1
|
Kong G, Li R, Huang W, Yang Y, Guan T, Liu J, Li W, Hsiang T, Xi P, Li M, Jiang Z. A RACK1 family protein regulates pathogenicity of Peronophythora litchii by acting as a scaffold for MAPK signal modules. Virulence 2025; 16:2503429. [PMID: 40356437 PMCID: PMC12077431 DOI: 10.1080/21505594.2025.2503429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/03/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Litchi downy blight caused by Peronophythora litchii is the most destructive disease of litchi (Litchi chinensis). RACK1 (Receptor for activated C kinase 1) is a group of scaffold proteins, mainly involved in the regulation of various signaling pathways by interacting with signal transduction proteins and affecting the activity of these proteins. In this study, a RACK1 homologue identified in P. litchii, and named PlRACK1. The protein was found to interact with the mitogen-activated protein kinases, PlMAPK1 and PlMAPK2. CRISPR/Cas9-mediated genome editing technology was used to knock out PlRACK1, and we found that it was involved in mycelial growth, cell wall integrity, ROS metabolism, laccase activity, and pathogenicity of P. litchii. PlMAPK1 interacted with RACK1, and they jointly regulated sporangiophore branching of P. litchii. Transcriptome analysis showed that P. litchii MAPK Phosphatase 1 (PlMKP1) and beta-glucoside (PlBglX) were regulated by PlRACK1, both of which were also required for the pathogenicity of P. litchii. As well, PlMKP1 also interacted with PlMAPK1 and PlMAPK2. These results provide insights into the direct interactions between RACK1, MAPKs, and MKP, and their functions in growth, development, and pathogenesis in a plant pathogenic oomycete.
Collapse
Affiliation(s)
- Guanghui Kong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Rui Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Weixiong Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Yaowen Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Tianfang Guan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Jinghan Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Wen Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Pinggen Xi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Minhui Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control/National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Ranjan A, Mattijssen S, Charlly N, Gallardo IC, Pitman L, Coleman J, Conte M, Maraia R. The short conserved region-2 of LARP4 interacts with ribosome-associated RACK1 and promotes translation. Nucleic Acids Res 2025; 53:gkaf053. [PMID: 39898547 PMCID: PMC11788930 DOI: 10.1093/nar/gkaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
LARP4 interacts with poly(A)-binding protein (PABP) to protect messenger RNAs (mRNAs) from deadenylation and decay, and recent data indicate it can direct the translation of functionally related mRNA subsets. LARP4 was known to bind RACK1, a ribosome-associated protein, although the specific regions involved and relevance had been undetermined. Here, through a combination of in-cell and in vitro methodologies, we identified positions 615-625 in conserved region-2 (CR2) of LARP4 (and 646-656 in LARP4B) as directly binding RACK1. Consistent with these results, AlphaFold2-Multimer predicted high-confidence interaction of CR2 with RACK1 propellers 5 and 6. CR2 mutations strongly decreased LARP4 association with cellular RACK1 and ribosomes by multiple assays, whereas PABP association was less affected, consistent with independent interactions. The CR2 mutations decreased LARP4's ability to stabilize a β-globin mRNA reporter containing an AU-rich element (ARE) to higher degree than β-globin and GFP (green fluorescent protein) mRNAs lacking the ARE. We show LARP4 robustly increases translation of β-glo-ARE mRNA, whereas the LARP4 CR2 mutant is impaired. Analysis of nanoLuc-ARE mRNA for production of luciferase activity confirmed LARP4 promotes translation efficiency, while CR2 mutations are disabling. Thus, LARP4 CR2-mediated interaction with RACK1 can promote translational efficiency of some mRNAs.
Collapse
Affiliation(s)
- Amitabh Ranjan
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Sandy Mattijssen
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Nithin Charlly
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Isabel Cruz Gallardo
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Leah F Pitman
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
- Messenger RNA Regulation and Decay Section, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States 21702
| | - Jennifer C Coleman
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, United Kingdom
| | - Richard J Maraia
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| |
Collapse
|
3
|
Ranjan A, Mattijssen S, Charlly N, Gallardo IC, Pitman LF, Coleman JC, Conte MR, Maraia RJ. The short conserved region-2 of LARP4 interacts with ribosome-associated RACK1 and promotes translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621267. [PMID: 39554137 PMCID: PMC11565960 DOI: 10.1101/2024.11.01.621267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
LARP4 interacts with poly(A)-binding protein (PABP) to protect mRNAs from deadenylation and decay, and recent data indicate it can direct the translation of functionally related mRNA subsets. LARP4 was known to bind RACK1, a ribosome-associated protein, although the specific regions involved, and relevance had been undetermined. Here, yeast two-hybrid domain mapping followed by other methods identified positions 615-625 in conserved region-2 (CR2) of LARP4 (and LARP4B) as directly binding RACK1 region 200-317. Consistent with these results, AlphaFold2-multimer predicted high confidence interaction of CR2 with RACK1 propellers 5-6. CR2 mutations strongly decreased LARP4 association with cellular RACK1 and ribosomes by multiple assays, whereas less effect was observed for PABP association, consistent with independent interactions. CR2 mutations decreased LARP4 ability to optimally stabilize a β-globin mRNA reporter containing an AU-rich element (ARE) more significantly than a β-globin and other reporters lacking this element. While polysome profiles indicate the β-glo-ARE mRNA is inefficiently translated, consistent with published data, we show that LARP4 increases its translation whereas the LARP4-CR2 mutant is impaired. Analysis of nanoLuc-ARE mRNA for production of luciferase activity confirmed LARP4 promotes translation efficiency while CR2 mutations are disabling. Thus, LARP4 CR2-mediated interaction with RACK1 can promote translational efficiency of some mRNAs.
Collapse
Affiliation(s)
- Amitabh Ranjan
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Sandy Mattijssen
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Nithin Charlly
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Isabel Cruz Gallardo
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Leah F. Pitman
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
- Messenger RNA Regulation and Decay Section, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Jennifer C. Coleman
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Maria R. Conte
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| | - Richard J. Maraia
- Section on Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Martín-Villanueva S, Galmozzi CV, Ruger-Herreros C, Kressler D, de la Cruz J. The Beak of Eukaryotic Ribosomes: Life, Work and Miracles. Biomolecules 2024; 14:882. [PMID: 39062596 PMCID: PMC11274626 DOI: 10.3390/biom14070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Ribosomes are not totally globular machines. Instead, they comprise prominent structural protrusions and a myriad of tentacle-like projections, which are frequently made up of ribosomal RNA expansion segments and N- or C-terminal extensions of ribosomal proteins. This is more evident in higher eukaryotic ribosomes. One of the most characteristic protrusions, present in small ribosomal subunits in all three domains of life, is the so-called beak, which is relevant for the function and regulation of the ribosome's activities. During evolution, the beak has transitioned from an all ribosomal RNA structure (helix h33 in 16S rRNA) in bacteria, to an arrangement formed by three ribosomal proteins, eS10, eS12 and eS31, and a smaller h33 ribosomal RNA in eukaryotes. In this review, we describe the different structural and functional properties of the eukaryotic beak. We discuss the state-of-the-art concerning its composition and functional significance, including other processes apparently not related to translation, and the dynamics of its assembly in yeast and human cells. Moreover, we outline the current view about the relevance of the beak's components in human diseases, especially in ribosomopathies and cancer.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carla V. Galmozzi
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carmen Ruger-Herreros
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Dieter Kressler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| |
Collapse
|
5
|
Rolemberg Santana Travaglini Berti de Correia C, Torres C, Gomes E, Maffei Rodriguez G, Klaysson Pereira Regatieri W, Takamiya NT, Aparecida Rogerio L, Malavazi I, Damário Gomes M, Dener Damasceno J, Luiz da Silva V, Antonio Fernandes de Oliveira M, Santos da Silva M, Silva Nascimento A, Cappellazzo Coelho A, Regina Maruyama S, Teixeira FR. Functional characterization of Cullin-1-RING ubiquitin ligase (CRL1) complex in Leishmania infantum. PLoS Pathog 2024; 20:e1012336. [PMID: 39018347 DOI: 10.1371/journal.ppat.1012336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/29/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024] Open
Abstract
Cullin-1-RING ubiquitin ligases (CRL1) or SCF1 (SKP1-CUL1-RBX1) E3 ubiquitin ligases are the largest and most extensively investigated class of E3 ligases in mammals that regulate fundamental processes, such as the cell cycle and proliferation. These enzymes are multiprotein complexes comprising SKP1, CUL1, RBX1, and an F-box protein that acts as a specificity factor by interacting with SKP1 through its F-box domain and recruiting substrates via other domains. E3 ligases are important players in the ubiquitination process, recognizing and transferring ubiquitin to substrates destined for degradation by proteasomes or processing by deubiquitinating enzymes. The ubiquitin-proteasome system (UPS) is the main regulator of intracellular proteolysis in eukaryotes and is required for parasites to alternate hosts in their life cycles, resulting in successful parasitism. Leishmania UPS is poorly investigated, and CRL1 in L. infantum, the causative agent of visceral leishmaniasis in Latin America, is yet to be described. Here, we show that the L. infantum genes LINF_110018100 (SKP1-like protein), LINF_240029100 (cullin-like protein-like protein), and LINF_210005300 (ring-box protein 1 -putative) form a LinfCRL1 complex structurally similar to the H. sapiens CRL1. Mass spectrometry analysis of the LinfSkp1 and LinfCul1 interactomes revealed proteins involved in several intracellular processes, including six F-box proteins known as F-box-like proteins (Flp) (data are available via ProteomeXchange with identifier PXD051961). The interaction of LinfFlp 1-6 with LinfSkp1 was confirmed, and using in vitro ubiquitination assays, we demonstrated the function of the LinfCRL1(Flp1) complex to transfer ubiquitin. We also found that LinfSKP1 and LinfRBX1 knockouts resulted in nonviable L. infantum lineages, whereas LinfCUL1 was involved in parasite growth and rosette formation. Finally, our results suggest that LinfCul1 regulates the S phase progression and possibly the transition between the late S to G2 phase in L. infantum. Thus, a new class of E3 ubiquitin ligases has been described in L. infantum with functions related to various parasitic processes that may serve as prospective targets for leishmaniasis treatment.
Collapse
Affiliation(s)
- Camila Rolemberg Santana Travaglini Berti de Correia
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Caroline Torres
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Ellen Gomes
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Nayore Tamie Takamiya
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | | - Iran Malavazi
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Marcelo Damário Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jeziel Dener Damasceno
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Vitor Luiz da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Marcelo Santos da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Sandra Regina Maruyama
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | |
Collapse
|
6
|
Joshi K, Luisi B, Wunderlin G, Saleh S, Lilly A, Okusolubo T, Farabaugh PJ. An evolutionarily conserved phosphoserine-arginine salt bridge in the interface between ribosomal proteins uS4 and uS5 regulates translational accuracy in Saccharomyces cerevisiae. Nucleic Acids Res 2024; 52:3989-4001. [PMID: 38340338 DOI: 10.1093/nar/gkae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
Protein-protein and protein-rRNA interactions at the interface between ribosomal proteins uS4 and uS5 are thought to maintain the accuracy of protein synthesis by increasing selection of cognate aminoacyl-tRNAs. Selection involves a major conformational change-domain closure-that stabilizes aminoacyl-tRNA in the ribosomal acceptor (A) site. This has been thought a constitutive function of the ribosome ensuring consistent accuracy. Recently, the Saccharomyces cerevisiae Ctk1 cyclin-dependent kinase was demonstrated to ensure translational accuracy and Ser238 of uS5 proposed as its target. Surprisingly, Ser238 is outside the uS4-uS5 interface and no obvious mechanism has been proposed to explain its role. We show that the true target of Ctk1 regulation is another uS5 residue, Ser176, which lies in the interface opposite to Arg57 of uS4. Based on site specific mutagenesis, we propose that phospho-Ser176 forms a salt bridge with Arg57, which should increase selectivity by strengthening the interface. Genetic data show that Ctk1 regulates accuracy indirectly; the data suggest that the kinase Ypk2 directly phosphorylates Ser176. A second kinase pathway involving TORC1 and Pkc1 can inhibit this effect. The level of accuracy appears to depend on competitive action of these two pathways to regulate the level of Ser176 phosphorylation.
Collapse
Affiliation(s)
- Kartikeya Joshi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Brooke Luisi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Grant Wunderlin
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Sima Saleh
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Anna Lilly
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Temiloluwa Okusolubo
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| | - Philip J Farabaugh
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore 21250, USA
| |
Collapse
|
7
|
Yuan S, Zhou G, Xu G. Translation machinery: the basis of translational control. J Genet Genomics 2024; 51:367-378. [PMID: 37536497 DOI: 10.1016/j.jgg.2023.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Messenger RNA (mRNA) translation consists of initiation, elongation, termination, and ribosome recycling, carried out by the translation machinery, primarily including tRNAs, ribosomes, and translation factors (TrFs). Translational regulators transduce signals of growth and development, as well as biotic and abiotic stresses, to the translation machinery, where global or selective translational control occurs to modulate mRNA translation efficiency (TrE). As the basis of translational control, the translation machinery directly determines the quality and quantity of newly synthesized peptides and, ultimately, the cellular adaption. Thus, regulating the availability of diverse machinery components is reviewed as the central strategy of translational control. We provide classical signaling pathways (e.g., integrated stress responses) and cellular behaviors (e.g., liquid-liquid phase separation) to exemplify this strategy within different physiological contexts, particularly during host-microbe interactions. With new technologies developed, further understanding this strategy will speed up translational medicine and translational agriculture.
Collapse
Affiliation(s)
- Shu Yuan
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guilong Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
8
|
Li Y, Liu D, Zhang X, Rimal S, Lu B, Li S. RACK1 and IRE1 participate in the translational quality control of amyloid precursor protein in Drosophila models of Alzheimer's disease. J Biol Chem 2024; 300:105719. [PMID: 38311171 PMCID: PMC10907166 DOI: 10.1016/j.jbc.2024.105719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by dysregulation of the expression and processing of the amyloid precursor protein (APP). Protein quality control systems are dedicated to remove faulty and deleterious proteins to maintain cellular protein homeostasis (proteostasis). Identidying mechanisms underlying APP protein regulation is crucial for understanding AD pathogenesis. However, the factors and associated molecular mechanisms regulating APP protein quality control remain poorly defined. In this study, we show that mutant APP with its mitochondrial-targeting sequence ablated exhibited predominant endoplasmic reticulum (ER) distribution and led to aberrant ER morphology, deficits in locomotor activity, and shortened lifespan. We searched for regulators that could counteract the toxicity caused by the ectopic expression of this mutant APP. Genetic removal of the ribosome-associated quality control (RQC) factor RACK1 resulted in reduced levels of ectopically expressed mutant APP. By contrast, gain of RACK1 function increased mutant APP level. Additionally, overexpression of the ER stress regulator (IRE1) resulted in reduced levels of ectopically expressed mutant APP. Mechanistically, the RQC related ATPase VCP/p97 and the E3 ubiquitin ligase Hrd1 were required for the reduction of mutant APP level by IRE1. These factors also regulated the expression and toxicity of ectopically expressed wild type APP, supporting their relevance to APP biology. Our results reveal functions of RACK1 and IRE1 in regulating the quality control of APP homeostasis and mitigating its pathogenic effects, with implications for the understanding and treatment of AD.
Collapse
Affiliation(s)
- Yu Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Dongyue Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xuejing Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Shuangxi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
9
|
Alagar Boopathy LR, Beadle E, Garcia-Bueno Rico A, Vera M. Proteostasis regulation through ribosome quality control and no-go-decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1809. [PMID: 37488089 DOI: 10.1002/wrna.1809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023]
Abstract
Cell functionality relies on the existing pool of proteins and their folding into functional conformations. This is achieved through the regulation of protein synthesis, which requires error-free mRNAs and ribosomes. Ribosomes are quality control hubs for mRNAs and proteins. Problems during translation elongation slow down the decoding rate, leading to ribosome halting and the eventual collision with the next ribosome. Collided ribosomes form a specific disome structure recognized and solved by ribosome quality control (RQC) mechanisms. RQC pathways orchestrate the degradation of the problematic mRNA by no-go decay and the truncated nascent peptide, the repression of translation initiation, and the recycling of the stalled ribosomes. All these events maintain protein homeostasis and return valuable ribosomes to translation. As such, cell homeostasis and function are maintained at the mRNA level by preventing the production of aberrant or unnecessary proteins. It is becoming evident that the crosstalk between RQC and the protein homeostasis network is vital for cell function, as the absence of RQC components leads to the activation of stress response and neurodegenerative diseases. Here, we review the molecular events of RQC discovered through well-designed stalling reporters. Given the impact of RQC in proteostasis, we discuss the relevance of identifying endogenous mRNA regulated by RQC and their preservation in stress conditions. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
| | - Emma Beadle
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
10
|
Alagar Boopathy L, Beadle E, Xiao A, Garcia-Bueno Rico A, Alecki C, Garcia de-Andres I, Edelmeier K, Lazzari L, Amiri M, Vera M. The ribosome quality control factor Asc1 determines the fate of HSP70 mRNA on and off the ribosome. Nucleic Acids Res 2023; 51:6370-6388. [PMID: 37158240 PMCID: PMC10325905 DOI: 10.1093/nar/gkad338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
Cells survive harsh environmental conditions by potently upregulating molecular chaperones such as heat shock proteins (HSPs), particularly the inducible members of the HSP70 family. The life cycle of HSP70 mRNA in the cytoplasm is unique-it is translated during stress when most cellular mRNA translation is repressed and rapidly degraded upon recovery. Contrary to its 5' untranslated region's role in maximizing translation, we discovered that the HSP70 coding sequence (CDS) suppresses its translation via the ribosome quality control (RQC) mechanism. The CDS of the most inducible Saccharomyces cerevisiae HSP70 gene, SSA4, is uniquely enriched with low-frequency codons that promote ribosome stalling during heat stress. Stalled ribosomes are recognized by the RQC components Asc1p and Hel2p and two novel RQC components, the ribosomal proteins Rps28Ap and Rps19Bp. Surprisingly, RQC does not signal SSA4 mRNA degradation via No-Go-Decay. Instead, Asc1p destabilizes SSA4 mRNA during recovery from heat stress by a mechanism independent of ribosome binding and SSA4 codon optimality. Therefore, Asc1p operates in two pathways that converge to regulate the SSA4 mRNA life cycle during stress and recovery. Our research identifies Asc1p as a critical regulator of the stress response and RQC as the mechanism tuning HSP70 synthesis.
Collapse
Affiliation(s)
| | - Emma Beadle
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Alan RuoChen Xiao
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | | | - Celia Alecki
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | | | - Kyla Edelmeier
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Luca Lazzari
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Mehdi Amiri
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Maria Vera
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| |
Collapse
|
11
|
Chvalova V, Venkadasubramanian V, Klimova Z, Vojtova J, Benada O, Vanatko O, Vomastek T, Grousl T. Characterization of RACK1-depleted mammalian cells by a palette of microscopy approaches reveals defects in cell cycle progression and polarity establishment. Exp Cell Res 2023:113695. [PMID: 37393981 DOI: 10.1016/j.yexcr.2023.113695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
The Receptor for Activated C Kinase 1 (RACK1) is an evolutionarily conserved scaffold protein involved in the regulation of numerous cellular processes. Here, we used CRISPR/Cas9 and siRNA to reduce the expression of RACK1 in Madin-Darby Canine Kidney (MDCK) epithelial cells and Rat2 fibroblasts, respectively. RACK1-depleted cells were examined using coherence-controlled holographic microscopy, immunofluorescence, and electron microscopy. RACK1 depletion resulted in decreased cell proliferation, increased cell area and perimeter, and in the appearance of large binucleated cells suggesting a defect in the cell cycle progression. Our results show that the depletion of RACK1 has a pleiotropic effect on both epithelial and mesenchymal cell lines and support its essential role in mammalian cells.
Collapse
Affiliation(s)
- Vera Chvalova
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Faculty of Science, Charles University, 128 00, Prague, Czech Republic
| | - Vignesh Venkadasubramanian
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic; Faculty of Science, Charles University, 128 00, Prague, Czech Republic
| | - Zuzana Klimova
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jana Vojtova
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 00, Prague, Czech Republic
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, 142 00, Prague, Czech Republic
| | - Ondrej Vanatko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 00, Prague, Czech Republic; Second Faculty of Medicine, Charles University, 150 06, Prague, Czech Republic
| | - Tomas Vomastek
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Tomas Grousl
- Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic.
| |
Collapse
|
12
|
Micic J, Rodríguez-Galán O, Babiano R, Fitzgerald F, Fernández-Fernández J, Zhang Y, Gao N, Woolford JL, de la Cruz J. Ribosomal protein eL39 is important for maturation of the nascent polypeptide exit tunnel and proper protein folding during translation. Nucleic Acids Res 2022; 50:6453-6473. [PMID: 35639884 PMCID: PMC9226512 DOI: 10.1093/nar/gkac366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
During translation, nascent polypeptide chains travel from the peptidyl transferase center through the nascent polypeptide exit tunnel (NPET) to emerge from 60S subunits. The NPET includes portions of five of the six 25S/5.8S rRNA domains and ribosomal proteins uL4, uL22, and eL39. Internal loops of uL4 and uL22 form the constriction sites of the NPET and are important for both assembly and function of ribosomes. Here, we investigated the roles of eL39 in tunnel construction, 60S biogenesis, and protein synthesis. We show that eL39 is important for proper protein folding during translation. Consistent with a delay in processing of 27S and 7S pre-rRNAs, eL39 functions in pre-60S assembly during middle nucleolar stages. Our biochemical assays suggest the presence of eL39 in particles at these stages, although it is not visualized in them by cryo-electron microscopy. This indicates that eL39 takes part in assembly even when it is not fully accommodated into the body of pre-60S particles. eL39 is also important for later steps of assembly, rotation of the 5S ribonucleoprotein complex, likely through long range rRNA interactions. Finally, our data strongly suggest the presence of alternative pathways of ribosome assembly, previously observed in the biogenesis of bacterial ribosomal subunits.
Collapse
Affiliation(s)
- Jelena Micic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Fiona Fitzgerald
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Yunyang Zhang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
13
|
Multi-omics analysis of glucose-mediated signaling by a moonlighting Gβ protein Asc1/RACK1. PLoS Genet 2021; 17:e1009640. [PMID: 34214075 PMCID: PMC8282090 DOI: 10.1371/journal.pgen.1009640] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/15/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Heterotrimeric G proteins were originally discovered through efforts to understand the effects of hormones, such as glucagon and epinephrine, on glucose metabolism. On the other hand, many cellular metabolites, including glucose, serve as ligands for G protein-coupled receptors. Here we investigate the consequences of glucose-mediated receptor signaling, and in particular the role of a Gα subunit Gpa2 and a non-canonical Gβ subunit, known as Asc1 in yeast and RACK1 in animals. Asc1/RACK1 is of particular interest because it has multiple, seemingly unrelated, functions in the cell. The existence of such “moonlighting” operations has complicated the determination of phenotype from genotype. Through a comparative analysis of individual gene deletion mutants, and by integrating transcriptomics and metabolomics measurements, we have determined the relative contributions of the Gα and Gβ protein subunits to glucose-initiated processes in yeast. We determined that Gpa2 is primarily involved in regulating carbohydrate metabolism while Asc1 is primarily involved in amino acid metabolism. Both proteins are involved in regulating purine metabolism. Of the two subunits, Gpa2 regulates a greater number of gene transcripts and was particularly important in determining the amplitude of response to glucose addition. We conclude that the two G protein subunits regulate distinct but complementary processes downstream of the glucose-sensing receptor, as well as processes that lead ultimately to changes in cell growth and metabolism. Despite the societal importance of glucose fermentation in yeast, the mechanisms by which these cells detect and respond to glucose have remained obscure. Glucose detection requires a cell surface receptor coupled to a G protein that is comprised of two subunits, rather than the more typical heterotrimer: an α subunit Gpa2 and the β subunit Asc1 (or RACK1 in humans). Asc1/RACK1 also serves as a subunit of the ribosome, where it regulates the synthesis of proteins involved in glucose fermentation. This manuscript uses global metabolomics and transcriptomics to demonstrate the distinct roles of each G protein subunit in transmitting the glucose signal. Whereas Gpa2 is primarily involved in the metabolism of carbohydrates, Asc1/RACK1 contributes to production of amino acids necessary for protein synthesis and cell division. These findings reveal the initial steps of glucose signaling and several unique and complementary functions of the G protein subunits. More broadly, the integrated approach used here is likely to guide efforts to determine the topology of complex G protein and metabolic signaling networks in humans.
Collapse
|
14
|
Shaheen F, Stephany-Brassesco I, Kelly BL. Dynamic modulation of Leishmania cytochrome c oxidase subunit IV (LmCOX4) expression in response to mammalian temperature. Mol Biochem Parasitol 2021; 244:111391. [PMID: 34144085 DOI: 10.1016/j.molbiopara.2021.111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
The Leishmania LACK antigen is a ribosome-associated protein that facilitates expression of mitochondrial cytochrome c oxidase subunit IV (LmCOX4) to support parasite mitochondrial fitness and virulence within the vertebrate host. To further examine the relationship between LACK, its putative ribosome binding motif and LmCOX4, we compared the kinetics of LmCOX4 expression following temperature elevation in wildtype LACK (LACK WT) and LACK-putative ribosome-binding mutant (LACKDDE) L. major. We found that, after initial exposure to mammalian temperature, LmCOX4 levels became undetectable in LACKDDE L. major and also, surprisingly, in wild type (WT) control strains. Upon sustained exposure to mammalian temperature, LmCOX4 expression returned in WT control strains only. The initial loss of LmCOX4 in WT L. major was substantially reversed by treatment with the proteasome inhibitor MG132. Our findings indicate that initial loss of LmCOX4 under mammalian conditions is dependent upon proteasome degradation and LmCOX4 re-expression is dependent upon LACK possessing a WT putative ribosome binding motif.
Collapse
Affiliation(s)
- Farhana Shaheen
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Isabel Stephany-Brassesco
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Ben L Kelly
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
15
|
Andersson S, Romero A, Rodrigues JI, Hua S, Hao X, Jacobson T, Karl V, Becker N, Ashouri A, Rauch S, Nyström T, Liu B, Tamás MJ. Genome-wide imaging screen uncovers molecular determinants of arsenite-induced protein aggregation and toxicity. J Cell Sci 2021; 134:jcs258338. [PMID: 34085697 PMCID: PMC8214759 DOI: 10.1242/jcs.258338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
The toxic metalloid arsenic causes widespread misfolding and aggregation of cellular proteins. How these protein aggregates are formed in vivo, the mechanisms by which they affect cells and how cells prevent their accumulation is not fully understood. To find components involved in these processes, we performed a genome-wide imaging screen and identified Saccharomyces cerevisiae deletion mutants with either enhanced or reduced protein aggregation levels during arsenite exposure. We show that many of the identified factors are crucial to safeguard protein homeostasis (proteostasis) and to protect cells against arsenite toxicity. The hits were enriched for various functions including protein biosynthesis and transcription, and dedicated follow-up experiments highlight the importance of accurate transcriptional and translational control for mitigating protein aggregation and toxicity during arsenite stress. Some of the hits are associated with pathological conditions, suggesting that arsenite-induced protein aggregation may affect disease processes. The broad network of cellular systems that impinge on proteostasis during arsenic stress identified in this current study provides a valuable resource and a framework for further elucidation of the mechanistic details of metalloid toxicity and pathogenesis. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Stefanie Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Antonia Romero
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Joana Isabel Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Sansan Hua
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
- Institute of Biomedicine - Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Göteborg, Sweden
| | - Therese Jacobson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Vivien Karl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Nathalie Becker
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Arghavan Ashouri
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Sebastien Rauch
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
- Institute of Biomedicine - Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Göteborg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Markus J. Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| |
Collapse
|
16
|
Monticolo F, Palomba E, Chiusano ML. Translation machinery reprogramming in programmed cell death in Saccharomyces cerevisiae. Cell Death Discov 2021; 7:17. [PMID: 33462193 PMCID: PMC7814045 DOI: 10.1038/s41420-020-00392-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022] Open
Abstract
Programmed cell death involves complex molecular pathways in both eukaryotes and prokaryotes. In Escherichia coli, the toxin-antitoxin system (TA-system) has been described as a programmed cell death pathway in which mRNA and ribosome organizations are modified, favoring the production of specific death-related proteins, but also of a minor portion of survival proteins, determining the destiny of the cell population. In the eukaryote Saccharomyces cerevisiae, the ribosome was shown to change its stoichiometry in terms of ribosomal protein content during stress response, affecting the relative proportion between ohnologs, i.e., the couple of paralogs derived by a whole genome duplication event. Here, we confirm the differential expression of ribosomal proteins in yeast also during programmed cell death induced by acetic acid, and we highlight that also in this case pairs of ohnologs are involved. We also show that there are different trends in cytosolic and mitochondrial ribosomal proteins gene expression during the process. Moreover, we show that the exposure to acetic acid induces the differential expression of further genes coding for products related to translation processes and to rRNA post-transcriptional maturation, involving mRNA decapping, affecting translation accuracy, and snoRNA synthesis. Our results suggest that the reprogramming of the overall translation apparatus, including the cytosolic ribosome reorganization, are relevant events in yeast programmed cell death induced by acetic acid.
Collapse
Affiliation(s)
- Francesco Monticolo
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Emanuela Palomba
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Napoli, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy. .,Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Napoli, Italy.
| |
Collapse
|
17
|
Rodríguez-Galán O, García-Gómez JJ, Rosado IV, Wei W, Méndez-Godoy A, Pillet B, Alekseenko A, Steinmetz L, Pelechano V, Kressler D, de la Cruz J. A functional connection between translation elongation and protein folding at the ribosome exit tunnel in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:206-220. [PMID: 33330942 PMCID: PMC7797049 DOI: 10.1093/nar/gkaa1200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 12/03/2022] Open
Abstract
Proteostasis needs to be tightly controlled to meet the cellular demand for correctly de novo folded proteins and to avoid protein aggregation. While a coupling between translation rate and co-translational folding, likely involving an interplay between the ribosome and its associated chaperones, clearly appears to exist, the underlying mechanisms and the contribution of ribosomal proteins remain to be explored. The ribosomal protein uL3 contains a long internal loop whose tip region is in close proximity to the ribosomal peptidyl transferase center. Intriguingly, the rpl3[W255C] allele, in which the residue making the closest contact to this catalytic site is mutated, affects diverse aspects of ribosome biogenesis and function. Here, we have uncovered, by performing a synthetic lethal screen with this allele, an unexpected link between translation and the folding of nascent proteins by the ribosome-associated Ssb-RAC chaperone system. Our results reveal that uL3 and Ssb-RAC cooperate to prevent 80S ribosomes from piling up within the 5' region of mRNAs early on during translation elongation. Together, our study provides compelling in vivo evidence for a functional connection between peptide bond formation at the peptidyl transferase center and chaperone-assisted de novo folding of nascent polypeptides at the solvent-side of the peptide exit tunnel.
Collapse
Affiliation(s)
- Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Juan J García-Gómez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Iván V Rosado
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Wu Wei
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Alfonso Méndez-Godoy
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Benjamin Pillet
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alisa Alekseenko
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Department of Genetics, School of Medicine, Stanford, CA, USA
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, Solna, Sweden
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
18
|
The role of RNA-binding and ribosomal proteins as specific RNA translation regulators in cellular differentiation and carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166046. [PMID: 33383105 DOI: 10.1016/j.bbadis.2020.166046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Tight control of mRNA expression is required for cell differentiation; imbalanced regulation may lead to developmental disorders and cancer. The activity of the translational machinery (including ribosomes and translation factors) regulates the rate (slow or fast) of translation of encoded proteins, and the quality of these proteins highly depends on which mRNAs are available for translation. Specific RNA-binding and ribosomal proteins seem to play a key role in controlling gene expression to determine the differentiation fate of the cell. This demonstrates the important role of RNA-binding proteins, specific ribosome-binding proteins and microRNAs as key molecules in controlling the specific proteins required for the differentiation or dedifferentiation of cells. This delicate balance between specific proteins (in terms of quality and availability) and post-translational modifications occurring in the cytoplasm is crucial for cell differentiation, dedifferentiation and oncogenic potential. In this review, we report how defects in the regulation of mRNA translation can be dependent on specific proteins and can induce an imbalance between differentiation and dedifferentiation in cell fate determination.
Collapse
|
19
|
Petelski AA, Slavov N. Analyzing Ribosome Remodeling in Health and Disease. Proteomics 2020; 20:e2000039. [PMID: 32820594 PMCID: PMC7501214 DOI: 10.1002/pmic.202000039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/01/2020] [Indexed: 12/24/2022]
Abstract
Increasing evidence suggests that ribosomes actively regulate protein synthesis. However, much of this evidence is indirect, leaving this layer of gene regulation largely unexplored, in part due to methodological limitations. Indeed, evidence is reviewed demonstrating that commonly used methods, such as transcriptomics, are inadequate because the variability in mRNAs coding for ribosomal proteins (RP) does not necessarily correspond to RP variability. Thus protein remodeling of ribosomes should be investigated by methods that allow direct quantification of RPs, ideally of isolated ribosomes. Such methods are reviewed, focusing on mass spectrometry and emphasizing method-specific biases and approaches to control these biases. It is argued that using multiple complementary methods can help reduce the danger of interpreting reproducible systematic biases as evidence for ribosome remodeling.
Collapse
Affiliation(s)
- Aleksandra A Petelski
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Barnett Institute, Northeastern University, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Barnett Institute, Northeastern University, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
20
|
DiGiuseppe S, Rollins MG, Astar H, Khalatyan N, Savas JN, Walsh D. Proteomic and mechanistic dissection of the poxvirus-customized ribosome. J Cell Sci 2020; 134:jcs246603. [PMID: 32467327 PMCID: PMC7358139 DOI: 10.1242/jcs.246603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Ribosomes are often viewed as protein synthesis machines that lack intrinsic regulatory capacity. However, studies have established that ribosomes can functionally diversify through changes in the composition of, or post-translational modifications to ribosomal subunit proteins (RPs). We recently found that poxviruses phosphorylate unique sites in the RP, receptor for activated C kinase 1 (RACK1) to enhance viral protein synthesis. Here, we developed approaches for large-scale proteomic analysis of ribosomes isolated from cells infected with different viruses. Beyond RACK1, we identified additional phosphorylation events within RPS2 and RPS28 that arise during poxvirus infection, but not other viruses tested. The modified sites lie within unstructured loop domains that position around the mRNA entry and exit channel, respectively, and site-substitution mutants revealed that each modified residue contributed differently to poxvirus replication. Our findings reveal the broader extent to which poxviruses customize host ribosomes and provide new insights into how ribosomes can functionally diversify.
Collapse
Affiliation(s)
- Stephen DiGiuseppe
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Madeline G Rollins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Helen Astar
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Natalia Khalatyan
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Wu T, Zhang Z, Hu C, Zhang L, Wei S, Li S. A WD40 Protein Encoding Gene Fvcpc2 Positively Regulates Mushroom Development and Yield in Flammulina velutipes. Front Microbiol 2020; 11:498. [PMID: 32273873 PMCID: PMC7113406 DOI: 10.3389/fmicb.2020.00498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
Abstract
Ascomycota and Basidiomycota are two closely related phyla and fungi in two phyla share some common morphological developmental process during fruiting body formation. In Neurospora crassa, the Gβ-like protein CPC-2 with a seven-WD40 repeat domain was previously reported. By transforming CPC-2 ortholog encoding genes, from 7 different fungal species across Ascomycota and Basidiomycota, into the cpc-2 deletion mutant of N. crassa, we demonstrate that all tested CPC-2 ortholog genes were able to complement the defects of the cpc-2 deletion mutant in sexual development, indicating that CPC-2 proteins from Ascomycota and Basidiomycota have the similar cellular function. Using Flammulina velutipes as a model system for mushroom species, the CPC-2 ortholog FvCPC2 was characterized. Fvcpc2 increased transcription during fruiting body development. Knockdown of Fvcpc2 by RNAi completely impaired fruiting body formation. In three Fvcpc2 knockdown mutants, transcriptional levels of genes encoding adenylate cyclase and protein kinase A catalytic subunit were significantly lower and colony growth became slower than wild type. The addition of cAMP or the PKA-activator 8-Bromo-cAMP into the medium restored the Fvcpc2 knockdown mutants to the wild-type colony growth phenotype, suggesting that the involvement of cAMP production in the regulatory mechanisms of FvCPC2. Knockdown of Fvcpc2 also weakened transcriptional responses to sexual development induction by some genes related to fruiting body development, including 4 jacalin-related lectin encoding genes, 4 hydrophobin encoding genes, and 3 functionally-unknown genes, suggesting the participation of these genes in the mechanisms by which FvCPC2 regulates fruiting body development. All three Fvcpc2 overexpression strains displayed increased mushroom yield and shortened cultivation time compared to wild type, suggesting that Fvcpc2 can be a promising reference gene for Winter Mushroom breeding. Since the orthologs of FvCPC2 were highly conserved and specifically expressed during fruiting body development in different edible mushrooms, genes encoding FvCPC2 orthologs in other mushroom species also have potential application in breeding.
Collapse
Affiliation(s)
- Taju Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenying Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long Zhang
- Shandong Jinniu Biotech Company Limited, Jinan, China
| | - Shenglong Wei
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye, China
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
LaFontaine E, Miller CM, Permaul N, Martin ET, Fuchs G. Ribosomal protein RACK1 enhances translation of poliovirus and other viral IRESs. Virology 2020; 545:53-62. [PMID: 32308198 DOI: 10.1016/j.virol.2020.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 02/09/2023]
Abstract
Viruses have evolved strategies to ensure efficient translation using host cell ribosomes and translation factors. In addition to cleaving translation initiation factors required for host cell translation, poliovirus (PV) uses an internal ribosome entry site (IRES). Recent studies suggest that viruses exploit specific ribosomal proteins to enhance translation of their viral proteins. The ribosomal protein receptor for activated C kinase 1 (RACK1), a protein of the 40S ribosomal subunit, was previously shown to mediate translation from the 5' cricket paralysis virus and hepatitis C virus IRESs. Here we found that translation of a PV dual-luciferase reporter shows a moderate dependence on RACK1. However, in the context of a viral infection we observed significantly reduced poliovirus plaque size and titers and delayed host cell translational shut-off. Our findings further illustrate the involvement of the cellular translational machinery during PV infection and how viruses usurp the function of specific ribosomal proteins.
Collapse
Affiliation(s)
- Ethan LaFontaine
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Clare M Miller
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Natasha Permaul
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Elliot T Martin
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA
| | - Gabriele Fuchs
- Department of Biological Sciences, University at Albany, Albany, NY, 12222, USA; The RNA Institute, University at Albany, NY, 12222, USA.
| |
Collapse
|
23
|
Link AJ, Niu X, Weaver CM, Jennings JL, Duncan DT, McAfee KJ, Sammons M, Gerbasi VR, Farley AR, Fleischer TC, Browne CM, Samir P, Galassie A, Boone B. Targeted Identification of Protein Interactions in Eukaryotic mRNA Translation. Proteomics 2020; 20:e1900177. [PMID: 32027465 DOI: 10.1002/pmic.201900177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/13/2019] [Indexed: 11/09/2022]
Abstract
To identify protein-protein interactions and phosphorylated amino acid sites in eukaryotic mRNA translation, replicate TAP-MudPIT and control experiments are performed targeting Saccharomyces cerevisiae genes previously implicated in eukaryotic mRNA translation by their genetic and/or functional roles in translation initiation, elongation, termination, or interactions with ribosomal complexes. Replicate tandem affinity purifications of each targeted yeast TAP-tagged mRNA translation protein coupled with multidimensional liquid chromatography and tandem mass spectrometry analysis are used to identify and quantify copurifying proteins. To improve sensitivity and minimize spurious, nonspecific interactions, a novel cross-validation approach is employed to identify the most statistically significant protein-protein interactions. Using experimental and computational strategies discussed herein, the previously described protein composition of the canonical eukaryotic mRNA translation initiation, elongation, and termination complexes is calculated. In addition, statistically significant unpublished protein interactions and phosphorylation sites for S. cerevisiae's mRNA translation proteins and complexes are identified.
Collapse
Affiliation(s)
- Andrew J Link
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Xinnan Niu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Connie M Weaver
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jennifer L Jennings
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Dexter T Duncan
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - K Jill McAfee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Morgan Sammons
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Vince R Gerbasi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Adam R Farley
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Tracey C Fleischer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | | | - Parimal Samir
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Allison Galassie
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Braden Boone
- Department of Bioinformatics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
24
|
Johnson AG, Lapointe CP, Wang J, Corsepius NC, Choi J, Fuchs G, Puglisi JD. RACK1 on and off the ribosome. RNA (NEW YORK, N.Y.) 2019; 25:881-895. [PMID: 31023766 PMCID: PMC6573788 DOI: 10.1261/rna.071217.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/21/2019] [Indexed: 05/17/2023]
Abstract
Receptor for activated C kinase 1 (RACK1) is a eukaryote-specific ribosomal protein (RP) implicated in diverse biological functions. To engineer ribosomes for specific fluorescent labeling, we selected RACK1 as a target given its location on the small ribosomal subunit and other properties. However, prior results suggested that RACK1 has roles both on and off the ribosome, and such an exchange might be related to its various cellular functions and hinder our ability to use RACK1 as a stable fluorescent tag for the ribosome. In addition, the kinetics of spontaneous exchange of RACK1 or any RP from a mature ribosome in vitro remain unclear. To address these issues, we engineered fluorescently labeled human ribosomes via RACK1, and applied bulk and single-molecule biochemical analyses to track RACK1 on and off the human ribosome. Our results demonstrate that, despite its cellular nonessentiality from yeast to humans, RACK1 readily reassociates with the ribosome, displays limited conformational dynamics, and remains stably bound to the ribosome for hours in vitro. This work sheds insight into the biochemical basis of RPs exchange on and off a mature ribosome and provides tools for single-molecule analysis of human translation.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Christopher P Lapointe
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nicholas C Corsepius
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Gabriele Fuchs
- The RNA Institute, Department of Biological Sciences, University of Albany, Albany, New York 12222, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
25
|
Rollins MG, Jha S, Bartom ET, Walsh D. RACK1 evolved species-specific multifunctionality in translational control through sequence plasticity within a loop domain. J Cell Sci 2019; 132:jcs.228908. [PMID: 31118235 DOI: 10.1242/jcs.228908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/14/2019] [Indexed: 01/23/2023] Open
Abstract
Receptor of activated protein C kinase 1 (RACK1) is a highly conserved eukaryotic protein that regulates several aspects of mRNA translation; yet, how it does so, remains poorly understood. Here we show that, although RACK1 consists largely of conserved β-propeller domains that mediate binding to several other proteins, a short interconnecting loop between two of these blades varies across species to control distinct RACK1 functions during translation. Mutants and chimeras revealed that the amino acid composition of the loop is optimized to regulate interactions with eIF6, a eukaryotic initiation factor that controls 60S biogenesis and 80S ribosome assembly. Separately, phylogenetics revealed that, despite broad sequence divergence of the loop, there is striking conservation of negatively charged residues amongst protists and dicot plants, which is reintroduced to mammalian RACK1 by poxviruses through phosphorylation. Although both charged and uncharged loop mutants affect eIF6 interactions, only a negatively charged plant - but not uncharged yeast or human loop - enhances translation of mRNAs with adenosine-rich 5' untranslated regions (UTRs). Our findings reveal how sequence plasticity within the RACK1 loop confers multifunctionality in translational control across species.
Collapse
Affiliation(s)
- Madeline G Rollins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sujata Jha
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
26
|
Communication between RACK1/Asc1 and uS3 (Rps3) is essential for RACK1/Asc1 function in yeast Saccharomyces cerevisiae. Gene 2019; 706:69-76. [PMID: 31054365 DOI: 10.1016/j.gene.2019.04.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023]
Abstract
The receptor for activated c-kinase (RACK1, Asc1 in yeast) is a eukaryotic ribosomal protein located in the head region of the 40S subunit near the mRNA exit channel. This WD-repeat β-propeller protein acts as a signaling molecule and is involved in metabolic regulation, cell cycle progression, and translational control. However, the exact details of the RACK1 recruitment and stable association with the 40S ribosomal subunit remain only partially known. X-ray analyses of the yeast, Saccharomyces cerevisiae, ribosome revealed that the RACK1 propeller blade (4-5) interacts with the eukaryote-specific C-terminal domain (CTD) of ribosomal protein S3 (uS3 family). To check the functional significance of this interaction, we generated mutant yeast strains harboring C-terminal deletions of uS3. We found that deletion of the 20 C-terminal residues (interacting with blade 4-5) from the uS3-CTD abrogates RACK1 binding to the ribosome. Strains with truncated uS3-CTD exhibited compromised cellular growth and protein synthesis similar to that of RACK1Δ strain, thus suggesting that the uS3-CTD is crucial not only for the recruitment and association of RACK1 with the ribosome, but also for its intracellular function. We suggest that eukaryote-specific RACK1-uS3 interaction has evolved to act as a link between the ribosome and the cellular signaling pathways.
Collapse
|
27
|
Shadab M, Das S, Banerjee A, Sinha R, Asad M, Kamran M, Maji M, Jha B, Deepthi M, Kumar M, Tripathi A, Kumar B, Chakrabarti S, Ali N. RNA-Seq Revealed Expression of Many Novel Genes Associated With Leishmania donovani Persistence and Clearance in the Host Macrophage. Front Cell Infect Microbiol 2019; 9:17. [PMID: 30805314 PMCID: PMC6370631 DOI: 10.3389/fcimb.2019.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Host- as well as parasite-specific factors are equally crucial in allowing either the Leishmania parasites to dominate, or host macrophages to resist infection. To identify such factors, we infected murine peritoneal macrophages with either the virulent (vAG83) or the non-virulent (nvAG83) parasites of L. donovani. Then, through dual RNA-seq, we simultaneously elucidated the transcriptomic changes occurring both in the host and the parasites. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the differentially expressed (DE) genes, we showed that the vAG83-infected macrophages exhibit biased anti-inflammatory responses compared to the macrophages infected with the nvAG83. Moreover, the vAG83-infected macrophages displayed suppression of many important cellular processes, including protein synthesis. Further, through protein-protein interaction study, we showed significant downregulation in the expression of many hubs and hub-bottleneck genes in macrophages infected with vAG83 as compared to nvAG83. Cell signaling study showed that these two parasites activated the MAPK and PI3K-AKT signaling pathways differentially in the host cells. Through gene ontology analyses of the parasite-specific genes, we discovered that the genes for virulent factors and parasite survival were significantly upregulated in the intracellular amastigotes of vAG83. In contrast, genes involved in the immune stimulations, and those involved in negative regulation of the cell cycle and transcriptional regulation, were upregulated in the nvAG83. Collectively, these results depicted a differential regulation in the host and the parasite-specific molecules during in vitro persistence and clearance of the parasites.
Collapse
Affiliation(s)
- Mohammad Shadab
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Anindyajit Banerjee
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Roma Sinha
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Mithun Maji
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Baijayanti Jha
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Makaraju Deepthi
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | - Bipin Kumar
- Nucleome Informatics Pvt. Ltd., Hyderabad, India
| | - Saikat Chakrabarti
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
28
|
Jain BP. Genome Wide Analysis of WD40 Proteins in Saccharomyces cerevisiae and Their Orthologs in Candida albicans. Protein J 2019; 38:58-75. [PMID: 30511317 DOI: 10.1007/s10930-018-9804-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The WD40 domain containing proteins are present in the lower organisms (Monera) to higher complex metazoans with involvement in diverse cellular processes. The WD40 repeats fold into β propeller structure due to which the proteins harbouring WD40 domains function as scaffold by offering platform for interactions, bring together diverse cellular proteins to form a single complex for mediating downstream effects. Multiple functions of WD40 domain containing proteins in lower eukaryote as in Fungi have been reported with involvement in vegetative and reproductive growth, virulence etc. In this article insilico analysis of the WDR proteins in the budding yeast Saccharomyces cerevisiae was performed. By WDSP software 83 proteins in S. cerevisiae were identified with at least one WD40 motif. WD40 proteins with 6 or more WD40 motifs were considered for further studies. The WD40 proteins in yeast which are involved in various biological processes show distribution on all chromosomes (16 chromosomes in yeast) except chromosome 1. Besides the WD40 domain some of these proteins also contain other protein domains which might be responsible for the diversity in the functions of WD40 proteins in the budding yeast. These proteins in budding yeast were analysed by DAVID and Blast2Go software for functional and domains categorization. Candida albicans, an opportunistic fungal pathogen also have orthologs of these WD40 proteins with possible similar functions. This is the first time genome wide analysis of WD40 proteins in lower eukaryote i.e. budding yeast. This data may be useful in further study of the functional diversity of yeast proteomes.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Bihar, Motihari, 845401, India.
| |
Collapse
|
29
|
Li X, Li J, Qian J, Zhang D, Shen H, Li X, Li H, Chen G. Loss of Ribosomal RACK1 (Receptor for Activated Protein Kinase C 1) Induced by Phosphorylation at T50 Alleviates Cerebral Ischemia-Reperfusion Injury in Rats. Stroke 2019; 50:162-171. [PMID: 30580718 DOI: 10.1161/strokeaha.118.022404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background and Purpose- RACK1 (receptor for activated protein kinase C 1) is an integral component of ribosomes with neuroprotective functions. The goal of this study was to determine the role of RACK1 in cerebral ischemia-reperfusion (I/R) injury and the underlying mechanisms. Methods- A middle cerebral artery occlusion/reperfusion model in adult male Sprague Dawley rats (250-280 g) was established, and cultured neurons were exposed to oxygen-glucose deprivation/reoxygenation to mimic I/R injury in vitro. Expression vectors encoding wild-type RACK1 and RACK1 with T50A mutation (T50A) were constructed and administered to rats by intracerebroventricular injection. Results- The potential role of RACK1 in cerebral I/R injury was confirmed by the decreased protein levels of RACK1 within penumbra tissue, especially of neurons. Second, there was an increase in the phosphorylation ratio of RACK1 at the threonine/serine residues at 1.5 hours after middle cerebral artery occlusion onset. Third, based on site-specific mutagenesis, we identified T50 as a key site for RACK1 phosphorylation during I/R. Fourth, wild-type RACK1 overexpression reduced infarct size, neuronal death, neuronal tissue loss, and neurobehavioral dysfunction, while RACK1 (T50A) overexpression exerted opposite effects. Finally, we found that RACK1 phosphorylation at T50 induced a loss of ribosomal RACK1, which switched RACK1 from beclin-1 translation inhibition to autophagy induction following I/R. Conclusions- RACK1 phosphorylation may be a potential intervention target for neurons during I/R; thus, exogenous supplementation of RACK1 may be a novel approach for ameliorating I/R injury.
Collapse
Affiliation(s)
- Xiang Li
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinquan Li
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinhong Qian
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongping Zhang
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- From the Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Gerbasi VR, Browne CM, Samir P, Shen B, Sun M, Hazelbaker DZ, Galassie AC, Frank J, Link AJ. Critical Role for Saccharomyces cerevisiae Asc1p in Translational Initiation at Elevated Temperatures. Proteomics 2018; 18:e1800208. [PMID: 30285306 PMCID: PMC6461043 DOI: 10.1002/pmic.201800208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/29/2018] [Indexed: 11/11/2022]
Abstract
The eukaryotic ribosomal protein RACK1/Asc1p is localized to the mRNA exit channel of the 40S subunit but lacks a defined role in mRNA translation. Saccharomyces cerevisiae deficient in ASC1 exhibit temperature-sensitive growth. Using this null mutant, potential roles for Asc1p in translation and ribosome biogenesis are evaluated. At the restrictive temperature the asc1Δ null mutant has reduced polyribosomes. To test the role of Asc1p in ribosome stability, cryo-EM is used to examine the structure of 80S ribosomes in an asc1Δ yeast deletion mutant at both the permissive and nonpermissive temperatures. CryoEM indicates that loss of Asc1p does not severely disrupt formation of this complex structure. No defect is found in rRNA processing in the asc1Δ null mutant. A proteomic approach is applied to survey the effect of Asc1p loss on the global translation of yeast proteins. At the nonpermissive temperature, the asc1Δ mutant has reduced levels of ribosomal proteins and other factors critical for translation. Collectively, these results are consistent with recent observations suggesting that Asc1p is important for ribosome occupancy of short mRNAs. The results show the Asc1 ribosomal protein is critical in translation during heat stress.
Collapse
Affiliation(s)
- Vincent R. Gerbasi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Molecular Biosciences and the Proteomics Center of Excellence, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher M. Browne
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Parimal Samir
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Bingxin Shen
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032
| | - Ming Sun
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Dane Z. Hazelbaker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Andrew J. Link
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
31
|
Sanchez-Marinas M, Gimenez-Zaragoza D, Martin-Ramos E, Llanes J, Cansado J, Pujol MJ, Bachs O, Aligue R. Cmk2 kinase is essential for survival in arsenite by modulating translation together with RACK1 orthologue Cpc2 in Schizosaccharomyces pombe. Free Radic Biol Med 2018; 129:116-126. [PMID: 30236788 DOI: 10.1016/j.freeradbiomed.2018.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 08/24/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
Abstract
Different studies have demonstrated multiple effects of arsenite on human physiology. However, there are many open questions concerning the mechanism of response to arsenite. Schizosaccharomyces pombe activates the Sty1 MAPK pathway as a common response to several stress conditions. The specificity of the response is due to the activation of different transcription factors and specific targets such the Cmk2 MAPKAP kinase. We have previously shown that Cmk2 is phosphorylated and activated by the MAPK Sty1 in response to oxidative stress. Here, we report that Cmk2 kinase is specifically necessary to overcome the stress caused by metalloid agents, in particular arsenite. Deletion of cmk2 increases the protein level of various components of the MAPK pathway. Moreover, Cmk2 negatively regulates translation through the Cpc2 kinase: the RACK1 orthologue in fission yeast. RACK1 is a receptor for activated C-kinase. Interestingly, RACK1 is a constituent of the eukaryotic ribosome specifically localized in the head region of the 40 S subunit. Cmk2 controls arsenite response through Cpc2 and it does so through Cpc2 ribosomal function, as observed in genetic analysis using a Cpc2 mutant unable to bind to ribosome. These findings suggest a role for Cmk2 in regulating translation and facilitating adaptation to arsenite stress in the ribosome.
Collapse
Affiliation(s)
- Marta Sanchez-Marinas
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - David Gimenez-Zaragoza
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Edgar Martin-Ramos
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Julia Llanes
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia 30071, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Oriol Bachs
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Rosa Aligue
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain.
| |
Collapse
|
32
|
Calamita P, Gatti G, Miluzio A, Scagliola A, Biffo S. Translating the Game: Ribosomes as Active Players. Front Genet 2018; 9:533. [PMID: 30498507 PMCID: PMC6249331 DOI: 10.3389/fgene.2018.00533] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Ribosomes have been long considered as executors of the translational program. The fact that ribosomes can control the translation of specific mRNAs or entire cellular programs is often neglected. Ribosomopathies, inherited diseases with mutations in ribosomal factors, show tissue specific defects and cancer predisposition. Studies of ribosomopathies have paved the way to the concept that ribosomes may control translation of specific mRNAs. Studies in Drosophila and mice support the existence of heterogeneous ribosomes that differentially translate mRNAs to coordinate cellular programs. Recent studies have now shown that ribosomal activity is not only a critical regulator of growth but also of metabolism. For instance, glycolysis and mitochondrial function have been found to be affected by ribosomal availability. Also, ATP levels drop in models of ribosomopathies. We discuss findings highlighting the relevance of ribosome heterogeneity in physiological and pathological conditions, as well as the possibility that in rate-limiting situations, ribosomes may favor some translational programs. We discuss the effects of ribosome heterogeneity on cellular metabolism, tumorigenesis and aging. We speculate a scenario in which ribosomes are not only executors of a metabolic program but act as modulators.
Collapse
Affiliation(s)
- Piera Calamita
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Guido Gatti
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Annarita Miluzio
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Alessandra Scagliola
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Stefano Biffo
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
33
|
Yin Z, Zhang X, Wang J, Yang L, Feng W, Chen C, Gao C, Zhang H, Zheng X, Wang P, Zhang Z. MoMip11, a MoRgs7-interacting protein, functions as a scaffolding protein to regulate cAMP signaling and pathogenicity in the rice blast fungus Magnaporthe oryzae. Environ Microbiol 2018; 20:3168-3185. [PMID: 29727050 PMCID: PMC6162116 DOI: 10.1111/1462-2920.14102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 11/28/2022]
Abstract
The rice blast fungus Magnaporthe oryzae has eight regulators of G-protein signaling (RGS) and RGS-like proteins (MoRgs1 to MoRgs8) that exhibit both distinct and shared regulatory functions in the growth, differentiation and pathogenicity of the fungus. We found MoRgs7 with a unique RGS-seven transmembrane (7-TM) domain motif is localized to the highly dynamic tubule-vesicular compartments during early appressorium differentiation followed by gradually degradation. To explore whether this involves an active signal perception of MoRgs7, we identified a Gbeta-like/RACK1 protein homolog in M. oryzae MoMip11 that interacts with MoRgs7. Interestingly, MoMip11 selectively interacted with several components of the cAMP regulatory pathway, including Gα MoMagA and the high-affinity phosphodiesterase MoPdeH. We further showed that MoMip11 promotes MoMagA activation and suppresses MoPdeH activity thereby upregulating intracellular cAMP levels. Moreover, MoMip11 is required for the response to multiple stresses, a role also shared by Gbeta-like/RACK1 adaptor proteins. In summary, we revealed a unique mechanism by which MoMip11 links MoRgs7 and G-proteins to reugulate cAMP signaling, stress responses and pathogenicity of M. oryzae. Our studies revealed the multitude of regulatory networks that govern growth, development and pathogenicity in this important causal agent of rice blast.
Collapse
Affiliation(s)
- Ziyi Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaofang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Jingzhen Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Lina Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Wanzhen Feng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Chen Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Chuyun Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Ping Wang
- Departments of Pediatrics, and Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
34
|
Arthur LL, Djuranovic S. PolyA tracks, polybasic peptides, poly-translational hurdles. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1486. [PMID: 29869837 PMCID: PMC6281860 DOI: 10.1002/wrna.1486] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/26/2022]
Abstract
The abundance of messenger RNA (mRNA) is one of the major determinants of protein synthesis. As such, factors that influence mRNA stability often contribute to gene regulation. Polyadenylation of the 3' end of mRNA transcripts, the poly(A) tail, has long been recognized as one of these regulatory elements given its influence on translation efficiency and mRNA stability. Unwanted translation of the poly(A) tail signals to the cell an aberrant polyadenylation event or the lack of stop codons, which makes this sequence an important element in translation fidelity and mRNA surveillance response. Consequently, investigations into the effects of the poly(A) tail lead to the discoveries that poly-lysine as well as other polybasic peptide sequences and, to a much greater extent, polyA mRNA sequences within the open reading frame influence mRNA stability and translational efficiency. Conservation and evolutionary selection of codon usage in polyA track sequences across multiple organisms suggests a biological significance for coding polyA tracks in the regulation of gene expression. Here, we discuss the cellular responses and consequences of coding polyA track translation and synthesis of polybasic peptides. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Laura L Arthur
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
35
|
Leggio L, Guarino F, Magrì A, Accardi-Gheit R, Reina S, Specchia V, Damiano F, Tomasello MF, Tommasino M, Messina A. Mechanism of translation control of the alternative Drosophila melanogaster Voltage Dependent Anion-selective Channel 1 mRNAs. Sci Rep 2018; 8:5347. [PMID: 29593233 PMCID: PMC5871876 DOI: 10.1038/s41598-018-23730-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/19/2018] [Indexed: 01/08/2023] Open
Abstract
The eukaryotic porin, also called the Voltage Dependent Anion-selective Channel (VDAC), is the main pore-forming protein of the outer mitochondrial membrane. In Drosophila melanogaster, a cluster of genes evolutionarily linked to VDAC is present on chromosome 2L. The main VDAC isoform, called VDAC1 (Porin1), is expressed from the first gene of the cluster. The porin1 gene produces two splice variants, 1A-VDAC and 1B-VDAC, with the same coding sequence but different 5' untranslated regions (UTRs). Here, we studied the influence of the two 5' UTRs, 1A-5' UTR and 1B-5' UTR, on transcription and translation of VDAC1 mRNAs. In porin-less yeast cells, transformation with a construct carrying 1A-VDAC results in the expression of the corresponding protein and in complementation of a defective cell phenotype, whereas the 1B-VDAC sequence actively represses VDAC expression. Identical results were obtained using constructs containing the two 5' UTRs upstream of the GFP reporter. A short region of 15 nucleotides in the 1B-5' UTR should be able to pair with an exposed helix of 18S ribosomal RNA (rRNA), and this interaction could be involved in the translational repression. Our data suggest that contacts between the 5' UTR and 18S rRNA sequences could modulate the translation of Drosophila 1B-VDAC mRNA. The evolutionary significance of this finding is discussed.
Collapse
Affiliation(s)
- L Leggio
- Department of Biological, University of Catania, Geological and Environmental Sciences, Catania, 95125, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - F Guarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy.,National Institute of Biostructures and Biosystems (INBB), Catania, Italy
| | - A Magrì
- Department of Biological, University of Catania, Geological and Environmental Sciences, Catania, 95125, Italy
| | - R Accardi-Gheit
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, 69372, France
| | - S Reina
- Department of Biological, University of Catania, Geological and Environmental Sciences, Catania, 95125, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - V Specchia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - F Damiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - M F Tomasello
- IBB-CNR, Institute of Biostructure and Bioimaging, Section of Catania, Via Paolo Gaifami, 18-95126, Catania, Italy
| | - M Tommasino
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, 69372, France
| | - A Messina
- Department of Biological, University of Catania, Geological and Environmental Sciences, Catania, 95125, Italy. .,National Institute of Biostructures and Biosystems (INBB), Catania, Italy.
| |
Collapse
|
36
|
Tang G, Chen Y, Xu JR, Kistler HC, Ma Z. The fungal myosin I is essential for Fusarium toxisome formation. PLoS Pathog 2018; 14:e1006827. [PMID: 29357387 PMCID: PMC5794197 DOI: 10.1371/journal.ppat.1006827] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/01/2018] [Accepted: 12/18/2017] [Indexed: 01/12/2023] Open
Abstract
Myosin-I molecular motors are proposed to function as linkers between membranes and the actin cytoskeleton in several cellular processes, but their role in the biosynthesis of fungal secondary metabolites remain elusive. Here, we found that the myosin I of Fusarium graminearum (FgMyo1), the causal agent of Fusarium head blight, plays critical roles in mycotoxin biosynthesis. Inhibition of myosin I by the small molecule phenamacril leads to marked reduction in deoxynivalenol (DON) biosynthesis. FgMyo1 also governs translation of the DON biosynthetic enzyme Tri1 by interacting with the ribosome-associated protein FgAsc1. Disruption of the ATPase activity of FgMyo1 either by the mutation E420K, down-regulation of FgMyo1 expression or deletion of FgAsc1 results in reduced Tri1 translation. The DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to subcellular structures known as toxisomes in response to mycotoxin induction and the FgMyo1-interacting protein, actin, participates in toxisome formation. The actin polymerization disruptor latrunculin A inhibits toxisome assembly. Consistent with this observation, deletion of the actin-associated proteins FgPrk1 and FgEnd3 also results in reduced toxisome formation. Unexpectedly, the FgMyo1-actin cytoskeleton is not involved in biosynthesis of another secondary metabolite tested. Taken together, this study uncovers a novel function of myosin I in regulating mycotoxin biosynthesis in filamentous fungi. The mycotoxin deoxynivalenol (DON) is the most frequently detected secondary metabolite produced by Fusarium graminearum and other Fusarium spp. To date, relatively few studies have addressed how mycotoxin biosynthesis occurs in fungal cells. Here we found that myosin I governs translation of DON biosynthetic enzyme Tri1 via interacting with the ribosome-associated protein FgAsc1. Moreover, the key DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to the toxisomes derived from endoplasmic reticulum under toxin inducing conditions. We further found that the FgMyo1-actin cytoskeleton was involved in toxisome formation but not for the biosynthesis of another secondary metabolite tested. Taken together, these results indicate for the first time that myosin I plays critical roles in mycotoxin biosynthesis.
Collapse
Affiliation(s)
- Guangfei Tang
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yun Chen
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - H. Corby Kistler
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Zhonghua Ma
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
37
|
Cheng ZF, Pai RK, Cartwright CA. Rack1 function in intestinal epithelia: regulating crypt cell proliferation and regeneration and promoting differentiation and apoptosis. Am J Physiol Gastrointest Liver Physiol 2018; 314:G1-G13. [PMID: 28935684 PMCID: PMC5866376 DOI: 10.1152/ajpgi.00240.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 01/31/2023]
Abstract
Previously, we showed that receptor for activated C kinase 1 (Rack1) regulates growth of colon cells in vitro, partly by suppressing Src kinase activity at key cell cycle checkpoints, in apoptotic and cell survival pathways and at cell-cell adhesions. Here, we generated mouse models of Rack1 deficiency to assess Rack1's function in intestinal epithelia in vivo. Intestinal Rack1 deficiency resulted in proliferation of crypt cells, diminished differentiation of crypt cells into enterocyte, goblet, and enteroendocrine cell lineages, and expansion of Paneth cell populations. Following radiation injury, the morphology of Rack1-deleted small bowel was strikingly abnormal with development of large polypoid structures that contained many partly formed villi, numerous back-to-back elongated and regenerating crypts, and high-grade dysplasia in surface epithelia. These abnormalities were not observed in Rack1-expressing areas of intestine or in control mice. Following irradiation, apoptosis of enterocytes was strikingly reduced in Rack1-deleted epithelia. These novel findings reveal key functions for Rack1 in regulating growth of intestinal epithelia: suppressing crypt cell proliferation and regeneration, promoting differentiation and apoptosis, and repressing development of neoplasia. NEW & NOTEWORTHY Our findings reveal novel functions for receptor for activated C kinase 1 (Rack1) in regulating growth of intestinal epithelia: suppressing crypt cell proliferation and regeneration, promoting differentiation and apoptosis, and repressing development of neoplasia.
Collapse
Affiliation(s)
- Zhuan-Fen Cheng
- Department of Medicine, Stanford University , Stanford, California
| | - Reetesh K Pai
- Department of Pathology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | |
Collapse
|
38
|
Paul AK, Shill PC. Incorporating gene ontology into fuzzy relational clustering of microarray gene expression data. Biosystems 2017; 163:1-10. [PMID: 29113811 DOI: 10.1016/j.biosystems.2017.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/28/2022]
Abstract
The product of gene expression works together in the cell for each living organism in order to achieve different biological processes. Many proteins are involved in different roles depending on the environment of the organism for the functioning of the cell. In this paper, we propose gene ontology (GO) annotations based semi-supervised clustering algorithm called GO fuzzy relational clustering (GO-FRC) where one gene is allowed to be assigned to multiple clusters which are the most biologically relevant behavior of genes. In the clustering process, GO-FRC utilizes useful biological knowledge which is available in the form of a gene ontology, as a prior knowledge along with the gene expression data. The prior knowledge helps to improve the coherence of the groups concerning the knowledge field. The proposed GO-FRC has been tested on the two yeast (Saccharomyces cerevisiae) expression profiles datasets (Eisen and Dream5 yeast datasets) and compared with other state-of-the-art clustering algorithms. Experimental results imply that GO-FRC is able to produce more biologically relevant clusters with the use of the small amount of GO annotations.
Collapse
Affiliation(s)
- Animesh Kumar Paul
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh.
| | - Pintu Chandra Shill
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
| |
Collapse
|
39
|
Joazeiro CAP. Ribosomal Stalling During Translation: Providing Substrates for Ribosome-Associated Protein Quality Control. Annu Rev Cell Dev Biol 2017; 33:343-368. [PMID: 28715909 DOI: 10.1146/annurev-cellbio-111315-125249] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells of all organisms survey problems during translation elongation, which may happen as a consequence of mRNA aberrations, inefficient decoding, or other sources. In eukaryotes, ribosome-associated quality control (RQC) senses elongation-stalled ribosomes and promotes dissociation of ribosomal subunits. This so-called ribosomal rescue releases the mRNA for degradation and allows 40S subunits to be recycled for new rounds of translation. However, the nascent polypeptide chains remain linked to tRNA and associated with the rescued 60S subunits. As a final critical step in this pathway, the Ltn1/Listerin E3 ligase subunit of the RQC complex (RQCc) ubiquitylates the nascent chain, which promotes clearance of the 60S subunit while simultaneously marking the nascent chain for elimination. Here we review the ribosomal stalling and rescue steps upstream of the RQCc, where one witnesses intersection with cellular machineries implicated in translation elongation, translation termination, ribosomal subunit recycling, and mRNA quality control. We emphasize both recent progress and future directions in this area, as well as examples linking ribosomal rescue with the production of Ltn1-RQCc substrates.
Collapse
Affiliation(s)
- Claudio A P Joazeiro
- ZMBH, University of Heidelberg, 69120 Heidelberg, Germany; .,The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
40
|
Bruni GO, Battle B, Kelly B, Zhang Z, Wang P. Comparative proteomic analysis of Gib2 validating its adaptor function in Cryptococcus neoformans. PLoS One 2017; 12:e0180243. [PMID: 28686685 PMCID: PMC5501510 DOI: 10.1371/journal.pone.0180243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/12/2017] [Indexed: 01/09/2023] Open
Abstract
Cryptococcus neoformans causes often-fatal fungal meningoencephalitis in immunocompromised individuals. While the exact disease mechanisms remain elusive, signal transduction pathways mediated by key elements such as G-protein α subunit Gpa1, small GTPase Ras1, and atypical Gβ-like/RACK1 protein Gib2 are known to play important roles in C. neoformans virulence. Gib2 is important for normal growth, differentiation, and pathogenicity, and it also positively regulates cAMP levels in conjunction with Gpa1. Interestingly, Gib2 displays a scaffold protein property by interacting with a wide variety of cellular proteins. To explore Gib2 global regulatory functions, we performed two-dimensional differential gel electrophoresis (DIGE) analysis and found that GIB2 disruption results in an increased expression of 304 protein spots (43.4%) and a decreased expression of 396 protein spots (56.6%). Analysis of 96 proteins whose expression changes were deemed significant (≥ +/- 1.5- fold) revealed that 75 proteins belong to at least 12 functional protein groups. Among them, eight groups have the statistical stringency of p ≤ 0.05, and four groups, including Hsp70/71 heat shock protein homologs and ribosomal proteins, survived the Bonferroni correction. This finding is consistent with earlier established roles for the human Gβ-like/RACK1 and the budding yeast Saccharomyces cerevisiae Asc1. It suggests that Gib2 could also be part of the complex affecting ribosomal biogenesis and protein translation in C. neoformans. Since eukaryotic Hsp70/71 proteins are involved in the facilitation of nascent protein folding, processing, and protection of cells against stress, we also propose that Gib2-regulated stress responses are linked to fungal virulence. Collectively, our study supports a conserved role of Gβ-like/RACK/Gib2 proteins in the essential cellular process of ribosomal biogenesis and protein translation. Our study also highlights a multifaceted regulatory role of Gib2 in the growth and pathogenicity of C. neoformans.
Collapse
Affiliation(s)
- Gillian O Bruni
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Blake Battle
- College of Arts and Sciences, Loyola University New Orleans, New Orleans, LA, United States of America
| | - Ben Kelly
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America.,Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| |
Collapse
|
41
|
Abstract
Ribosomes have the capacity to selectively control translation through changes in their composition that enable recognition of specific RNA elements1. However, beyond differential subunit expression during development2,3, evidence for regulated ribosome specification within individual cells has remained elusive1. Here, we report that a poxvirus kinase phosphorylates serine/threonine residues in the small ribosomal subunit protein, Receptor for Activated C Kinase (RACK1) that are not phosphorylated in uninfected cells or cells infected by other viruses. These modified residues cluster in an extended loop in RACK1, phosphorylation of which selects for translation of viral or reporter mRNAs whose 5’ untranslated regions (UTRs) contain adenosine repeats, so-called polyA-leaders. Structural and phylogenetic analysis revealed that although RACK1 is highly conserved, this loop is variable and contains negatively charged amino acids in plants, where these leaders act as translational enhancers for poorly understood reasons. Phosphomimetics and inter-species chimeras demonstrated that negative charge in the RACK1 loop dictates ribosome selectivity towards viral RNAs. By converting human RACK1 to a charged, plant-like state, poxviruses remodel host ribosomes so that adenosine repeats erroneously generated by slippage of the viral RNA polymerase4 confer a translational advantage. Our findings uncover ribosome customization through a novel trans-kingdom mimicry and the mechanics of species-specific leader activity that underlie the enigmatic poxvirus polyA-leaders4.
Collapse
|
42
|
RACK1 depletion in the ribosome induces selective translation for non-canonical autophagy. Cell Death Dis 2017; 8:e2800. [PMID: 28518135 PMCID: PMC5520723 DOI: 10.1038/cddis.2017.204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/25/2022]
Abstract
RACK1, which was first demonstrated as a substrate of PKCβ II, functions as a scaffold protein and associates with the 40S small ribosomal subunit. According to previous reports, ribosomal RACK1 was also suggested to control translation depending on the status in translating ribosome. We here show that RACK1 knockdown induces autophagy independent of upstream canonical factors such as Beclin1, Atg7 and Atg5/12 conjugates. We further report that RACK1 knockdown induces the association of mRNAs of LC3 and Bcl-xL with polysomes, indicating increased translation of these proteins. Therefore, we propose that the RACK1 depletion-induced autophagy is distinct from canonical autophagy. Finally, we confirm that cells expressing mutant RACK1 (RACK1R36D/K38E) defective in ribosome binding showed the same result as RACK1-knockdown cells. Altogether, our data clearly show that the depletion of ribosomal RACK1 alters the capacity of the ribosome to translate specific mRNAs, resulting in selective translation of mRNAs of genes for non-canonical autophagy induction.
Collapse
|
43
|
O'Doherty PJ, Khan A, Johnson AJ, Rogers PJ, Bailey TD, Wu MJ. Proteomic response to linoleic acid hydroperoxide in Saccharomyces cerevisiae. FEMS Yeast Res 2017; 17:3752509. [PMID: 28449083 DOI: 10.1093/femsyr/fox022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
Yeast AP-1 transcription factor (Yap1p) and the enigmatic oxidoreductases Oye2p and Oye3p are involved in counteracting lipid oxidants and their unsaturated breakdown products. In order to uncover the response to linoleic acid hydroperoxide (LoaOOH) and the roles of Oye2p, Oye3p and Yap1p, we carried out proteomic analysis of the homozygous deletion mutants oye3Δ, oye2Δ and yap1Δ alongside the diploid parent strain BY4743. The findings demonstrate that deletion of YAP1 narrowed the response to LoaOOH, as the number of proteins differentially expressed in yap1Δ was 70% of that observed in BY4743. The role of Yap1p in regulating the major yeast peroxiredoxin Tsa1p was demonstrated by the decreased expression of Tsa1p in yap1Δ. The levels of Ahp1p and Hsp31p, previously shown to be regulated by Yap1p, were increased in LoaOOH-treated yap1Δ, indicating their expression is also regulated by another transcription factor(s). Relative to BY4743, protein expression differed in oye3Δ and oye2Δ under LoaOOH, underscored by superoxide dismutase (Sod1p), multiple heat shock proteins (Hsp60p, Ssa1p, and Sse1p), the flavodoxin-like protein Pst2p and the actin stabiliser tropomyosin (Tpm1p). Proteins associated with glycolysis were increased in all strains following treatment with LoaOOH. Together, the dataset reveals, for the first time, the yeast proteomic response to LoaOOH, highlighting the significance of carbohydrate metabolism, as well as distinction between the roles of Oye3p, Oye2p and Yap1p.
Collapse
Affiliation(s)
- Patrick J O'Doherty
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Alamgir Khan
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney NSW 2109 Australia
| | - Adam J Johnson
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Peter J Rogers
- School of Biomolecular and Physical Sciences, Griffith University, Nathan QLD 4111, Australia
| | - Trevor D Bailey
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Ming J Wu
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
44
|
Kanakkanthara A, Jeganathan KB, Limzerwala JF, Baker DJ, Hamada M, Nam HJ, van Deursen WH, Hamada N, Naylor RM, Becker NA, Davies BA, van Ree JH, Mer G, Shapiro VS, Maher LJ, Katzmann DJ, van Deursen JM. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science 2017; 353:1549-1552. [PMID: 27708105 DOI: 10.1126/science.aaf7463] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/29/2016] [Indexed: 12/23/2022]
Abstract
Cyclin A2 activates the cyclin-dependent kinases Cdk1 and Cdk2 and is expressed at elevated levels from S phase until early mitosis. We found that mutant mice that cannot elevate cyclin A2 are chromosomally unstable and tumor-prone. Underlying the chromosomal instability is a failure to up-regulate the meiotic recombination 11 (Mre11) nuclease in S phase, which leads to impaired resolution of stalled replication forks, insufficient repair of double-stranded DNA breaks, and improper segregation of sister chromosomes. Unexpectedly, cyclin A2 controlled Mre11 abundance through a C-terminal RNA binding domain that selectively and directly binds Mre11 transcripts to mediate polysome loading and translation. These data reveal cyclin A2 as a mechanistically diverse regulator of DNA replication combining multifaceted kinase-dependent functions with a kinase-independent, RNA binding-dependent role that ensures adequate repair of common replication errors.
Collapse
Affiliation(s)
- Arun Kanakkanthara
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Karthik B Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jazeel F Limzerwala
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Masakazu Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hyun-Ja Nam
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Naomi Hamada
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ryan M Naylor
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Brian A Davies
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Janine H van Ree
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA. Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
45
|
Synonymous Codons: Choose Wisely for Expression. Trends Genet 2017; 33:283-297. [PMID: 28292534 DOI: 10.1016/j.tig.2017.02.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/22/2022]
Abstract
The genetic code, which defines the amino acid sequence of a protein, also contains information that influences the rate and efficiency of translation. Neither the mechanisms nor functions of codon-mediated regulation were well understood. The prevailing model was that the slow translation of codons decoded by rare tRNAs reduces efficiency. Recent genome-wide analyses have clarified several issues. Specific codons and codon combinations modulate ribosome speed and facilitate protein folding. However, tRNA availability is not the sole determinant of rate; rather, interactions between adjacent codons and wobble base pairing are key. One mechanism linking translation efficiency and codon use is that slower decoding is coupled to reduced mRNA stability. Changes in tRNA supply mediate biological regulationfor instance,, changes in tRNA amounts facilitate cancer metastasis.
Collapse
|
46
|
Nielsen MH, Flygaard RK, Jenner LB. Structural analysis of ribosomal RACK1 and its role in translational control. Cell Signal 2017; 35:272-281. [PMID: 28161490 DOI: 10.1016/j.cellsig.2017.01.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 12/28/2022]
Abstract
Receptor for Activated C-Kinase 1 (RACK1) belongs to the WD40 family of proteins, known to act as scaffolding proteins in interaction networks. Accordingly, RACK1 is found to have numerous interacting partners ranging from kinases and signaling proteins to membrane bound receptors and ion channels. Interestingly, RACK1 has also been identified as a ribosomal protein present in all eukaryotic ribosomes. Structures of eukaryotic ribosomes have shown RACK1 to be located at the back of the head of the small ribosomal subunit. This suggests that RACK1 could act as a ribosomal scaffolding protein recruiting regulators of translation to the ribosome, and several studies have in fact found RACK1 to play a role in regulation of translation. To fully understand the role of RACK1 we need to understand whether the many reported interaction partners of RACK1 bind to free or ribosomal RACK1. In this review we provide a structural analysis of ribosome-bound RACK1 to provide a basis for answering this fundamental question. Our analysis shows that RACK1 is tightly bound to the ribosome through highly conserved and specific interactions confirming RACK1 as an integral ribosomal protein. Furthermore, we have analyzed whether reported binding sites for RACK1 interacting partners with a proposed role in translational control are accessible on ribosomal RACK1. Our analysis shows that most of the interaction partners with putative regulatory functions have binding sites that are available on ribosomal RACK1, supporting the role of RACK1 as a ribosomal signaling hub. We also discuss the possible role for RACK1 in recruitment of ribosomes to focal adhesion sites and regulation of local translation during cell spreading and migration.
Collapse
Affiliation(s)
- Maja Holch Nielsen
- Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Aarhus University, Denmark
| | - Rasmus Kock Flygaard
- Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Aarhus University, Denmark
| | - Lasse Bohl Jenner
- Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Aarhus University, Denmark
| |
Collapse
|
47
|
Asc1p/RACK1 Connects Ribosomes to Eukaryotic Phosphosignaling. Mol Cell Biol 2017; 37:MCB.00279-16. [PMID: 27821475 DOI: 10.1128/mcb.00279-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
WD40 repeat proteins fold into characteristic β-propeller structures and control signaling circuits during cellular adaptation processes within eukaryotes. The RACK1 protein of Saccharomyces cerevisiae, Asc1p, consists exclusively of a single seven-bladed β-propeller that operates from the ribosomal base at the head region of the 40S subunit. Here we show that the R38D K40E ribosomal binding-compromised variant (Asc1DEp) is severely destabilized through mutation of phosphosite T143 to a dephosphorylation-mimicking alanine, probably through proteasomal degradation, leading to asc1- phenotypes. Phosphosite Y250 contributes to resistance to translational inhibitors but does not influence Asc1DEp stability. Beyond its own phosphorylation at T143, Y250, and other sites, Asc1p heavily influences the phosphorylation of as many as 90 proteins at 120 sites. Many of these proteins are regulators of fundamental processes ranging from mRNA translation to protein transport and turnover, cytoskeleton organization, and cellular signaling. Our data expose Asc1p/RACK1 as a key factor in phosphosignaling and manifest it as a control point at the head of the ribosomal 40S subunit itself regulated through posttranslational modification.
Collapse
|
48
|
Yuan L, Su Y, Zhou S, Feng Y, Guo W, Wang X. A RACK1-like protein regulates hyphal morphogenesis, root entry and in vivo virulence in Verticillium dahliae. Fungal Genet Biol 2017; 99:52-61. [PMID: 28089629 DOI: 10.1016/j.fgb.2017.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 11/28/2016] [Accepted: 01/08/2017] [Indexed: 02/07/2023]
Abstract
To identify key genes expressed in Verticillium dahliae in early stages of infection of cotton roots, spore suspensions of eight V. dahliae isolates with different virulence levels were induced by cotton roots and genes expressed in these isolates during the early stages of infection were profiled. A gene that was differentially expressed between highly and less virulent strains was identified. Cloning and bioinformatics analysis of the gene suggested that it belongs to the putative Gβ-like/RACK1 protein family, and has seven WD40 domains. Targeted deletion of the gene revealed that it controls a number of growth-related phenotypes, including conidia and microsclerotia production, normal spore germination and hyphal development. RACK1 is a component of eukaryotic ribosomes, and here we found by qRT-PCR that disruption of RACK1 in V. dahliae (designated VdRACK1) significantly altered the transcriptional levels of other ribosomal proteins, suggesting possible global effects of VdRACK1 deletion on the protein translation of other genes. VdRACK1-null mutants lost the ability to penetrate intact cotton roots. However, the mutant strain was able to infect root-wounded cotton plants and, intriguingly, resulted in a hypervirulent phenotype, implicating a role for VdRACK1 in the restriction of rampant growth within the plant.
Collapse
Affiliation(s)
- Lei Yuan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaxin Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Zhou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yigao Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
49
|
Roles of Rack1 Proteins in Fungal Pathogenesis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4130376. [PMID: 27656651 PMCID: PMC5021465 DOI: 10.1155/2016/4130376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/16/2016] [Indexed: 01/21/2023]
Abstract
Pathogenic fungi cause diseases on various organisms. Despite their differences in life cycles, fungal pathogens use well-conserved proteins and pathways to regulate developmental and infection processes. In this review, we focus on Rack1, a multifaceted scaffolding protein involved in various biological processes. Rack1 is well conserved in eukaryotes and plays important roles in fungi, though limited studies have been conducted. To accelerate the study of Rack1 proteins in fungi, we review the functions of Rack1 proteins in model and pathogenic fungi and summarize recent progress on how Rack1 proteins are involved in fungal pathogenesis.
Collapse
|
50
|
Fernández-Pevida A, Martín-Villanueva S, Murat G, Lacombe T, Kressler D, de la Cruz J. The eukaryote-specific N-terminal extension of ribosomal protein S31 contributes to the assembly and function of 40S ribosomal subunits. Nucleic Acids Res 2016; 44:7777-91. [PMID: 27422873 PMCID: PMC5027506 DOI: 10.1093/nar/gkw641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/07/2016] [Indexed: 11/12/2022] Open
Abstract
The archaea-/eukaryote-specific 40S-ribosomal-subunit protein S31 is expressed as an ubiquitin fusion protein in eukaryotes and consists of a conserved body and a eukaryote-specific N-terminal extension. In yeast, S31 is a practically essential protein, which is required for cytoplasmic 20S pre-rRNA maturation. Here, we have studied the role of the N-terminal extension of the yeast S31 protein. We show that deletion of this extension partially impairs cell growth and 40S subunit biogenesis and confers hypersensitivity to aminoglycoside antibiotics. Moreover, the extension harbours a nuclear localization signal that promotes active nuclear import of S31, which associates with pre-ribosomal particles in the nucleus. In the absence of the extension, truncated S31 inefficiently assembles into pre-40S particles and two subpopulations of mature small subunits, one lacking and another one containing truncated S31, can be identified. Plasmid-driven overexpression of truncated S31 partially suppresses the growth and ribosome biogenesis defects but, conversely, slightly enhances the hypersensitivity to aminoglycosides. Altogether, these results indicate that the N-terminal extension facilitates the assembly of S31 into pre-40S particles and contributes to the optimal translational activity of mature 40S subunits but has only a minor role in cytoplasmic cleavage of 20S pre-rRNA at site D.
Collapse
Affiliation(s)
- Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Thierry Lacombe
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n; E-41013 Seville, Spain Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|