Biochemistry and Molecular Biology Unit, Department of Life Sciences, University of Parma, Parma, 43124 Italy
- />Present address: Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095 USA
| | - Artur Jaroszewicz
- />Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095 USA
| | - David Lopez
- />Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095 USA
| | - Francis Martin
- />Ecogenomics of Interactions’ Lab, UMR “Tree-Microbe Interactions” INRA-Nancy, Champenoux, 54180 France
| | - Simone Ottonello
- />Laboratory of Functional Genomics and Protein Engineering, Biochemistry and Molecular Biology Unit, Department of Life Sciences, University of Parma, Parma, 43124 Italy
| | - Matteo Pellegrini
- />Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
18
|
Guerrero-Bosagna C, Weeks S, Skinner MK. Identification of genomic features in environmentally induced epigenetic transgenerational inherited sperm epimutations. PLoS One 2014; 9:e100194. [PMID: 24937757 PMCID: PMC4061094 DOI: 10.1371/journal.pone.0100194] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/22/2014] [Indexed: 11/19/2022] Open
Abstract
A variety of environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. The process involves exposure of a gestating female and the developing fetus to environmental factors that promote permanent alterations in the epigenetic programming of the germline. The molecular aspects of the phenomenon involve epigenetic modifications (epimutations) in the germline (e.g. sperm) that are transmitted to subsequent generations. The current study integrates previously described experimental epigenomic transgenerational data and web-based bioinformatic analyses to identify genomic features associated with these transgenerationally transmitted epimutations. A previously identified genomic feature associated with these epimutations is a low CpG density (<12/100bp). The current observations suggest the transgenerational differential DNA methylation regions (DMR) in sperm contain unique consensus DNA sequence motifs, zinc finger motifs and G-quadruplex sequences. Interaction of molecular factors with these sequences could alter chromatin structure and accessibility of proteins with DNA methyltransferases to alter de novo DNA methylation patterns. G-quadruplex regions can promote the opening of the chromatin that may influence the action of DNA methyltransferases, or factors interacting with them, for the establishment of epigenetic marks. Zinc finger binding factors can also promote this chromatin remodeling and influence the expression of non-coding RNA. The current study identified genomic features associated with sperm epimutations that may explain in part how these sites become susceptible for transgenerational programming.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- Department of Physics, Biology and Chemistry, Linköping University, Linköping, Sweden
| | - Shelby Weeks
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
19
|
Aramayo R, Selker EU. Neurospora crassa, a model system for epigenetics research. Cold Spring Harb Perspect Biol 2013; 5:a017921. [PMID: 24086046 DOI: 10.1101/cshperspect.a017921] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The filamentous fungus Neurospora crassa has provided a rich source of knowledge on epigenetic phenomena that would have been difficult or impossible to gain from other systems. Neurospora sports features found in higher eukaryotes but absent in both budding and fission yeast, including DNA methylation and H3K27 methylation, and also has distinct RNA interference (RNAi)-based silencing mechanisms operating in mitotic and meiotic cells. This has provided an unexpected wealth of information on gene silencing systems. One silencing mechanism, named repeat-induced point mutation (RIP), has both epigenetic and genetic aspects and provided the first example of a homology-based genome defense system. A second silencing mechanism, named quelling, is an RNAi-based mechanism that results in silencing of transgenes and their native homologs. A third, named meiotic silencing, is also RNAi-based but is distinct from quelling in its time of action, targets, and apparent purpose.
Collapse
Affiliation(s)
- Rodolfo Aramayo
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | | |
Collapse
|
20
|
Gentry M, Meyer P. An 11bp region with stem formation potential is essential for de novo DNA methylation of the RPS element. PLoS One 2013; 8:e63652. [PMID: 23671690 PMCID: PMC3646039 DOI: 10.1371/journal.pone.0063652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/01/2013] [Indexed: 11/19/2022] Open
Abstract
The initiation of DNA methylation in Arabidopsis is controlled by the RNA-directed DNA methylation (RdDM) pathway that uses 24nt siRNAs to recruit de novo methyltransferase DRM2 to the target site. We previously described the REPETITIVE PETUNIA SEQUENCE (RPS) fragment that acts as a hot spot for de novo methylation, for which it requires the cooperative activity of all three methyltransferases MET1, CMT3 and DRM2, but not the RdDM pathway. RPS contains two identical 11nt elements in inverted orientation, interrupted by a 18nt spacer, which resembles the features of a stemloop structure. The analysis of deletion/substitution derivatives of this region showed that deletion of one 11nt element RPS is sufficient to eliminate de novo methylation of RPS. In addition, deletion of a 10nt region directly adjacent to one of the 11nt elements, significantly reduced de novo methylation. When both 11nt regions were replaced by two 11nt elements with altered DNA sequence but unchanged inverted repeat homology, DNA methylation was not affected, indicating that de novo methylation was not targeted to a specific DNA sequence element. These data suggest that de novo DNA methylation is attracted by a secondary structure to which the two 11nt elements contribute, and that the adjacent 10nt region influences the stability of this structure. This resembles the recognition of structural features by DNA methyltransferases in animals and suggests that similar mechanisms exist in plants.
Collapse
Affiliation(s)
- Matthew Gentry
- Center for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | - Peter Meyer
- Center for Plant Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
21
|
Schäfer A, Karaulanov E, Stapf U, Döderlein G, Niehrs C. Ing1 functions in DNA demethylation by directing Gadd45a to H3K4me3. Genes Dev 2013; 27:261-73. [PMID: 23388825 DOI: 10.1101/gad.186916.112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Active DNA demethylation regulates epigenetic gene activation in numerous processes, but how the target site specificity of DNA demethylation is determined and what factors are involved are still poorly understood. Here we show that the tumor suppressor inhibitor of growth protein 1 (Ing1) is required for targeting active DNA demethylation. Ing1 functions by recruiting the regulator of DNA demethylation growth arrest and DNA damage protein 45a (Gadd45a) to histone H3 trimethylated at Lys 4 (H3K4me3). We show that reduced H3K4 methylation impairs recruitment of Gadd45a/Ing1 and gene-specific DNA demethylation. Our results indicate that histone methylation directs DNA demethylation.
Collapse
|
22
|
Heterochromatin is required for normal distribution of Neurospora crassa CenH3. Mol Cell Biol 2011; 31:2528-42. [PMID: 21505064 DOI: 10.1128/mcb.01285-10] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Centromeres serve as platforms for the assembly of kinetochores and are essential for nuclear division. Here we identified Neurospora crassa centromeric DNA by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) of DNA associated with tagged versions of the centromere foundation proteins CenH3 (CENP-A) and CEN-C (CENP-C) and the kinetochore protein CEN-T (CENP-T). On each chromosome we found an ∼150- to 300-kbp region of enrichment for all three proteins. These regions correspond to intervals predicted to be centromeric DNA by genetic mapping and DNA sequence analyses. By ChIP-seq we found extensive colocalization of CenH3, CEN-C, CEN-T, and histone H3K9 trimethylation (H3K9me3). In contrast, H3K4me2, which has been found at the cores of plant, fission yeast, Drosophila, and mammalian centromeres, was not enriched in Neurospora centromeric DNA. DNA methylation was most pronounced at the periphery of centromeric DNA. Mutation of dim-5, which encodes an H3K9 methyltransferase responsible for nearly all H3K9me3, resulted in altered distribution of CenH3-green fluorescent protein (GFP). Similarly, CenH3-GFP distribution was altered in the absence of HP1, the chromodomain protein that binds to H3K9me3. We conclude that eukaryotes with regional centromeres make use of different strategies for maintenance of CenH3 at centromeres, and we suggest a model in which centromere proteins nucleate at the core but require DIM-5 and HP1 for spreading.
Collapse
|
23
|
Lewis ZA, Adhvaryu KK, Honda S, Shiver AL, Knip M, Sack R, Selker EU. DNA methylation and normal chromosome behavior in Neurospora depend on five components of a histone methyltransferase complex, DCDC. PLoS Genet 2010; 6:e1001196. [PMID: 21079689 PMCID: PMC2973830 DOI: 10.1371/journal.pgen.1001196] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 10/04/2010] [Indexed: 01/14/2023] Open
Abstract
Methylation of DNA and of Lysine 9 on histone H3 (H3K9) is associated with gene silencing in many animals, plants, and fungi. In Neurospora crassa, methylation of H3K9 by DIM-5 directs cytosine methylation by recruiting a complex containing Heterochromatin Protein-1 (HP1) and the DIM-2 DNA methyltransferase. We report genetic, proteomic, and biochemical investigations into how DIM-5 is controlled. These studies revealed DCDC, a previously unknown protein complex including DIM-5, DIM-7, DIM-9, CUL4, and DDB1. Components of DCDC are required for H3K9me3, proper chromosome segregation, and DNA methylation. DCDC-defective strains, but not HP1-defective strains, are hypersensitive to MMS, revealing an HP1-independent function of H3K9 methylation. In addition to DDB1, DIM-7, and the WD40 domain protein DIM-9, other presumptive DCAFs (DDB1/CUL4 associated factors) co-purified with CUL4, suggesting that CUL4/DDB1 forms multiple complexes with distinct functions. This conclusion was supported by results of drug sensitivity tests. CUL4, DDB1, and DIM-9 are not required for localization of DIM-5 to incipient heterochromatin domains, indicating that recruitment of DIM-5 to chromatin is not sufficient to direct H3K9me3. DIM-7 is required for DIM-5 localization and mediates interaction of DIM-5 with DDB1/CUL4 through DIM-9. These data support a two-step mechanism for H3K9 methylation in Neurospora.
Collapse
Affiliation(s)
- Zachary A. Lewis
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Keyur K. Adhvaryu
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Shinji Honda
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Anthony L. Shiver
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Marijn Knip
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Ragna Sack
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Eric U. Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
24
|
Tamaru H. Confining euchromatin/heterochromatin territory: jumonji crosses the line. Genes Dev 2010; 24:1465-78. [PMID: 20634313 DOI: 10.1101/gad.1941010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heterochromatin is typically highly condensed, gene-poor, and transcriptionally silent, whereas euchromatin is less condensed, gene-rich, and more accessible to transcription. Besides acting as a graveyard for selfish mobile DNA repeats, heterochromatin contributes to important biological functions, such as chromosome segregation during cell division. Multiple features of heterochromatin-including the presence or absence of specific histone modifications, DNA methylation, and small RNAs-have been implicated in distinguishing heterochromatin from euchromatin in various organisms. Cells malfunction if the genome fails to restrict repressive chromatin marks within heterochromatin domains. How euchromatin and heterochromatin territories are confined remains poorly understood. Recent studies from the fission yeast Schizosaccharomyces pombe, the flowering plant Arabidopsis thaliana, and the filamentous fungus Neurospora crassa have revealed a new role for Jumonji C (JmjC) domain-containing proteins in protecting euchromatin from heterochromatin marks.
Collapse
Affiliation(s)
- Hisashi Tamaru
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
25
|
Rountree MR, Selker EU. DNA methylation and the formation of heterochromatin in Neurospora crassa. Heredity (Edinb) 2010; 105:38-44. [PMID: 20407471 DOI: 10.1038/hdy.2010.44] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Studies of the control and function of DNA methylation in Neurospora crassa have led to a greater understanding of heterochromatin formation. DNA methylation in Neurospora is dependent on trimethylation of histone H3 lysine 9 (H3K9me3) by the histone methyltransferase, DIM-5. The linkage between these two methyl marks is facilitated by heterochromatin protein 1 (HP1), which serves as an adapter protein. HP1 binds to the H3K9me3 and recruits the DNA methyltransferase, DIM-2. Although HP1 links H3K9me3 to DNA methylation, it also serves to recruit the DNA methylation modifier complex to the edges of heterochromatin regions, where it serves to limit the spreading of the heterochromatin by countering H3K9me3.
Collapse
Affiliation(s)
- M R Rountree
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | | |
Collapse
|
26
|
Identification of DIM-7, a protein required to target the DIM-5 H3 methyltransferase to chromatin. Proc Natl Acad Sci U S A 2010; 107:8310-5. [PMID: 20404183 DOI: 10.1073/pnas.1000328107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Functionally distinct chromatin domains are delineated by distinct posttranslational modifications of histones, and in some organisms by differences in DNA methylation. Proper establishment and maintenance of chromatin domains is critical but not well understood. We previously demonstrated that heterochromatin in the filamentous fungus Neurospora crassa is marked by cytosine methylation directed by trimethylated Lysine 9 on histone H3 (H3K9me3). H3K9me3 is the product of the DIM-5 Lysine methyltransferase and is recognized by a protein complex containing heterochromatin protein-1 and the DIM-2 DNA methyltransferase. To identify additional components that control the establishment and function of DNA methylation and heterochromatin, we built a strain harboring two selectable reporter genes that are silenced by DNA methylation and employed this strain to select for mutants that are defective in DNA methylation (dim). We report a previously unidentified gene (dim-7) that is essential for H3K9me3 and DNA methylation. DIM-7 homologs are found only in fungi and are highly divergent. We found that DIM-7 interacts with DIM-5 in vivo and demonstrated that a conserved domain near the N terminus of DIM-7 is required for its stability. In addition, we found that DIM-7 is essential for recruitment of DIM-5 to form heterochromatin.
Collapse
|
27
|
Honda S, Lewis ZA, Huarte M, Cho LY, David LL, Shi Y, Selker EU. The DMM complex prevents spreading of DNA methylation from transposons to nearby genes in Neurospora crassa. Genes Dev 2010; 24:443-54. [PMID: 20139222 DOI: 10.1101/gad.1893210] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transposable elements are common in genomes and must be controlled. Many organisms use DNA methylation to silence such selfish DNA, but the mechanisms that restrict the methylation to appropriate regions are largely unknown. We identified a JmjC domain protein in Neurospora, DNA METHYLATION MODULATOR-1 (DMM-1), that prevents aberrant spreading of DNA and histone H3K9 methylation from inactivated transposons into nearby genes. Mutation of a conserved residue within the JmjC Fe(II)-binding site abolished dmm-1 function, as did mutations in conserved cysteine-rich domains. Mutants defective only in dmm-1 mutants grow poorly, but growth is restored by reduction or elimination of DNA methylation using the drug 5-azacytosine or by mutation of the DNA methyltransferase gene dim-2. DMM-1 relies on an associated protein, DMM-2, which bears a DNA-binding motif, for localization and proper function. HP1 is required to recruit the DMM complex to the edges of methylated regions.
Collapse
Affiliation(s)
- Shinji Honda
- Department of Biology and Institute of Molecular Biology, University of Oregon, Eugene, 97403, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhao Y, Shen Y, Yang S, Wang J, Hu Q, Wang Y, He Q. Ubiquitin ligase components Cullin4 and DDB1 are essential for DNA methylation in Neurospora crassa. J Biol Chem 2009; 285:4355-65. [PMID: 19948733 DOI: 10.1074/jbc.m109.034710] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA methylation and H3K9 trimethylation are involved in gene silencing and heterochromatin assembly in mammals and fungi. In the filamentous fungus Neurospora crassa, it has been demonstrated that H3K9 trimethylation catalyzed by histone methyltransferase DIM-5 is essential for DNA methylation. Trimethylated H3K9 is recognized by HP1, which then recruits the DNA methyltransferase DIM-2 to methylate the DNA. Here, we show that in Neurospora, ubiquitin ligase components Cullin4 and DDB1 are essential for DNA methylation. These proteins regulate DNA methylation through their effects on the trimethylation of histone H3K9. In addition, we showed that the E3 ligase activity of the Cul4-based ubiquitin ligase is required for its function in histone H3K9 trimethylation in Neurospora. Furthermore, we demonstrated that Cul4 and DDB1 are associated with the histone methyltransferase DIM-5 protein in vivo. Together, these results suggest a mechanism for DNA methylation control that may be applicable in other eukaryotic organisms.
Collapse
Affiliation(s)
- Yuanbiao Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. Genome Res 2008; 19:427-37. [PMID: 19092133 DOI: 10.1101/gr.086231.108] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Both RNAi-dependent and -independent mechanisms have been implicated in the establishment of heterochromatin domains, which may be stabilized by feedback loops involving chromatin proteins and modifications of histones and DNA. Neurospora crassa sports features of heterochromatin found in higher eukaryotes, namely cytosine methylation (5mC), methylation of histone H3 lysine 9 (H3K9me), and heterochromatin protein 1 (HP1), and is a model to investigate heterochromatin establishment and maintenance. We mapped the distribution of HP1, 5mC, H3K9me3, and H3K4me2 at 100 bp resolution and explored their interplay. HP1, H3K9me3, and 5mC were extensively co-localized and defined 44 heterochromatic domains on linkage group VII, all relics of repeat-induced point mutation. Interestingly, the centromere was found in an approximately 350 kb heterochromatic domain with no detectable H3K4me2. 5mC was not found in genes, in contrast to the situation in plants and animals. H3K9me3 is required for HP1 localization and DNA methylation in N. crassa. In contrast, we found that localization of H3K9me3 was independent of 5mC or HP1 at virtually all heterochromatin regions. In addition, we observed complete restoration of DNA methylation patterns after depletion and reintroduction of the H3K9 methylation machinery. These data show that A:T-rich RIP'd DNA efficiently directs methylation of H3K9, which in turn, directs methylation of associated cytosines.
Collapse
|
30
|
|
31
|
Smith KM, Kothe GO, Matsen CB, Khlafallah TK, Adhvaryu KK, Hemphill M, Freitag M, Motamedi MR, Selker EU. The fungus Neurospora crassa displays telomeric silencing mediated by multiple sirtuins and by methylation of histone H3 lysine 9. Epigenetics Chromatin 2008; 1:5. [PMID: 19014414 PMCID: PMC2596135 DOI: 10.1186/1756-8935-1-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 11/03/2008] [Indexed: 12/03/2022] Open
Abstract
Background Silencing of genes inserted near telomeres provides a model to investigate the function of heterochromatin. We initiated a study of telomeric silencing in Neurospora crassa, a fungus that sports DNA methylation, unlike most other organisms in which telomeric silencing has been characterized. Results The selectable marker, hph, was inserted at the subtelomere of Linkage Group VR in an nst-1 (neurospora sir two-1) mutant and was silenced when nst-1 function was restored. We show that NST-1 is an H4-specific histone deacetylase. A second marker, bar, tested at two other subtelomeres, was similarly sensitive to nst-1 function. Mutation of three additional SIR2 homologues, nst-2, nst-3 and nst-5, partially relieved silencing. Two genes showed stronger effects: dim-5, which encodes a histone H3 K9 methyltransferase and hpo, which encodes heterochromatin protein-1. Subtelomeres showed variable, but generally low, levels of DNA methylation. Elimination of DNA methylation caused partial derepression of one telomeric marker. Characterization of histone modifications at subtelomeric regions revealed H3 trimethyl-K9, H3 trimethyl-K27, and H4 trimethyl-K20 enrichment. These modifications were slightly reduced when telomeric silencing was compromised. In contrast, acetylation of histones H3 and H4 increased. Conclusion We demonstrate the presence of telomeric silencing in Neurospora and show a dependence on histone deacetylases and methylation of histone H3 lysine 9. Our studies also reveal silencing functions for DIM-5 and HP1 that appear independent of their role in de novo DNA methylation.
Collapse
Affiliation(s)
- Kristina M Smith
- Institute of Molecular Biology and Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Gregory O Kothe
- Institute of Molecular Biology and Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Cindy B Matsen
- Institute of Molecular Biology and Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Tamir K Khlafallah
- Institute of Molecular Biology and Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Keyur K Adhvaryu
- Institute of Molecular Biology and Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Melissa Hemphill
- Institute of Molecular Biology and Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Michael Freitag
- Institute of Molecular Biology and Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - Eric U Selker
- Institute of Molecular Biology and Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
32
|
Lee SH, Kim J, Kim WH, Lee YM. Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene 2008; 28:184-94. [PMID: 18850007 DOI: 10.1038/onc.2008.377] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RUNX3 is a tumor suppressor that is silenced in cancer following hypermethylation of its promoter. The effects of hypoxia in tumor suppressor gene (TSG) transcription are largely unknown. Here, we investigated hypoxia-induced silencing mechanisms of RUNX3. The expression of RUNX3 was downregulated in response to hypoxia in human gastric cancer cells at the transcriptional level. This downregulation was abolished following treatment with the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) and cytosine methylation inhibitor 5-aza-2-deoxycytidine (5-Aza), suggesting that an epigenetic regulatory mechanism may be involved in RUNX3 silencing by hypoxia. DNA methylation PCR and bisulfite-sequencing data revealed that hypoxia did not affect the methylation of RUNX3 promoter. A chromatin immunoprecipitation (ChIP) assay revealed increased histone H3-lysine 9 dimethylation and decreased H3 acetylation in the RUNX3 promoter following hypoxia. Hypoxia resulted in the upregulation of G9a histone methyltransferase (HMT) and HDAC1; additionally, overexpression of G9a and HDAC1 attenuated RUNX3 expression. The overexpression of G9a and HDAC1, but not their mutants, inhibited the nuclear localization and expression of RUNX3. Diminished mRNA expression and nuclear localization of RUNX3 during hypoxia was abolished by siRNA-mediated knockdown of G9a and HDAC1. This study suggests that hypoxia silences RUNX3 by epigenetic histone regulation during the progression of gastric cancer.
Collapse
Affiliation(s)
- S H Lee
- Department of Natural Sciences, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | |
Collapse
|
33
|
Direct interaction between DNA methyltransferase DIM-2 and HP1 is required for DNA methylation in Neurospora crassa. Mol Cell Biol 2008; 28:6044-55. [PMID: 18678653 DOI: 10.1128/mcb.00823-08] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is involved in gene silencing and genomic stability in mammals, plants, and fungi. Genetics studies of Neurospora crassa have revealed that a DNA methyltransferase (DIM-2), a histone H3K9 methyltransferase (DIM-5), and heterochromatin protein 1 (HP1) are required for DNA methylation. We explored the interrelationships of these components of the methylation machinery. A yeast two-hybrid screen revealed that HP1 interacts with DIM-2. We confirmed the interaction in vivo and demonstrated that it involves a pair of PXVXL-related motifs in the N-terminal region of DIM-2 and the chromo shadow domain of HP1. Both regions are essential for proper DNA methylation. We also determined that DIM-2 and HP1 form a stable complex independently of the trimethylation of histone H3K9, although the association of DIM-2 with its substrate sequences depends on trimethyl-H3K9. The DIM-2/HP1 complex does not include DIM-5. We conclude that DNA methylation in Neurospora is largely or exclusively the result of a unidirectional pathway in which DIM-5 methylates histone H3K9 and then the DIM-2/HP1 complex recognizes the resulting trimethyl-H3K9 mark via the chromo domain of HP1.
Collapse
|
34
|
Brown WT, Wu X, Amendola B, Perman M, Han H, Fayad F, Garcia S, Lewin A, Abitbol A, de la Zerda A, Schwade JG. Cancer as a manifestation of aberrant chromatin structure. Cancer J 2007; 13:87-94. [PMID: 17476136 PMCID: PMC3586529 DOI: 10.1097/ppo.0b013e31803c5415] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this article we review many important epigenetic changes in early carcinogenesis and discuss the possibility of these alterations being targeted for therapeutic intervention in the future. Both regional DNA methylation and global chromatin packaging are interrelated partners that function in concert to control gene transcription. We first summarize briefly DNA methylation and its role in gene expression. Then, we focus on how the DNA is packaged into chromatin and the tight relationship between chromatin and DNA methylation. A more complete understanding of these key, regulatory events is vital in approaching a more rational drug therapy to various malignancies.
Collapse
|
35
|
Abstract
Aberrant gene function and altered patterns of gene expression are key features of cancer. Growing evidence shows that acquired epigenetic abnormalities participate with genetic alterations to cause this dysregulation. Here, we review recent advances in understanding how epigenetic alterations participate in the earliest stages of neoplasia, including stem/precursor cell contributions, and discuss the growing implications of these advances for strategies to control cancer.
Collapse
Affiliation(s)
- Peter A. Jones
- Department of Urology, Biochemistry, and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: (P.A.J.), (S.B.B.)
| | - Stephen B. Baylin
- Cancer Biology Program, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
- Correspondence: (P.A.J.), (S.B.B.)
| |
Collapse
|
36
|
Fleetwood DJ, Scott B, Lane GA, Tanaka A, Johnson RD. A complex ergovaline gene cluster in epichloe endophytes of grasses. Appl Environ Microbiol 2007; 73:2571-9. [PMID: 17308187 PMCID: PMC1855613 DOI: 10.1128/aem.00257-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clavicipitaceous fungal endophytes of the genera Epichloë and Neotyphodium form symbioses with grasses of the subfamily Pooideae, in which they can synthesize an array of bioprotective alkaloids. Some strains produce the ergopeptine alkaloid ergovaline, which is implicated in livestock toxicoses caused by ingestion of endophyte-infected grasses. Cloning and analysis of a nonribosomal peptide synthetase (NRPS) gene from Neotyphodium lolii revealed a putative gene cluster for ergovaline biosynthesis containing a single-module NRPS gene, lpsB, and other genes orthologous to genes in the ergopeptine gene cluster of Claviceps purpurea and the clavine cluster of Aspergillus fumigatus. Despite conservation of gene sequence, gene order is substantially different between the N. lolii, C. purpurea, and A. fumigatus ergot alkaloid gene clusters. Southern analysis indicated that the N. lolii cluster was linked with previously identified ergovaline biosynthetic genes dmaW and lpsA. The ergovaline genes are closely associated with transposon relics, including retrotransposons and autonomous and nonautonomous DNA transposons. All genes in the cluster were highly expressed in planta, but expression was very low or undetectable in mycelia from axenic culture. This work provides a genetic foundation for elucidating biochemical steps in the ergovaline pathway, the ecological role of individual ergot alkaloid compounds, and the regulation of their synthesis in planta.
Collapse
Affiliation(s)
- Damien J Fleetwood
- AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
37
|
Baylin SB, Ohm JE. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006; 6:107-16. [PMID: 16491070 DOI: 10.1038/nrc1799] [Citation(s) in RCA: 1184] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromatin alterations have been associated with all stages of tumour formation and progression. The best characterized are epigenetically mediated transcriptional-silencing events that are associated with increases in DNA methylation - particularly at promoter regions of genes that regulate important cell functions. Recent evidence indicates that epigenetic changes might 'addict' cancer cells to altered signal-transduction pathways during the early stages of tumour development. Dependence on these pathways for cell proliferation or survival allows them to acquire genetic mutations in the same pathways, providing the cell with selective advantages that promote tumour progression. Strategies to reverse epigenetic gene silencing might therefore be useful in cancer prevention and therapy.
Collapse
Affiliation(s)
- Stephen B Baylin
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Bunting-Blaustein Cancer Research Building, 1650 Orleans Street, Suite 530, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|
38
|
Abstract
Large-genome eukaryotes use heritable cytosine methylation to silence promoters, especially those associated with transposons and imprinted genes. Cytosine methylation does not reinforce or replace ancestral gene regulation pathways but instead endows methylated genomes with the ability to repress specific promoters in a manner that is buffered against changes in the internal and external environment. Recent studies have shown that the targeting of de novo methylation depends on multiple inputs; these include the interaction of repeated sequences, local states of histone lysine methylation, small RNAs and components of the RNAi pathway, and divergent and catalytically inert cytosine methyltransferase homologues that have acquired regulatory roles. There are multiple families of DNA (cytosine-5) methyltransferases in eukaryotes, and each family appears to be controlled by different regulatory inputs. Sequence-specific DNA-binding proteins, which regulate most aspects of gene expression, do not appear to be involved in the establishment or maintenance of genomic methylation patterns.
Collapse
Affiliation(s)
- Mary Grace Goll
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
39
|
Abstract
Genetic, biochemical and cytological studies on DNA methylation in several eukaryotic organisms have resulted in leaps of understanding in the past three years. Discoveries of mechanistic links between DNA methylation and histone methylation, and between these processes and RNA interference (RNAi) machineries have reinvigorated the field. The details of the connections between DNA methylation, histone modifications and RNA silencing remain to be elucidated, but it is already clear that no single pathway accounts for all DNA methylation found in eukaryotes. Rather, different taxa use one or more of several general mechanisms to control methylation. Despite recent progress, classic questions remain, including: What are the signals for DNA methylation? Are "de novo" and "maintenance" methylation truly separate processes? How is DNA methylation regulated?
Collapse
Affiliation(s)
- Michael Freitag
- Institute of Molecular Biology and Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| | | |
Collapse
|
40
|
Abstract
RNA interference (RNAi) is an evolutionarily conserved mechanism that uses short antisense RNAs that are generated by 'dicing' dsRNA precursors to target corresponding mRNAs for cleavage. However, recent developments have revealed that there is also extensive involvement of RNAi-related processes in regulation at the genome level. dsRNA and proteins of the RNAi machinery can direct epigenetic alterations to homologous DNA sequences to induce transcriptional gene silencing or, in extreme cases, DNA elimination. Furthermore, in some organisms RNAi silences unpaired DNA regions during meiosis. These mechanisms facilitate the directed silencing of specific genomic regions.
Collapse
Affiliation(s)
- Marjori A Matzke
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, UZA2, Pharmazie Zentrum, Althanstrasse 14/2D-541, A-1090 Vienna, Austria.
| | | |
Collapse
|
41
|
Baylin SB, Chen WY. Aberrant gene silencing in tumor progression: implications for control of cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 70:427-33. [PMID: 16869780 DOI: 10.1101/sqb.2005.70.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Although it is clear that genetic alterations are critical for the initiation and maintenance of human cancer, it is also becoming evident that epigenetic changes may be essential for the development of these diseases as well. The best studied of these latter processes is heritable transcriptional repression of genes associated with aberrant DNA hypermethylation of their promoters. Herein we review how very early occurrence of these gene silencing events may contribute to loss of key gene functions which result in disruption of cell regulatory pathways that may contribute to abnormal cell population expansion. These altered regulatory events may then provide a setting where mutations in the same disrupted pathways may be readily selected and serve to lock tumor progression into place. This hypothesis has potential impact on means to prevent and control cancer and for the use of epigenetic markers for cancer risk assessment and early diagnosis.
Collapse
Affiliation(s)
- S B Baylin
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
42
|
Martins RP, Krawetz SA. Towards understanding the epigenetics of transcription by chromatin structure and the nuclear matrix. GENE THERAPY & MOLECULAR BIOLOGY 2005; 9:229-246. [PMID: 21243045 PMCID: PMC3021472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The eukaryotic nucleus houses a significant amount of information that is carefully ordered to ensure that genes can be transcribed as needed throughout development and differentiation. The genome is partitioned into regions containing functional transcription units, providing the means for the cell to selectively activate some, while keeping other regions of the genome silent. Over the last quarter of a century the structure of chromatin and how it is influenced by epigenetics has come into the forefront of modern biology. However, it has thus far failed to identify the mechanism by which individual genes or domains are selected for expression. Through covalent and structural modification of the DNA and chromatin proteins, epigenetics maintains both active and silent chromatin states. This is the "other" genetic code, often superseding that dictated by the nucleotide sequence. The nuclear matrix is rich in many of the factors that govern nuclear processes. It includes a host of unknown factors that may provide our first insight into the structural mechanism responsible for the genetic selectivity of a differentiating cell. This review will consider the nuclear matrix as an integral component of the epigenetic mechanism.
Collapse
Affiliation(s)
- Rui Pires Martins
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Stephen A. Krawetz
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Institute for Scientific Computing, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
43
|
Pratt RJ, Lee DW, Aramayo R. DNA methylation affects meiotic trans-sensing, not meiotic silencing, in Neurospora. Genetics 2004; 168:1925-35. [PMID: 15611165 PMCID: PMC1448707 DOI: 10.1534/genetics.104.031526] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2004] [Accepted: 08/18/2004] [Indexed: 11/18/2022] Open
Abstract
During the early stages of meiosis in Neurospora, the symmetry of homologous chromosomal regions is carefully evaluated by actively trans-sensing their identity. If a DNA region cannot be detected on the opposite homologous chromosome, then this lack of "sensing" activates meiotic silencing, a post-transcriptional gene silencing-like mechanism that silences all genes in the genome with homology to the loop of unpaired DNA, whether they are paired or unpaired. In this work, we genetically dissected the meiotic trans-sensing step from meiotic silencing by demonstrating that DNA methylation affects sensing without interfering with silencing. We also determined that DNA sequence is an important parameter considered during meiotic trans-sensing. Altogether, these observations assign a previously undescribed role for DNA methylation in meiosis and, on the basis of studies in other systems, we speculate the existence of an intimate connection among meiotic trans-sensing, meiotic silencing, and meiotic recombination.
Collapse
Affiliation(s)
- Robert J Pratt
- Department of Biology, College of Science, Texas A&M University, College Station, Texas 77843-3258, USA
| | | | | |
Collapse
|
44
|
Chicas A, Cogoni C, Macino G. RNAi-dependent and RNAi-independent mechanisms contribute to the silencing of RIPed sequences in Neurospora crassa. Nucleic Acids Res 2004; 32:4237-43. [PMID: 15302921 PMCID: PMC514385 DOI: 10.1093/nar/gkh764] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA interference (RNAi) can silence genes at the transcriptional level by targeting locus-specific Lys9H3 methylation or at the post-transcriptional level by targeting mRNA degradation. Here we have cloned and sequenced genomic regions methylated in Lys9H3 in Neurospora crassa to test the requirements for components of the RNAi pathway in this modification. We find that 90% of clones map to repeated sequences and relics of transposons that have undergone repeat-induced point mutations (RIP). We find siRNAs derived from transposon relics indicating that the RNAi machinery targets these regions. This is confirmed by the fact that the presence of these siRNAs depends on components of the RNAi pathway such as the RdRP (QDE-1), the putative RecQ helicase (QDE-3) and the two Dicer enzymes. We show that Lys9H3 methylation of RIP sequences is not affected in mutants of the RNAi pathway indicating that the RNAi machinery is not involved in transcriptional gene silencing in Neurospora. We find that RIP regions are transcribed and that the transcript level increases in the mutants of the RNAi pathway. These data suggest that the biological function of the Neurospora RNAi machinery is to control transposon relics and repeated sequences by targeting degradation of transcripts derived from these regions.
Collapse
Affiliation(s)
- Agustin Chicas
- Istituto Pasteur e Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, Viale Regina Elena, 324, 00161 Roma, Italy
| | | | | |
Collapse
|
45
|
Choquer M, Boccara M, Gonçalves IR, Soulié MC, Vidal-Cros A. Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. ACTA ACUST UNITED AC 2004; 271:2153-64. [PMID: 15153106 DOI: 10.1111/j.1432-1033.2004.04135.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a strategy for systematic amplification of chitin synthase genes (chs) in the filamentous ascomycetes plant-pathogen Botrytis cinerea using PCR with multiple degenerate primers designed on specific and conserved sequence motifs. Eight distinct chs genes were isolated, named Bcchs I, II, IIIa, IIIb, IV, V, VI and VII. They probably constitute the entire chs multigenic family of this fungus, as revealed by careful analysis of six euascomycetes genomes. Bcchs I, IIIa, IIIb, IV and VI genes were subjected to DNA walking and their deduced amino acid sequences were compared by hydrophobic cluster analysis (HCA) to localize putative residues critical for CHS activity. HCA also enabled us to highlight three different transmembrane topologies of the CHS membranous isoenzymes. We found that the N-terminal region of the BcCHSI isoenzyme, and its orthologues in other euascomycetes, probably contain folded peptide motifs with conserved tyrosine residues. Their putative role is discussed. The BcCHSVII isoenzyme appeared to belong to a new class of CHS orthologues that was demonstrated by phylogenetic study to branch apart from division 1 and 2 of CHS.
Collapse
Affiliation(s)
- Mathias Choquer
- UMR 7613 CNRS/Université Paris VI, 4 place Jussieu, 75005 Paris, France
| | | | | | | | | |
Collapse
|
46
|
Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O'Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 2004; 68:1-108. [PMID: 15007097 PMCID: PMC362109 DOI: 10.1128/mmbr.68.1.1-108.2004] [Citation(s) in RCA: 434] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present an analysis of over 1,100 of the approximately 10,000 predicted proteins encoded by the genome sequence of the filamentous fungus Neurospora crassa. Seven major areas of Neurospora genomics and biology are covered. First, the basic features of the genome, including the automated assembly, gene calls, and global gene analyses are summarized. The second section covers components of the centromere and kinetochore complexes, chromatin assembly and modification, and transcription and translation initiation factors. The third area discusses genome defense mechanisms, including repeat induced point mutation, quelling and meiotic silencing, and DNA repair and recombination. In the fourth section, topics relevant to metabolism and transport include extracellular digestion; membrane transporters; aspects of carbon, sulfur, nitrogen, and lipid metabolism; the mitochondrion and energy metabolism; the proteasome; and protein glycosylation, secretion, and endocytosis. Environmental sensing is the focus of the fifth section with a treatment of two-component systems; GTP-binding proteins; mitogen-activated protein, p21-activated, and germinal center kinases; calcium signaling; protein phosphatases; photobiology; circadian rhythms; and heat shock and stress responses. The sixth area of analysis is growth and development; it encompasses cell wall synthesis, proteins important for hyphal polarity, cytoskeletal components, the cyclin/cyclin-dependent kinase machinery, macroconidiation, meiosis, and the sexual cycle. The seventh section covers topics relevant to animal and plant pathogenesis and human disease. The results demonstrate that a large proportion of Neurospora genes do not have homologues in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. The group of unshared genes includes potential new targets for antifungals as well as loci implicated in human and plant physiology and disease.
Collapse
Affiliation(s)
- Katherine A Borkovich
- Department of Plant Pathology, University of California, Riverside, California 92521, USA. Katherine/
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Freitag M, Hickey PC, Khlafallah TK, Read ND, Selker EU. HP1 is essential for DNA methylation in neurospora. Mol Cell 2004; 13:427-34. [PMID: 14967149 DOI: 10.1016/s1097-2765(04)00024-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 12/03/2003] [Accepted: 12/09/2003] [Indexed: 10/26/2022]
Abstract
Methylation of cytosines silences transposable elements and selected cellular genes in mammals, plants, and some fungi. Recent findings have revealed mechanistic connections between DNA methylation and features of specialized condensed chromatin, "heterochromatin." In Neurospora crassa, DNA methylation depends on trimethylation of Lys9 in histone H3 by DIM-5. Heterochromatin protein HP1 binds methylated Lys9 in vitro. We therefore investigated the possibility that a Neurospora HP1 homolog reads the methyl-Lys9 mark to signal DNA methylation. We identified an HP1 homolog and showed that it is essential for DNA methylation, is localized to heterochromatic foci, and that this localization is dependent on the catalytic activity of DIM-5. We conclude that HP1 serves as an adaptor between methylated H3 Lys9 and the DNA methylation machinery. Unlike mutants that lack DNA methyltransferase, mutants with defects in the HP1 gene hpo exhibit severe growth defects, suggesting that HP1 is required for processes besides DNA methylation.
Collapse
Affiliation(s)
- Michael Freitag
- Department of Biology and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403 USA
| | | | | | | | | |
Collapse
|
48
|
Selker EU. Genome defense and DNA methylation in Neurospora. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:119-24. [PMID: 16117640 DOI: 10.1101/sqb.2004.69.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- E U Selker
- Department of Biology and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|