1
|
Takahata S, Taguchi A, Takenaka A, Mori M, Chikashige Y, Tsutsumi C, Hiraoka Y, Murakami Y. The HMG-box module in FACT is critical for suppressing epigenetic variegation of heterochromatin in fission yeast. Genes Cells 2024; 29:567-583. [PMID: 38837646 DOI: 10.1111/gtc.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Chromatin condensation state is the key for retrieving genetic information. High-mobility group protein (HMG) proteins exhibit DNA-binding and bending activities, playing an important role in the regulation of chromatin structure. We have shown that nucleosomes tightly packaged into heterochromatin undergo considerable dynamic histone H2A-H2B maintenance via the direct interaction between HP1/Swi6 and facilitate chromatin transcription (FACT), which is composed of the Spt16/Pob3 heterodimer and Nhp6. In this study, we analyzed the role of Nhp6, an HMG box protein, in the FACT at heterochromatin. Pob3 mutant strains showed derepressed heterochromatin-dependent gene silencing, whereas Nhp6 mutant strains did not show significant defects in chromatin regulation or gene expression, suggesting that these two modules play different roles in chromatin regulation. We expressed a protein fusing Nhp6 to the C-terminus of Pob3, which mimics the multicellular FACT component Ssrp1. The chromatin-binding activity of FACT increased with the number of Nhp6 fused to Pob3, and the heterochromatin formation rate was promoted more strongly. Furthermore, we demonstrated that this promotion of heterochromatinization inhibited the heterochromatic variegation caused by epe1+ disruption. Heterochromatic variegation can be observed in a variety of regulatory steps; however, when it is caused by fluctuations in chromatin arrangement, it can be eliminated through the strong recruitment of the FACT complex.
Collapse
Affiliation(s)
- Shinya Takahata
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Asahi Taguchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Ayaka Takenaka
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Miyuki Mori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Chihiro Tsutsumi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Kamagata K, Ouchi K, Tan C, Mano E, Mandali S, Wu Y, Takada S, Takahashi S, Johnson RC. The HMGB chromatin protein Nhp6A can bypass obstacles when traveling on DNA. Nucleic Acids Res 2020; 48:10820-10831. [PMID: 32997109 PMCID: PMC7641734 DOI: 10.1093/nar/gkaa799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/13/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
DNA binding proteins rapidly locate their specific DNA targets through a combination of 3D and 1D diffusion mechanisms, with the 1D search involving bidirectional sliding along DNA. However, even in nucleosome-free regions, chromosomes are highly decorated with associated proteins that may block sliding. Here we investigate the ability of the abundant chromatin-associated HMGB protein Nhp6A from Saccharomyces cerevisiae to travel along DNA in the presence of other architectural DNA binding proteins using single-molecule fluorescence microscopy. We observed that 1D diffusion by Nhp6A molecules is retarded by increasing densities of the bacterial proteins Fis and HU and by Nhp6A, indicating these structurally diverse proteins impede Nhp6A mobility on DNA. However, the average travel distances were larger than the average distances between neighboring proteins, implying Nhp6A is able to bypass each of these obstacles. Together with molecular dynamics simulations, our analyses suggest two binding modes: mobile molecules that can bypass barriers as they seek out DNA targets, and near stationary molecules that are associated with neighboring proteins or preferred DNA structures. The ability of mobile Nhp6A molecules to bypass different obstacles on DNA suggests they do not block 1D searches by other DNA binding proteins.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Department of Chemistry, Faculty of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Kana Ouchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Cheng Tan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Sridhar Mandali
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737 USA
| | - Yining Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Department of Chemistry, Faculty of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Department of Chemistry, Faculty of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737 USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Yu Y, Yarrington RM, Stillman DJ. FACT and Ash1 promote long-range and bidirectional nucleosome eviction at the HO promoter. Nucleic Acids Res 2020; 48:10877-10889. [PMID: 33010153 PMCID: PMC7641740 DOI: 10.1093/nar/gkaa819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae HO gene is a model regulatory system with complex transcriptional regulation. Budding yeast divide asymmetrically and HO is expressed only in mother cells where a nucleosome eviction cascade along the promoter during the cell cycle enables activation. HO expression in daughter cells is inhibited by high concentration of Ash1 in daughters. To understand how Ash1 represses transcription, we used a myo4 mutation which boosts Ash1 accumulation in both mothers and daughters and show that Ash1 inhibits promoter recruitment of SWI/SNF and Gcn5. We show Ash1 is also required for the efficient nucleosome repopulation that occurs after eviction, and the strongest effects of Ash1 are seen when Ash1 has been degraded and at promoter locations distant from where Ash1 bound. Additionally, we defined a specific nucleosome/nucleosome-depleted region structure that restricts HO activation to one of two paralogous DNA-binding factors. We also show that nucleosome eviction occurs bidirectionally over a large distance. Significantly, eviction of the more distant nucleosomes is dependent upon the FACT histone chaperone, and FACT is recruited to these regions when eviction is beginning. These last observations, along with ChIP experiments involving the SBF factor, suggest a long-distance loop transiently forms at the HO promoter.
Collapse
Affiliation(s)
- Yaxin Yu
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Robert M Yarrington
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Yarrington RM, Yu Y, Yan C, Bai L, Stillman DJ. A Role for Mediator Core in Limiting Coactivator Recruitment in Saccharomyces cerevisiae. Genetics 2020; 215:407-420. [PMID: 32327563 PMCID: PMC7268993 DOI: 10.1534/genetics.120.303254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/21/2020] [Indexed: 01/12/2023] Open
Abstract
Mediator is an essential, multisubunit complex that functions as a transcriptional coactivator in yeast and other eukaryotic organisms. Mediator has four conserved modules, Head, Middle, Tail, and Kinase, and has been implicated in nearly all aspects of gene regulation. The Tail module has been shown to recruit the Mediator complex to the enhancer or upstream activating sequence (UAS) regions of genes via interactions with transcription factors, and the Kinase module facilitates the transition of Mediator from the UAS/enhancer to the preinitiation complex via protein phosphorylation. Here, we analyze expression of the Saccharomyces cerevisiaeHO gene using a sin4 Mediator Tail mutation that separates the Tail module from the rest of the complex; the sin4 mutation permits independent recruitment of the Tail module to promoters without the rest of Mediator. Significant increases in recruitment of the SWI/SNF and SAGA coactivators to the HO promoter UAS were observed in a sin4 mutant, along with increased gene activation. These results are consistent with recent studies that have suggested that the Kinase module functions negatively to inhibit activation by the Tail. However, we found that Kinase module mutations did not mimic the effect of a sin4 mutation on HO expression. This suggests that at HO the core Mediator complex (Middle and Head modules) must play a role in limiting Tail binding to the promoter UAS and gene activation. We propose that the core Mediator complex helps modulate Mediator binding to the UAS regions of genes to limit coactivator recruitment and ensure proper regulation of gene transcription.
Collapse
Affiliation(s)
- Robert M Yarrington
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Yaxin Yu
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Chao Yan
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Lu Bai
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| |
Collapse
|
5
|
Jiang H, Xu S, Chen Y, Li H, Tian L, Zhou H, Zhao Z, Yang C, Zhong Z, Cai G, Su D. The structural basis of human Spt16 N-terminal domain interaction with histone (H3-H4) 2 tetramer. Biochem Biophys Res Commun 2018; 508:864-870. [PMID: 30528735 DOI: 10.1016/j.bbrc.2018.11.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/21/2018] [Indexed: 02/05/2023]
Abstract
FACT (Facilitates Chromatin Transactions) is a heterodimeric protein complex involved in RNA polymerase II transcription elongation, playing essential roles in chromatin remodeling during transcription, replication, and DNA damage repair. The FACT subunit hSpt16 is essential for nucleosome reorganization. The N-terminal domain of hSpt16 (hSpt16-NTD) was recently described as a histone (H3-H4)2-binding domain; however, its mode of interaction remains unknown. In this study, we solved the structure of hSpt16-NTD437 at 2.19 Å and found that a long-disordered region (hSpt16-LDR), after the main body of hSpt16-NTD, is a novel histone-binding motif. Furthermore, hSpt16-LDR interaction with (H3-H4)2 is H3 N-terminal tail-independent. Therefore, Spt16-NTD is a histone H3-H4-specific binding domain with a distinct mechanism of interaction between histones and histone chaperones.
Collapse
Affiliation(s)
- Hua Jiang
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Sidan Xu
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yiping Chen
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Huiyan Li
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Lu Tian
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hongying Zhou
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Zhiwei Zhao
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Zhihui Zhong
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China
| | - Guocai Cai
- Department of Cardiovascular Medicine, The Third Hospital of MianYang (Sichuan Mental Health Center), Sichuan, 621000, PR China
| | - Dan Su
- State Key Lab of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
6
|
Abstract
The efficiency of genome editing with CRISPR-Cas9 can vary widely at different targets and in different cells. Some of this variability may be due to the inherent quality of different guide RNAs, but it may also depend on the cellular context of the genomic target DNA. In this report, we demonstrate that targets bound by nucleosomes are cut much less efficiently than targets from which nucleosomes are absent or have been depleted. This information can inform target selection, particularly in cases where cells are quiescent or nucleosome mobility is limited. Genome editing with CRISPR-Cas nucleases has been applied successfully to a wide range of cells and organisms. There is, however, considerable variation in the efficiency of cleavage and outcomes at different genomic targets, even within the same cell type. Some of this variability is likely due to the inherent quality of the interaction between the guide RNA and the target sequence, but some may also reflect the relative accessibility of the target. We investigated the influence of chromatin structure, particularly the presence or absence of nucleosomes, on cleavage by the Streptococcus pyogenes Cas9 protein. At multiple target sequences in two promoters in the yeast genome, we find that Cas9 cleavage is strongly inhibited when the DNA target is within a nucleosome. This inhibition is relieved when nucleosomes are depleted. Remarkably, the same is not true of zinc-finger nucleases (ZFNs), which cleave equally well at nucleosome-occupied and nucleosome-depleted sites. These results have implications for the choice of specific targets for genome editing, both in research and in clinical and other practical applications.
Collapse
|
7
|
Nucleosomes Are Essential for Proper Regulation of a Multigated Promoter in Saccharomyces cerevisiae. Genetics 2015; 202:551-63. [PMID: 26627840 DOI: 10.1534/genetics.115.183715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022] Open
Abstract
Nucleosome-depleted regions (NDRs) are present immediately adjacent to the transcription start site in most eukaryotic promoters. Here we show that NDRs in the upstream promoter region can profoundly affect gene regulation. Chromatin at the yeast HO promoter is highly repressive and numerous coactivators are required for expression. We modified the HO promoter with segments from the well-studied CLN2 NDR, creating chimeric promoters differing in nucleosome occupancy but with binding sites for the same activator, SBF. Nucleosome depletion resulted in substantial increases in both factor binding and gene expression and allowed activation from a much longer distance, probably by allowing recruited coactivators to act further downstream. Nucleosome depletion also affected sequential activation of the HO promoter; HO activation typically requires the ordered recruitment of activators first to URS1, second to the left-half of URS2 (URS2-L), and finally to the right-half of URS2 (URS2-R), with each region representing distinct gates that must be unlocked to achieve activation. The absence of nucleosomes at URS2-L resulted in promoters no longer requiring both the URS1 and URS2-L gates, as either gate alone is now sufficient to promote binding of the SBF factor to URS2-R. Furthermore, nucleosome depletion at URS2 altered the timing of HO expression and bypassed the regulation that restricts expression to mother cells. Our results reveal insight into how nucleosomes can create a requirement for ordered recruitment of factors to facilitate complex transcriptional regulation.
Collapse
|
8
|
Spatiotemporal cascade of transcription factor binding required for promoter activation. Mol Cell Biol 2014; 35:688-98. [PMID: 25512608 DOI: 10.1128/mcb.01285-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Promoters often contain multiple binding sites for a single factor. The yeast HO gene contains nine highly conserved binding sites for the SCB (Swi4/6-dependent cell cycle box) binding factor (SBF) complex (composed of Swi4 and Swi6) in the 700-bp upstream regulatory sequence 2 (URS2) promoter region. Here, we show that the distal and proximal SBF sites in URS2 function differently. Chromatin immunoprecipitation (ChIP) experiments show that SBF binds preferentially to the left side of URS2 (URS2-L), despite equivalent binding to the left-half and right-half SBF sites in vitro. SBF binding at URS2-L sites depends on prior chromatin remodeling events at the upstream URS1 region. These signals from URS1 influence chromatin changes at URS2 but only at sites within a defined distance. SBF bound at URS2-L, however, is unable to activate transcription but instead facilitates SBF binding to sites in the right half (URS2-R), which are required for transcriptional activation. Factor binding at HO, therefore, follows a temporal cascade, with SBF bound at URS2-L serving to relay a signal from URS1 to the SBF sites in URS2-R that ultimately activate gene expression. Taken together, we describe a novel property of a transcription factor that can have two distinct roles in gene activation, depending on its location within a promoter.
Collapse
|
9
|
Moir RD, Willis IM. Regulation of pol III transcription by nutrient and stress signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:361-75. [PMID: 23165150 DOI: 10.1016/j.bbagrm.2012.11.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 12/29/2022]
Abstract
Transcription by RNA polymerase III (pol III) is responsible for ~15% of total cellular transcription through the generation of small structured RNAs such as tRNA and 5S RNA. The coordinate synthesis of these molecules with ribosomal protein mRNAs and rRNA couples the production of ribosomes and their tRNA substrates and balances protein synthetic capacity with the growth requirements of the cell. Ribosome biogenesis in general and pol III transcription in particular is known to be regulated by nutrient availability, cell stress and cell cycle stage and is perturbed in pathological states. High throughput proteomic studies have catalogued modifications to pol III subunits, assembly, initiation and accessory factors but most of these modifications have yet to be linked to functional consequences. Here we review our current understanding of the major points of regulation in the pol III transcription apparatus, the targets of regulation and the signaling pathways known to regulate their function. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Robyn D Moir
- Departments of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
10
|
Acker J, Conesa C, Lefebvre O. Yeast RNA polymerase III transcription factors and effectors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:283-95. [PMID: 23063749 DOI: 10.1016/j.bbagrm.2012.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Recent data indicate that the well-defined transcription machinery of RNA polymerase III (Pol III) is probably more complex than commonly thought. In this review, we describe the yeast basal transcription factors of Pol III and their involvements in the transcription cycle. We also present a list of proteins detected on genes transcribed by Pol III (class III genes) that might participate in the transcription process. Surprisingly, several of these proteins are involved in RNA polymerase II transcription. Defining the role of these potential new effectors in Pol III transcription in vivo will be the challenge of the next few years. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Joël Acker
- CEA, iBiTecS, Gif Sur Yvette, F-91191, France
| | | | | |
Collapse
|
11
|
Duina AA. Histone Chaperones Spt6 and FACT: Similarities and Differences in Modes of Action at Transcribed Genes. GENETICS RESEARCH INTERNATIONAL 2011; 2011:625210. [PMID: 22567361 PMCID: PMC3335715 DOI: 10.4061/2011/625210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/16/2011] [Indexed: 01/08/2023]
Abstract
The process of gene transcription requires the participation of a large number of factors that collectively promote the accurate and efficient expression of an organism's genetic information. In eukaryotic cells, a subset of these factors can control the chromatin environments across the regulatory and transcribed units of genes to modulate the transcription process and to ensure that the underlying genetic information is utilized properly. This article focuses on two such factors-the highly conserved histone chaperones Spt6 and FACT-that play critical roles in managing chromatin during the gene transcription process. These factors have related but distinct functions during transcription and several recent studies have provided exciting new insights into their mechanisms of action at transcribed genes. A discussion of their respective roles in regulating gene transcription, including their shared and unique contributions to this process, is presented.
Collapse
Affiliation(s)
- Andrea A Duina
- Biology Department, Hendrix College, 1600 Washington Avenue, Conway, AR 72032, USA
| |
Collapse
|
12
|
Takahata S, Yu Y, Stillman DJ. Repressive chromatin affects factor binding at yeast HO (homothallic switching) promoter. J Biol Chem 2011; 286:34809-19. [PMID: 21840992 DOI: 10.1074/jbc.m111.281626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast HO gene is tightly regulated, with multiple activators and coactivators needed to overcome repressive chromatin structures that form over this promoter. Coactivator binding is strongly interdependent, as loss of one factor sharply reduces recruitment of other factors. The Rpd3(L) histone deacetylase is recruited to HO at two distinct times during the cell cycle, first by Ash1 to the URS1 region of the promoter and then by SBF/Whi5/Stb1 to URS2. SBF itself is localized to only a subset of its potential binding sites in URS2, and this localization takes longer and is less robust than at other SBF target genes, suggesting that binding to the HO promoter is limited by chromatin structures that dynamically change as the cell cycle progresses. Ash1 only binds at the URS1 region of the promoter, but an ash1 mutation results in markedly increased binding of SBF and Rpd3(L) at URS2, some 450 bp distant from the site of Ash1 binding, suggesting these two regions of the promoter interact. An ash1 mutation also results in increased coactivator recruitment, Swi/Snf and Mediator localization in the absence of the normally required Gcn5 histone acetyltransferase, and HO expression even in the presence of a taf1 mutation affecting TFIID activity that otherwise blocks HO transcription. Ash1 therefore appears to play a central role in generating the strongly repressive environment at the HO promoter, which limits the binding of several coactivators at URS2 and TATA region.
Collapse
Affiliation(s)
- Shinya Takahata
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
13
|
Stillman DJ. Nhp6: a small but powerful effector of chromatin structure in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:175-80. [PMID: 20123079 DOI: 10.1016/j.bbagrm.2009.11.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/28/2009] [Accepted: 11/03/2009] [Indexed: 10/19/2022]
Abstract
The small Nhp6 protein from budding yeast is an abundant protein that binds DNA non-specifically and bends DNA sharply. It contains only a single HMGB domain that binds DNA in the minor groove and a basic N-terminal extension that wraps around DNA to contact the major groove. This review describes the genetic and biochemical experiments that indicate Nhp6 functions in promoting RNA pol III transcription, in formation of preinitiation complexes at promoters transcribed by RNA pol II, and in facilitating the activity of chromatin modifying complexes. The FACT complex may provide a paradigm for how Nhp6 functions with chromatin factors, as Nhp6 allows Spt16-Pob3 to bind to and reorganize nucleosomes in vitro.
Collapse
Affiliation(s)
- David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| |
Collapse
|
14
|
The E2F functional analogue SBF recruits the Rpd3(L) HDAC, via Whi5 and Stb1, and the FACT chromatin reorganizer, to yeast G1 cyclin promoters. EMBO J 2009; 28:3378-89. [PMID: 19745812 DOI: 10.1038/emboj.2009.270] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/13/2009] [Indexed: 11/09/2022] Open
Abstract
Regulation of the CLN1 and CLN2 G1 cyclin genes controls cell cycle progression. The SBF activator binds to these promoters but is kept inactive by the Whi5 and Stb1 inhibitors. The Cdc28 cyclin-dependent kinase phosphorylates Whi5, ending the inhibition. Our chromatin immunoprecipitation (ChIP) experiments show that SBF, Whi5 and Stb1 recruit both Cdc28 and the Rpd3(L) histone deacetylase to CLN promoters, extending the analogy with mammalian G1 cyclin promoters in which Rb recruits histone deacetylases. Finally, we show that the SBF subunit Swi6 recruits the FACT chromatin reorganizer to SBF- and MBF-regulated genes. Mutations affecting FACT reduce the transient nucleosome eviction seen at these promoters during a normal cell cycle and also reduce expression. Temperature-sensitive mutations affecting FACT and Cdc28 can be suppressed by disruption of STB1 and WHI5, suggesting that one critical function of FACT and Cdc28 is overcoming chromatin repression at G1 cyclin promoters. Thus, SBF recruits complexes to promoters that either enhance (FACT) or repress (Rpd3L) accessibility to chromatin, and also recruits the kinase that activates START.
Collapse
|
15
|
FACT and Asf1 regulate nucleosome dynamics and coactivator binding at the HO promoter. Mol Cell 2009; 34:405-15. [PMID: 19481521 DOI: 10.1016/j.molcel.2009.04.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/10/2009] [Accepted: 04/09/2009] [Indexed: 11/23/2022]
Abstract
Transcriptional activators and coactivators overcome repression by chromatin, but regulation of chromatin disassembly and coactivator binding to promoters is poorly understood. Activation of the yeast HO gene follows the sequential binding of both sequence-specific DNA-binding proteins and coactivators during the cell cycle. Here, we show that the nucleosome disassembly occurs in waves both along the length of the promoter and during the cell cycle. Different chromatin modifiers are required for chromatin disassembly at different regions of the promoter, with Swi/Snf, the FACT chromatin reorganizer, and the Asf1 histone chaperone each required for nucleosome eviction at distinct promoter regions. FACT and Asf1 both bind to upstream elements of the HO promoter well before the gene is transcribed. The Swi/Snf, SAGA, and Mediator coactivators bind first to the far upstream promoter region and subsequently to a promoter proximal region, and FACT and Asf1 are both required for this coactivator re-recruitment.
Collapse
|
16
|
Different genetic functions for the Rpd3(L) and Rpd3(S) complexes suggest competition between NuA4 and Rpd3(S). Mol Cell Biol 2008; 28:4445-58. [PMID: 18490440 DOI: 10.1128/mcb.00164-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rpd3(L) and Rpd3(S) are distinct multisubunit complexes containing the Rpd3 histone deacetylase. Disruption of the GCN5 histone acetyltransferase gene shows a strong synthetic phenotype when combined with either an sds3 mutation affecting only the Rpd3(L) complex or an rco1 mutation affecting only Rpd3(S). However, these synthetic growth defects are not seen in a gcn5 sds3 rco1 triple mutant, suggesting that the balance between Rpd3(L) and Rpd3(S) is critical in cells lacking Gcn5. Different genetic interactions are seen with mutations affecting the FACT chromatin reorganizing complex. An sds3 mutation affecting only Rpd3(L) has a synthetic defect with FACT mutants, while rco1 and eaf3 mutations affecting Rpd3(S) suppress FACT mutant phenotypes. Rpd3(L) therefore acts in concert with FACT, but Rpd3(S) opposes it. Combining FACT mutations with mutations in the Esa1 subunit of the NuA4 histone acetyltransferase results in synthetic growth defects, and these can be suppressed by an rco1 or set2 mutation. An rco1 mutation suppresses phenotypes caused by mutations in the ESA1 and ARP4 subunits of NuA4, while Rco1 overexpression exacerbates these defects. These results suggest a model in which NuA4 and Rpd3(S) compete. Chromatin immunoprecipitation experiments show that eliminating Rpd3(S) increases the amount of NuA4 binding to the ARG3 promoter during transcriptional activation and to the sites of DNA repair induced by a double-strand break. Our results suggest that the Rpd3(L) and Rpd3(S) complexes have distinct functions in vivo and that the relative amounts of the two forms alter the effectiveness of other chromatin-altering complexes, such as FACT and NuA4.
Collapse
|
17
|
Lemieux K, Larochelle M, Gaudreau L. Variant histone H2A.Z, but not the HMG proteins Nhp6a/b, is essential for the recruitment of Swi/Snf, Mediator, and SAGA to the yeast GAL1 UAS(G). Biochem Biophys Res Commun 2008; 369:1103-7. [PMID: 18331823 DOI: 10.1016/j.bbrc.2008.02.144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
Abstract
Chromatin architecture is very important for the regulation of transcriptional activation. Here, we investigated the role of two different chromatin components, the histone variant H2A.Z and HMG proteins Nhp6a/b, in regulating GAL1 gene expression. We have shown that recruitment of the Mediator complex is significantly affected in the absence of H2A.Z. Furthermore, H2A.Z is also required to fully recruit the SAGA and Swi/Snf complexes to the yeast GAL1-10 UAS(G). On the other hand, the HMG protein Nhp6a/b is not required to recruit the aforementioned components to the GAL1 promoter. The Nhp6 protein has been shown to interact with nucleosomes, and we show that its distribution is unaffected in the absence of H2A.Z. Our results suggest that the incorporation of the histone variant H2A.Z, but not the HMG proteins Nhp6a/b, in promoter regions creates a specialized chromatin domain that is required for pre-initiation complex assembly at the GAL1 locus.
Collapse
Affiliation(s)
- Karine Lemieux
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Que., Canada
| | | | | |
Collapse
|
18
|
Sbia M, Parnell EJ, Yu Y, Olsen AE, Kretschmann KL, Voth WP, Stillman DJ. Regulation of the yeast Ace2 transcription factor during the cell cycle. J Biol Chem 2008; 283:11135-45. [PMID: 18292088 DOI: 10.1074/jbc.m800196200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have revealed many parallels in the cell cycle regulation of the Ace2 and Swi5 transcription factors. Although both proteins begin entry into the nucleus near the start of mitosis, here we show that Ace2 accumulates in the nucleus and binds DNA about 10 min later in the cell cycle than Swi5. We used chimeric fusions to identify the N-terminal region of Ace2 as responsible for the delay, and this same region of Ace2 was required for interaction with Cbk1, a kinase necessary for both transcriptional activation by Ace2 and asymmetric distribution of Ace2. Ace2 and Swi5 also showed differences in prevalence during the cell cycle. Swi5 is apparently degraded soon after nuclear entry, whereas constant Ace2 levels throughout the cell cycle suggest Ace2 is exported from the nucleus. Our work suggests that the precise timing of Ace2 accumulation in the nucleus involves both a nuclear export sequence and a nuclear localization signal, whose activities are regulated by phosphorylation.
Collapse
Affiliation(s)
- Mohammed Sbia
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Kasahara K, Ki S, Aoyama K, Takahashi H, Kokubo T. Saccharomyces cerevisiae HMO1 interacts with TFIID and participates in start site selection by RNA polymerase II. Nucleic Acids Res 2008; 36:1343-57. [PMID: 18187511 PMCID: PMC2275077 DOI: 10.1093/nar/gkm1068] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Saccharomyces cerevisiae HMO1, a high mobility group B (HMGB) protein, associates with the rRNA locus and with the promoters of many ribosomal protein genes (RPGs). Here, the Sos recruitment system was used to show that HMO1 interacts with TBP and the N-terminal domain (TAND) of TAF1, which are integral components of TFIID. Biochemical studies revealed that HMO1 copurifies with TFIID and directly interacts with TBP but not with TAND. Deletion of HMO1 (Δhmo1) causes a severe cold-sensitive growth defect and decreases transcription of some TAND-dependent genes. Δhmo1 also affects TFIID occupancy at some RPG promoters in a promoter-specific manner. Interestingly, over-expression of HMO1 delays colony formation of taf1 mutants lacking TAND (taf1ΔTAND), but not of the wild-type strain, indicating a functional link between HMO1 and TAND. Furthermore, Δhmo1 exhibits synthetic growth defects in some spt15 (TBP) and toa1 (TFIIA) mutants while it rescues growth defects of some sua7 (TFIIB) mutants. Importantly, Δhmo1 causes an upstream shift in transcriptional start sites of RPS5, RPS16A, RPL23B, RPL27B and RPL32, but not of RPS31, RPL10, TEF2 and ADH1, indicating that HMO1 may participate in start site selection of a subset of class II genes presumably via its interaction with TFIID.
Collapse
Affiliation(s)
- Koji Kasahara
- Division of Molecular and Cellular Biology, International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, 230-0045, Japan
| | | | | | | | | |
Collapse
|
20
|
Voth WP, Yu Y, Takahata S, Kretschmann KL, Lieb JD, Parker RL, Milash B, Stillman DJ. Forkhead proteins control the outcome of transcription factor binding by antiactivation. EMBO J 2007; 26:4324-34. [PMID: 17898805 PMCID: PMC2034669 DOI: 10.1038/sj.emboj.7601859] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 08/24/2007] [Indexed: 12/23/2022] Open
Abstract
Transcription factors with identical DNA-binding specificity often activate different genes in vivo. Yeast Ace2 and Swi5 are such activators, with targets we classify as Swi5-only, Ace2-only, or both. We define two unique regulatory modes. Ace2 and Swi5 both bind in vitro to Swi5-only genes such as HO, but only Swi5 binds and activates in vivo. In contrast, Ace2 and Swi5 both bind in vivo to Ace2-only genes, such as CTS1, but promoter-bound Swi5 fails to activate. We show that activation by Swi5 is prevented by the binding of the Forkhead factors Fkh1 and Fkh2, which recruit the Rpd3(Large) histone deacetylase complex to the CTS1 promoter. Global analysis shows that all Ace2-only genes are bound by both Ace2 and Swi5, and also by Fkh1/2. Genes normally activated by either Ace2 or Swi5 can be converted to Ace2-only genes by the insertion of Fkh-binding sites. Thus Fkh proteins, which function initially to activate SWI5 and ACE2, subsequently function as Swi5-specific antiactivators.
Collapse
Affiliation(s)
- Warren P Voth
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Yaxin Yu
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Shinya Takahata
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Kelsi L Kretschmann
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Jason D Lieb
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca L Parker
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Brett Milash
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, 15 N Medical Drive East, Salt Lake City, UT 84112, USA. Tel.: +1 801 581 5429; Fax: +1 801 581 4517; E-mail:
| |
Collapse
|
21
|
Biswas D, Dutta-Biswas R, Stillman DJ. Chd1 and yFACT act in opposition in regulating transcription. Mol Cell Biol 2007; 27:6279-87. [PMID: 17620414 PMCID: PMC2099615 DOI: 10.1128/mcb.00978-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CHD1 encodes an ATP-dependent chromatin remodeler with two chromodomains. Deletion of CHD1 suppresses the temperature-sensitive growth defect caused by mutations in either SPT16 or POB3, which encode subunits of the yFACT chromatin-reorganizing complex. chd1 also suppresses synthetic defects caused by combining an spt16 mutation with other transcription factor mutations, including the synthetic lethality caused by combining an spt16 mutation with TATA binding protein (TBP) or TFIIA defects. Binding of TBP and RNA polymerase II to the GAL1 promoter is reduced in a pob3 mutant, resulting in low levels of GAL1 expression, and all three defects are suppressed by removing Chd1. These results suggest that Chd1 and yFACT have opposing roles in regulating TBP binding at promoters. Additionally, overexpression of Chd1 is tolerated in wild-type cells but is toxic in spt16 mutants. Further, both the ATPase and chromodomain are required for Chd1 activity in opposing yFACT function. Similar to the suppression by chd1, mutations in the SET2 histone methyltransferase also suppress defects caused by yFACT mutations. chd1 and set2 are additive in suppressing pob3, suggesting that Chd1 and Set2 act in distinct pathways. Although human Chd1 has been shown to bind to H3-K4-Me, we discuss evidence arguing that yeast Chd1 binds to neither H3-K4-Me nor H3-K36-Me.
Collapse
Affiliation(s)
- Debabrata Biswas
- Department of Pathology, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
22
|
Braglia P, Dugas SL, Donze D, Dieci G. Requirement of Nhp6 proteins for transcription of a subset of tRNA genes and heterochromatin barrier function in Saccharomyces cerevisiae. Mol Cell Biol 2006; 27:1545-57. [PMID: 17178828 PMCID: PMC1820459 DOI: 10.1128/mcb.00773-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A key event in tRNA gene (tDNA) transcription by RNA polymerase (Pol) III is the TFIIIC-dependent assembly of TFIIIB upstream of the transcription start site. Different tDNA upstream sequences bind TFIIIB with different affinities, thereby modulating tDNA transcription. We found that in the absence of Nhp6 proteins, the influence of the 5'-flanking region on tRNA gene transcription is dramatically enhanced in Saccharomyces cerevisiae. Expression of a tDNA bearing a suboptimal TFIIIB binding site, but not of a tDNA preceded by a strong TFIIIB binding region, was strongly dependent on Nhp6 in vivo. Upstream sequence-dependent stimulation of tRNA gene transcription by Nhp6 could be reproduced in vitro, and Nhp6 proteins were found associated with tRNA genes in yeast cells. We also show that both transcription and silencing barrier activity of a tDNA(Thr) at the HMR locus are compromised in the absence of Nhp6. Our data suggest that Nhp6 proteins are important components of Pol III chromatin templates that contribute both to the robustness of tRNA gene expression and to positional effects of Pol III transcription complexes.
Collapse
Affiliation(s)
- Priscilla Braglia
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23A, 43100 Parma, Italy
| | | | | | | |
Collapse
|
23
|
Biswas D, Dutta-Biswas R, Mitra D, Shibata Y, Strahl BD, Formosa T, Stillman DJ. Opposing roles for Set2 and yFACT in regulating TBP binding at promoters. EMBO J 2006; 25:4479-89. [PMID: 16977311 PMCID: PMC1589996 DOI: 10.1038/sj.emboj.7601333] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 08/02/2006] [Indexed: 01/27/2023] Open
Abstract
Previous work links histone methylation by Set2 with transcriptional elongation. yFACT (Spt16-Pob3 and Nhp6) reorganizes nucleosomes and functions in both transcriptional initiation and elongation. We show that growth defects caused by spt16 or pob3 mutations can be suppressed by deleting SET2, suggesting that Set2 and yFACT have opposing roles. Set2 methylates K36 of histone H3, and K36 substitutions also suppress yFACT mutations. In contrast, set1 enhances yFACT mutations. Methylation at H3 K4 by Set1 is required for set2 to suppress yFACT defects. We did not detect an elongation defect at an 8 kb ORF in yFACT mutants. Instead, pob3 mutants displayed reduced binding of both pol II and TBP to the GAL1 promoter. Importantly, both GAL1 transcription and promoter binding of pol II and TBP are significantly restored in the pob3 set2 double mutant. Defects caused by an spt16 mutation are enhanced by either TBP or TFIIA mutants. These synthetic defects are suppressed by set2, demonstrating that yFACT and Set2 oppose one another during transcriptional initiation at a step involving DNA binding by TBP and TFIIA.
Collapse
Affiliation(s)
- Debabrata Biswas
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Rinku Dutta-Biswas
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Doyel Mitra
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Yoichiro Shibata
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Tim Formosa
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| |
Collapse
|
24
|
Mitra D, Parnell EJ, Landon JW, Yu Y, Stillman DJ. SWI/SNF binding to the HO promoter requires histone acetylation and stimulates TATA-binding protein recruitment. Mol Cell Biol 2006; 26:4095-110. [PMID: 16705163 PMCID: PMC1489090 DOI: 10.1128/mcb.01849-05] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We use chromatin immunoprecipitation assays to show that the Gcn5 histone acetyltransferase in SAGA is required for SWI/SNF association with the HO promoter and that binding of SWI/SNF and SAGA are interdependent. Previous results showed that SWI/SNF binding to HO was Gcn5 independent, but that work used a strain with a mutation in the Ash1 daughter-specific repressor of HO expression. Here, we show that Ash1 functions as a repressor that inhibits SWI/SNF binding and that Gcn5 is required to overcome Ash1 repression in mother cells to allow HO transcription. Thus, Gcn5 facilitates SWI/SNF binding by antagonizing Ash1. Similarly, a mutation in SIN3, like an ash1 mutation, allows both HO expression and SWI/SNF binding in the absence of Gcn5. Although Ash1 has recently been identified in a Sin3-Rpd3 complex, our genetic analysis shows that Ash1 and Sin3 have distinct functions in regulating HO. Analysis of mutant strains shows that SWI/SNF binding and HO expression are correlated and regulated by histone acetylation. The defect in HO expression caused by a mutant SWI/SNF with a Swi2(E834K) substitution can be partially suppressed by ash1 or spt3 mutation or by a gain-of-function V71E substitution in the TATA-binding protein (TBP). Spt3 inhibits TBP binding at HO, and genetic analysis suggests that Spt3 and TBP(V71E) act in the same pathway, distinct from that of Ash1. We have detected SWI/SNF binding at the HO TATA region, and our results suggest that SWI/SNF, either directly or indirectly, facilitates TBP binding at HO.
Collapse
Affiliation(s)
- Doyel Mitra
- Department of Pathology, University of Utah, 15 North Medical Drive East, Salt Lake City, UT 84132-2501, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
The factors required for the delivery of RNA polymerase II to class II promoters using naked DNA were all identified by 1998, yet their exact mechanisms of action were not fully understood in all cases, and in some instances, their precise function still remains unknown. Nonetheless, a complete understanding of the complexity of the RNA polymerase II transcription cycle necessitated the development of assays that include chromatinized DNA templates. At this time, the field was actively searching for factors that allow transcription initiation on chromatinized templates. We began studies using chromatin templates in an attempt to identify factor(s) that permit RNA polymerase II to traverse nucleosomes, i.e. that allow elongation on chromatinized DNA templates. The challenge herein was to develop an assay that directly measured the ability of transcriptionally engaged RNA polymerase II to traverse nucleosomes. This approach resulted in the isolation of FACT, a heterodimer in humans comprised of Spt16 and SSRP1. Defined functional biochemical assays corroborated genetic studies in yeast that allowed the elucidation of FACT function in vivo. Collectively, these approaches demonstrate that FACT is a factor that allows RNA polymerase II to traverse nucleosomes in vitro and in vivo by removing one H2A/H2B dimer. More recent studies using a fully defined chromatin reconstitution/transcription assay revealed that FACT activity is greatly stimulated by post-translational modification of the histone polypeptides, specifically by monoubiquitination of lysine 120 of human histone H2B.
Collapse
Affiliation(s)
- Danny Reinberg
- Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
26
|
Morillo-Huesca M, Vanti M, Chávez S. A simple in vivo assay for measuring the efficiency of gene length-dependent processes in yeast mRNA biogenesis. FEBS J 2006; 273:756-69. [PMID: 16441662 DOI: 10.1111/j.1742-4658.2005.05108.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed a simple reporter assay useful for detection and analysis of mutations and agents influencing mRNA biogenesis in a gene length-dependent manner. We have shown that two transcription units sharing the same promoter, terminator and open reading frame, but differing in the length of their 3'-untranslated regions, are differentially influenced by mutations affecting factors that play a role in transcription elongation or RNA processing all along the transcription units. In contrast, those mutations impairing the initial steps of transcription, but not affecting later steps of mRNA biogenesis, influence equally the expression of the reporters, independently of the length of their 3'-untranslated regions. The ratio between the product levels of the two transcription units is an optimal parameter with which to estimate the efficiency of gene length-dependent processes in mRNA biogenesis. The presence of a phosphatase-encoding open reading frame in the two transcription units makes it very easy to calculate this ratio in any mutant or physiological condition. Interestingly, using this assay, we have shown that mutations in components of the SAGA complex affect the level of mRNA in a transcript length-dependent fashion, suggesting a role for SAGA in transcription elongation. The use of this assay allows the identification and/or characterization of new mutants and drugs affecting transcription elongation and other related processes.
Collapse
|
27
|
Kassavetis GA, Steiner DF. Nhp6 is a transcriptional initiation fidelity factor for RNA polymerase III transcription in vitro and in vivo. J Biol Chem 2006; 281:7445-51. [PMID: 16407207 DOI: 10.1074/jbc.m512810200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of the RNA polymerase III (pol III) transcription factor TFIIIC to the box A intragenic promoter element of tRNA genes specifies the placement of TFIIIB on upstream-lying DNA. In turn, TFIIIB recruits pol III to the promoter and specifies transcription initiating 17-19 base pairs upstream of box A. The resolution of the pol III transcription apparatus into recombinant TFIIIB, highly purified TFIIIC, and pol III is accompanied by a loss of precision in specifying where transcription initiation occurs due to heterogeneous placement of TFIIIB. In this paper we show that Nhp6a, an abundant high mobility group B (HMGB) family, non-sequence-specific DNA-binding protein in Saccharomyces cerevisiae restores transcriptional initiation fidelity to this highly purified in vitro system. Restoration of initiation fidelity requires the presence of Nhp6a prior to TFIIIB-DNA complex formation. Chemical nuclease footprinting of TFIIIC- and TFIIIB-TFIIIC-DNA complexes reveals that Nhp6a markedly alters the TFIIIC footprint over box A and reduces the size of the TFIIIB footprint on upstream DNA sequence. Analyses of unprocessed tRNAs from yeast lacking Nhp6a and its closely related paralogue Nhp6b demonstrate that Nhp6 is required for transcriptional initiation fidelity of some but not all tRNA genes, in vivo.
Collapse
Affiliation(s)
- George A Kassavetis
- Division of Biological Sciences and Center for Molecular Genetics, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
28
|
Biswas D, Yu Y, Mitra D, Stillman DJ. Genetic interactions between Nhp6 and Gcn5 with Mot1 and the Ccr4-Not complex that regulate binding of TATA-binding protein in Saccharomyces cerevisiae. Genetics 2005; 172:837-49. [PMID: 16272410 PMCID: PMC1456248 DOI: 10.1534/genetics.105.050245] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our previous work suggests that the Nhp6 HMGB protein stimulates RNA polymerase II transcription via the TATA-binding protein TBP and that Nhp6 functions in the same functional pathway as the Gcn5 histone acetyltransferase. In this report we examine the genetic relationship between Nhp6 and Gcn5 with the Mot1 and Ccr4-Not complexes, both of which have been implicated in regulating DNA binding by TBP. We find that combining either a nhp6ab or a gcn5 mutation with mot1, ccr4, not4, or not5 mutations results in lethality. Combining spt15 point mutations (in TBP) with either mot1 or ccr4 also results in either a growth defect or lethality. Several of these synthetic lethalities can be suppressed by overexpression of TFIIA, TBP, or Nhp6, suggesting that these genes facilitate formation of the TBP-TFIIA-DNA complex. The growth defect of a not5 mutant can be suppressed by a mot1 mutant. HO gene expression is reduced by nhp6ab, gcn5, or mot1 mutations, and the additive decreases in HO mRNA levels in nhp6ab mot1 and gcn5 mot1 strains suggest different modes of action. Chromatin immunoprecipitation experiments show decreased binding of TBP to promoters in mot1 mutants and a further decrease when combined with either nhp6ab or gcn5 mutations.
Collapse
Affiliation(s)
- Debabrata Biswas
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
29
|
Kassavetis GA, Soragni E, Driscoll R, Geiduschek EP. Reconfiguring the connectivity of a multiprotein complex: fusions of yeast TATA-binding protein with Brf1, and the function of transcription factor IIIB. Proc Natl Acad Sci U S A 2005; 102:15406-11. [PMID: 16227432 PMCID: PMC1266137 DOI: 10.1073/pnas.0507653102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription factor (TF) IIIB, the central transcription initiation factor of RNA polymerase III (pol III), is composed of three subunits, Bdp1, Brf1 and TATA-binding protein (TBP), all essential for normal function in vivo and in vitro. Brf1 is a modular protein: Its N-proximal half is related to TFIIB and binds similarly to the C-terminal stirrup of TBP; its C-proximal one-third provides most of the affinity for TBP by binding along the entire length of the convex surface and N-terminal lateral face of TBP. A structure-informed triple fusion protein, with TBP core placed between the N- and C-proximal domains of Brf1, has been constructed. The Brf1-TBP triple fusion protein effectively replaces both Brf1 and TBP in TFIIIC-dependent and -independent transcription in vitro, and forms extremely stable TFIIIB-DNA complexes that are indistinguishable from wild-type TFIIIB-DNA complexes by chemical nuclease footprinting. Unlike Brf1 and TBP, the triple fusion protein is able to recruit pol III for TATA box-directed transcription of linear and supercoiled DNA in the absence of Bdp1. The Brf1-TBP triple fusion protein also effectively replaces Brf1 function in vivo as the intact protein, creating a TBP paralogue in yeast that is privatized for pol III transcription.
Collapse
Affiliation(s)
- George A Kassavetis
- Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | | | | | |
Collapse
|
30
|
Bianchi ME, Agresti A. HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev 2005; 15:496-506. [PMID: 16102963 DOI: 10.1016/j.gde.2005.08.007] [Citation(s) in RCA: 391] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Accepted: 08/04/2005] [Indexed: 11/28/2022]
Abstract
Core histones package the genome into nucleosomes and control its accessibility to transcription factors. High mobility group proteins (HMGs) are, after histones, the second most abundant chromatin proteins and exert global genomic functions in establishing active or inactive chromatin domains. It is becoming increasingly clear that they also specifically control the expression of a limited number of genes. Moreover, they contribute to the fine tuning of transcription in response to rapid environmental changes. They do so by interacting with nucleosomes, transcription factors, nucleosome-remodelling machines, and with histone H1.
Collapse
Affiliation(s)
- Marco E Bianchi
- Università Vita Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy.
| | | |
Collapse
|
31
|
Biswas D, Yu Y, Prall M, Formosa T, Stillman DJ. The yeast FACT complex has a role in transcriptional initiation. Mol Cell Biol 2005; 25:5812-22. [PMID: 15987999 PMCID: PMC1168812 DOI: 10.1128/mcb.25.14.5812-5822.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A crucial step in eukaryotic transcriptional initiation is recognition of the promoter TATA by the TATA-binding protein (TBP), which then allows TFIIA and TFIIB to be recruited. However, nucleosomes block the interaction between TBP and DNA. We show that the yeast FACT complex (yFACT) promotes TBP binding to a TATA box in chromatin both in vivo and in vitro. The SPT16 gene encodes a subunit of yFACT, and we show that certain spt16 mutations are synthetically lethal with TBP mutants. Some of these genetic defects can be suppressed by TFIIA overexpression, strongly suggesting a role for yFACT in TBP-TFIIA complex formation in vivo. Mutations in the TOA2 subunit of TFIIA that disrupt TBP-TFIIA complex formation in vitro are also synthetically lethal with spt16. In some cases this spt16 toa2 lethality is suppressed by overexpression of TBP or the Nhp6 architectural transcription factor that is also a component of yFACT. The Spt3 protein in the SAGA complex has been shown to regulate TBP binding at certain promoters, and we show that some spt16 phenotypes can be suppressed by spt3 mutations. Chromatin immunoprecipitations show TBP binding to promoters is reduced in single spt16 and spt3 mutants but increases in the spt16 spt3 double mutant, reflecting the mutual suppression seen in the genetic assays. Finally, in vitro studies show that yFACT promotes TBP binding to a TATA sequence within a reconstituted nucleosome in a TFIIA-dependent manner. Thus, yFACT functions in establishing transcription initiation complexes in addition to the previously described role in elongation.
Collapse
Affiliation(s)
- Debabrata Biswas
- Department of Pathology, University of Utah Health Sciences Center, 30 North 1900 East, Salt Lake City, Utah 84132-2501, USA
| | | | | | | | | |
Collapse
|
32
|
Biswas D, Imbalzano AN, Eriksson P, Yu Y, Stillman DJ. Role for Nhp6, Gcn5, and the Swi/Snf complex in stimulating formation of the TATA-binding protein-TFIIA-DNA complex. Mol Cell Biol 2004; 24:8312-21. [PMID: 15340090 PMCID: PMC515044 DOI: 10.1128/mcb.24.18.8312-8321.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TATA-binding protein (TBP), TFIIA, and TFIIB interact with promoter DNA to form a complex required for transcriptional initiation, and many transcriptional regulators function by either stimulating or inhibiting formation of this complex. We have recently identified TBP mutants that are viable in wild-type cells but lethal in the absence of the Nhp6 architectural transcription factor. Here we show that many of these TBP mutants were also lethal in strains with disruptions of either GCN5, encoding the histone acetyltransferase in the SAGA complex, or SWI2, encoding the catalytic subunit of the Swi/Snf chromatin remodeling complex. These synthetic lethalities could be suppressed by overexpression of TOA1 and TOA2, the genes encoding TFIIA. We also used TFIIA mutants that eliminated in vitro interactions with TBP. These viable TFIIA mutants were lethal in strains lacking Gcn5, Swi2, or Nhp6. These lethalities could be suppressed by overexpression of TBP or Nhp6, suggesting that these coactivators stimulate formation of the TBP-TFIIA-DNA complex. In vitro studies have previously shown that TBP binds very poorly to a TATA sequence within a nucleosome but that Swi/Snf stimulates binding of TBP and TFIIA. In vitro binding experiments presented here show that histone acetylation facilitates TBP binding to a nucleosomal binding site and that Nhp6 stimulates formation of a TBP-TFIIA-DNA complex. Consistent with the idea that Nhp6, Gcn5, and Swi/Snf have overlapping functions in vivo, nhp6a nhp6b gcn5 mutants had a severe growth defect, and mutations in both nhp6a nhp6b swi2 and gcn5 swi2 strains were lethal.
Collapse
Affiliation(s)
- Debabrata Biswas
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, USA
| | | | | | | | | |
Collapse
|