1
|
Norppa AJ, Chowdhury I, van Rooijen LE, Ravantti JJ, Snel B, Varjosalo M, Frilander MJ. Distinct functions for the paralogous RBM41 and U11/U12-65K proteins in the minor spliceosome. Nucleic Acids Res 2024; 52:4037-4052. [PMID: 38499487 DOI: 10.1093/nar/gkae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Iftekhar Chowdhury
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Laura E van Rooijen
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Janne J Ravantti
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Markku Varjosalo
- Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Klimešová K, Petržílková H, Bařinka C, Staněk D. SART3 associates with a post-splicing complex. J Cell Sci 2023; 136:jcs260380. [PMID: 36620952 DOI: 10.1242/jcs.260380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/10/2022] [Indexed: 01/10/2023] Open
Abstract
SART3 is a multifunctional protein that acts in several steps of gene expression, including assembly and recycling of the spliceosomal U4/U6 small nuclear ribonucleoprotein particle (snRNP). In this work, we provide evidence that SART3 associates via its N-terminal HAT domain with the 12S U2 snRNP. Further analysis showed that SART3 associates with the post-splicing complex containing U2 and U5 snRNP components. In addition, we observed an interaction between SART3 and the RNA helicase DHX15, which disassembles post-splicing complexes. Based on our data, we propose a model that SART3 associates via its N-terminal HAT domain with the post-splicing complex, where it interacts with U6 snRNA to protect it and to initiate U6 snRNA recycling before a next round of splicing.
Collapse
MESH Headings
- RNA Splicing/genetics
- Spliceosomes/genetics
- Spliceosomes/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoprotein, U5 Small Nuclear/genetics
- Ribonucleoprotein, U5 Small Nuclear/metabolism
- Ribonucleoprotein, U2 Small Nuclear/genetics
- Ribonucleoprotein, U2 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
Collapse
Affiliation(s)
- Klára Klimešová
- Department of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Hana Petržílková
- Department of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Cyril Bařinka
- Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague, Czech Republic
| | - David Staněk
- Department of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
3
|
Sherman EJ, Mitchell DC, Garner AL. The RNA-binding protein SART3 promotes miR-34a biogenesis and G 1 cell cycle arrest in lung cancer cells. J Biol Chem 2019; 294:17188-17196. [PMID: 31619517 PMCID: PMC6873168 DOI: 10.1074/jbc.ac119.010419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are small, noncoding RNAs that are implicated in the regulation of most biological processes. Global miRNA biogenesis is altered in many cancers, and RNA-binding proteins play a role in miRNA biogenesis, presenting a promising avenue for targeting miRNA dysregulation in diseases. miR-34a exhibits tumor-suppressive activities by targeting cell cycle regulators CDK4/6 and anti-apoptotic factor BCL-2, among other regulatory pathways such as Wnt, TGF-β, and Notch signaling. Many cancers exhibit down-regulation or loss of miR-34a, and synthetic miR-34a supplementation has been shown to inhibit tumor growth in vivo However, the post-transcriptional mechanisms that cause miR-34a loss in cancer are not entirely understood. Here, using a proteomics-mediated approach in non-small-cell lung cancer (NSCLC) cells, we identified squamous cell carcinoma antigen recognized by T-cells 3 (SART3) as a putative pre-miR-34a-binding protein. SART3 is a spliceosome recycling factor and nuclear RNA-binding protein with no previously reported role in miRNA regulation. We found that SART3 binds pre-miR-34a with higher specificity than pre-let-7d (used as a negative control) and elucidated a new functional role for SART3 in NSCLC cells. SART3 overexpression increased miR-34a levels, down-regulated the miR-34a target genes CDK4/6, and caused a cell cycle arrest in the G1 phase. In vitro binding experiments revealed that the RNA-recognition motifs within the SART3 sequence are responsible for selective pre-miR-34a binding. Our results provide evidence for a significant role of SART3 in miR-34a biogenesis and cell cycle progression in NSCLC cells.
Collapse
Affiliation(s)
- Emily J Sherman
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Dylan C Mitchell
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda L Garner
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
4
|
Didychuk AL, Butcher SE, Brow DA. The life of U6 small nuclear RNA, from cradle to grave. RNA (NEW YORK, N.Y.) 2018; 24:437-460. [PMID: 29367453 PMCID: PMC5855946 DOI: 10.1261/rna.065136.117] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Removal of introns from precursor messenger RNA (pre-mRNA) and some noncoding transcripts is an essential step in eukaryotic gene expression. In the nucleus, this process of RNA splicing is carried out by the spliceosome, a multi-megaDalton macromolecular machine whose core components are conserved from yeast to humans. In addition to many proteins, the spliceosome contains five uridine-rich small nuclear RNAs (snRNAs) that undergo an elaborate series of conformational changes to correctly recognize the splice sites and catalyze intron removal. Decades of biochemical and genetic data, along with recent cryo-EM structures, unequivocally demonstrate that U6 snRNA forms much of the catalytic core of the spliceosome and is highly dynamic, interacting with three snRNAs, the pre-mRNA substrate, and >25 protein partners throughout the splicing cycle. This review summarizes the current state of knowledge on how U6 snRNA is synthesized, modified, incorporated into snRNPs and spliceosomes, recycled, and degraded.
Collapse
Affiliation(s)
- Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
5
|
Whitmill A, Timani KA, Liu Y, He JJ. Tip110: Physical properties, primary structure, and biological functions. Life Sci 2016; 149:79-95. [PMID: 26896687 DOI: 10.1016/j.lfs.2016.02.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Abstract
HIV-1 Tat-interacting protein of 110kDa (Tip110), also referred to as squamous cell carcinoma antigen recognized by T cells 3 (Sart3), p110 or p110(nrb), was initially identified as a cDNA clone (KIAA0156) without annotated functions. Over the past twenty years, several functions have been attributed to this protein. The proposed biological functions include roles for Tip110 in pre-mRNA splicing, gene transcription, stem cell biology, and development. Dysregulation of Tip110 is also a contributing factor in the development of cancer and other human diseases. It is clear that our understanding of this protein is rapidly evolving. In this review, we aimed to provide a summary of all the existing literature on this gene/protein and its proposed biological functions.
Collapse
Affiliation(s)
- Amanda Whitmill
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Khalid Amine Timani
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Ying Liu
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Johnny J He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
6
|
Hubert A, Henderson JM, Cowles MW, Ross KG, Hagen M, Anderson C, Szeterlak CJ, Zayas RM. A functional genomics screen identifies an Importin-α homolog as a regulator of stem cell function and tissue patterning during planarian regeneration. BMC Genomics 2015; 16:769. [PMID: 26459857 PMCID: PMC4603911 DOI: 10.1186/s12864-015-1979-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 10/02/2015] [Indexed: 11/10/2022] Open
Abstract
Background Planarians are renowned for their regenerative capacity and are an attractive model for the study of adult stem cells and tissue regeneration. In an effort to better understand the molecular mechanisms underlying planarian regeneration, we performed a functional genomics screen aimed at identifying genes involved in this process in Schmidtea mediterranea. Methods We used microarrays to detect changes in gene expression in regenerating and non-regenerating tissues in planarians regenerating one side of the head and followed this with high-throughput screening by in situ hybridization and RNAi to characterize the expression patterns and function of the differentially expressed genes. Results Along with five previously characterized genes (Smed-cycD, Smed-morf41/mrg-1, Smed-pdss2/dlp1, Smed-slbp, and Smed-tph), we identified 20 additional genes necessary for stem cell maintenance (Smed-sart3, Smed-smarcc-1, Smed-espl1, Smed-rrm2b-1, Smed-rrm2b-2, Smed-dkc1, Smed-emg1, Smed-lig1, Smed-prim2, Smed-mcm7, and a novel sequence) or general regenerative capability (Smed-rbap46/48-2, Smed-mcm2, Smed-ptbp1, and Smed-fen-1) or that caused tissue-specific defects upon knockdown (Smed-ddc, Smed-gas8, Smed-pgbd4, and Smed-b9d2). We also found that a homolog of the nuclear transport factor Importin-α plays a role in stem cell function and tissue patterning, suggesting that controlled nuclear import of proteins is important for regeneration. Conclusions Through this work, we described the roles of several previously uncharacterized genes in planarian regeneration and implicated nuclear import in this process. We have additionally created an online database to house our in situ and RNAi data to make it accessible to the planarian research community. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1979-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy Hubert
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA. .,Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026-0001, USA.
| | - Jordana M Henderson
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Martis W Cowles
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Kelly G Ross
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Matthew Hagen
- Biological and Medical Informatics Research Center, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Christa Anderson
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Claudia J Szeterlak
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA.
| |
Collapse
|
7
|
Timani KA, Liu Y, He JJ. Tip110 interacts with YB-1 and regulates each other's function. BMC Mol Biol 2013; 14:14. [PMID: 23822148 PMCID: PMC3716619 DOI: 10.1186/1471-2199-14-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/02/2013] [Indexed: 12/02/2022] Open
Abstract
Background Tip110 plays important roles in tumor immunobiology, pre-mRNA splicing, expression regulation of viral and host genes, and possibly protein turnover. It is clear that our understanding of Tip110 biological function remains incomplete. Results Herein, we employed an immunoaffinity-based enrichment approach combined with protein mass spectrometry and attempted to identify Tip110-interacting cellular proteins. A total of 13 major proteins were identified to be complexed with Tip110. Among them was Y-box binding protein 1 (YB-1). The interaction of Tip110 with YB-1 was further dissected and confirmed to be specific and involve the N-terminal of both Tip110 and YB-1 proteins. A HIV-1 LTR promoter-driven reporter gene assay and a CD44 minigene in vivo splicing assay were chosen to evaluate the functional relevance of the Tip110/YB-1 interaction. We showed that YB-1 potentiates the Tip110/Tat-mediated transactivation of the HIV-1 LTR promoter while Tip110 promotes the inclusion of the exon 5 in CD44 minigene alternative splicing. Conclusions Tip110 and YB-1 interact to form a complex and mutually regulate each other’s biological functions.
Collapse
|
8
|
Licht K, Medenbach J, Lührmann R, Kambach C, Bindereif A. 3'-cyclic phosphorylation of U6 snRNA leads to recruitment of recycling factor p110 through LSm proteins. RNA (NEW YORK, N.Y.) 2008; 14:1532-8. [PMID: 18567812 PMCID: PMC2491463 DOI: 10.1261/rna.1129608] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 05/09/2008] [Indexed: 05/08/2023]
Abstract
Pre-mRNA splicing proceeds through assembly of the spliceosome complex, catalysis, and recycling. During each cycle the U4/U6.U5 tri-snRNP is disrupted and U4/U6 snRNA base-pairing unwound, releasing separate post-spliceosomal U4, U5, and U6 snRNPs, which have to be recycled to the splicing-competent tri-snRNP. Previous work implicated p110--the human ortholog of the yeast Prp24 protein--and the LSm2-8 proteins of the U6 snRNP in U4/U6 recycling. Here we show in vitro that these proteins bind synergistically to U6 snRNA: Both purified and recombinant LSm2-8 proteins are able to recruit p110 protein to U6 snRNA via interaction with the highly conserved C-terminal region of p110. Furthermore, the presence of a 2',3'-cyclic phosphate enhances the affinity of U6 snRNA for the LSm2-8 proteins and inversely reduces La protein binding, suggesting a direct role of the 3'-terminal phosphorylation in RNP remodeling during U6 biogenesis.
Collapse
Affiliation(s)
- Konstantin Licht
- Institute of Biochemistry, Justus-Liebig-University of Giessen, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
9
|
Sharma S, Kohlstaedt LA, Damianov A, Rio DC, Black DL. Polypyrimidine tract binding protein controls the transition from exon definition to an intron defined spliceosome. Nat Struct Mol Biol 2008; 15:183-91. [PMID: 18193060 PMCID: PMC2546704 DOI: 10.1038/nsmb.1375] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 12/13/2007] [Indexed: 11/09/2022]
Abstract
The polypyrimidine tract binding protein (PTB) binds pre-mRNAs to alter splice-site choice. We characterized a series of spliceosomal complexes that assemble on a pre-mRNA under conditions of either PTB-mediated splicing repression or its absence. In the absence of repression, exon definition complexes that were assembled downstream of the regulated exon could progress to pre-spliceosomal A complexes and functional spliceosomes. Under PTB-mediated repression, assembly was arrested at an A-like complex that was unable to transition to spliceosomal complexes. Trans-splicing experiments indicated that, even when the U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) are properly bound to the upstream and downstream exons, the presence of PTB prevents the interaction of the two exon complexes. Proteomic analyses of these complexes provide a new description of exon definition complexes, and indicate that splicing regulators can act on the transition between the exon definition complex and an intron-defined spliceosome.
Collapse
Affiliation(s)
- Shalini Sharma
- Howard Hughes Medical Institute, University of California, Los Angeles, MRL5-748, Charles E. Young Drive South, Los Angeles, California, 90095, USA
| | - Lori A. Kohlstaedt
- Cancer Research Laboratory, Mass Spectrometry Facility, University of California, Berkeley, 525 Life Science Addition, Berkeley, California, 94720, USA
| | - Andrey Damianov
- Howard Hughes Medical Institute, University of California, Los Angeles, MRL5-748, Charles E. Young Drive South, Los Angeles, California, 90095, USA
| | - Donald C. Rio
- Department of Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, California, 94720, USA
| | - Douglas L. Black
- Howard Hughes Medical Institute, University of California, Los Angeles, MRL5-748, Charles E. Young Drive South, Los Angeles, California, 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 1602 Molecular Sciences Building, 405 Hilgard Avenue, Los Angeles, California 90095, USA
| |
Collapse
|
10
|
Trede NS, Medenbach J, Damianov A, Hung LH, Weber GJ, Paw BH, Zhou Y, Hersey C, Zapata A, Keefe M, Barut BA, Stuart AB, Katz T, Amemiya CT, Zon LI, Bindereif A. Network of coregulated spliceosome components revealed by zebrafish mutant in recycling factor p110. Proc Natl Acad Sci U S A 2007; 104:6608-13. [PMID: 17416673 PMCID: PMC1871833 DOI: 10.1073/pnas.0701919104] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spliceosome cycle consists of assembly, catalysis, and recycling phases. Recycling of postspliceosomal U4 and U6 small nuclear ribonucleoproteins (snRNPs) requires p110/SART3, a general splicing factor. In this article, we report that the zebrafish earl grey (egy) mutation maps in the p110 gene and results in a phenotype characterized by thymus hypoplasia, other organ-specific defects, and death by 7 to 8 days postfertilization. U4/U6 snRNPs were disrupted in egy mutant embryos, demonstrating the importance of p110 for U4/U6 snRNP recycling in vivo. Surprisingly, expression profiling of the egy mutant revealed an extensive network of coordinately up-regulated components of the spliceosome cycle, providing a mechanism compensating for the recycling defect. Together, our data demonstrate that a mutation in a general splicing factor can lead to distinct defects in organ development and cause disease.
Collapse
Affiliation(s)
- Nikolaus S. Trede
- *Department of Pediatrics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Jan Medenbach
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Andrey Damianov
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Lee-Hsueh Hung
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Gerhard J. Weber
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Barry H. Paw
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Yi Zhou
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Candace Hersey
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Agustin Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; and
| | - Matthew Keefe
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Bruce A. Barut
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Andrew B. Stuart
- Benaroya Research Institute at Virginia Mason, Department of Biology, University of Washington, Seattle, WA 98101
| | - Tammisty Katz
- *Department of Pediatrics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Chris T. Amemiya
- Benaroya Research Institute at Virginia Mason, Department of Biology, University of Washington, Seattle, WA 98101
| | - Leonard I. Zon
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
- **To whom correspondence may be addressed at:
Howard Hughes Medical Institute, Department of Hematology/Oncology, Children's Hospital, Harvard Medical School, Karp Family Research Laboratories, 300 Longwood Avenue, Boston, MA 02115. E-mail:
| | - Albrecht Bindereif
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany
- To whom correspondence may be addressed at:
Institute of Biochemistry, Justus-Liebig-University, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany. E-mail:
| |
Collapse
|
11
|
Damianov A, Kann M, Lane WS, Bindereif A. Human RBM28 protein is a specific nucleolar component of the spliceosomal snRNPs. Biol Chem 2006; 387:1455-60. [PMID: 17081119 DOI: 10.1515/bc.2006.182] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The biogenesis of spliceosomal small nuclear RNAs (snRNAs) involves organized translocations between the cytoplasm and certain nuclear domains, such as Cajal bodies and nucleoli. Here we identify human RBM28 protein as a novel snRNP component, based on affinity selection of U6 small nuclear ribonucleoprotein (snRNP). As shown by immunofluorescence, RBM28 is a nucleolar protein. Anti-RBM28 immunoprecipitation from HeLa cell lysates revealed that this protein specifically associates with U1, U2, U4, U5, and U6 snRNAs. Our data provide the first evidence that RBM28 is a common nucleolar component of the spliceosomal ribonucleoprotein complexes, possibly coordinating their transition through the nucleolus.
Collapse
Affiliation(s)
- Andrey Damianov
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
12
|
Trippe R, Guschina E, Hossbach M, Urlaub H, Lührmann R, Benecke BJ. Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. RNA (NEW YORK, N.Y.) 2006; 12:1494-504. [PMID: 16790842 PMCID: PMC1524887 DOI: 10.1261/rna.87706] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mammalian cells contain a highly specific terminal uridylyl transferase (TUTase) that exclusively accepts U6 snRNA as substrate. This enzyme, termed U6-TUTase, was purified from HeLa cell extracts and analyzed by microsequencing. All sequenced peptides matched a unique human cDNA coding for a previously unknown protein. Domain structure analysis revealed that the U6-TUTase also belongs to the well-characterized poly(A) polymerase protein superfamily. However, by amino acid sequence as well as RNA-binding motifs, human U6-TUTase is highly divergent from both the poly(A) polymerases and from the TUTases identified within the editing complexes of trypanosomes. After cloning, the recombinant U6-TUTase was expressed in HeLa cells. Analysis of its catalytical activity confirmed the identity of the cloned protein as U6-TUTase, exhibiting the same exclusive substrate specificity for U6 snRNA as the endogenous enzyme. That unique selectivity even excluded as substrate U6atac RNA, the functional homolog of the minor spliceosome. Finally, RNAi knockdown experiments revealed that U6-TUTase is essential for cell proliferation. Surprisingly, large amounts of the recombinant enzyme were found to accumulate within nucleoli.
Collapse
Affiliation(s)
- Ralf Trippe
- Lehrstuhl für Biochemie I, Ruhr-Universität, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Stanek D, Neugebauer KM. The Cajal body: a meeting place for spliceosomal snRNPs in the nuclear maze. Chromosoma 2006; 115:343-54. [PMID: 16575476 DOI: 10.1007/s00412-006-0056-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/27/2006] [Accepted: 01/29/2006] [Indexed: 10/24/2022]
Abstract
Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) are essential pre-mRNA splicing factors that consist of small nuclear RNAs (snRNAs) complexed with specific sets of proteins. A considerable body of evidence has established that snRNP assembly is accomplished after snRNA synthesis in the nucleus through a series of steps involving cytoplasmic and nuclear phases. Recent work indicates that snRNPs transiently localize to the Cajal body (CB), a nonmembrane-bound inclusion present in the nuclei of most cells, for the final steps in snRNP maturation, including snRNA base modification, U4/U6 snRNA annealing, and snRNA-protein assembly. Here, we review these findings that suggest a crucial role for CBs in the spliceosome cycle in which production of new snRNPs--and perhaps regenerated snRNPs after splicing--is promoted by the concentration of substrates in this previously mysterious subnuclear organelle. These insights allow us to speculate on the role of nuclear bodies in regulating the dynamics of RNP assembly to maintain a functional pool of factors available for key steps in gene expression.
Collapse
Affiliation(s)
- David Stanek
- Department of Cellular Biology and Pathology, First Medical Faculty, Institute of Physiology, Charles University, Academy of Sciences of the Czech Republic, Albertov 4, Prague 2, 128 00, Czech Republic.
| | | |
Collapse
|
14
|
Karaduman R, Fabrizio P, Hartmuth K, Urlaub H, Lührmann R. RNA structure and RNA-protein interactions in purified yeast U6 snRNPs. J Mol Biol 2005; 356:1248-62. [PMID: 16410014 DOI: 10.1016/j.jmb.2005.12.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/01/2005] [Accepted: 12/03/2005] [Indexed: 11/21/2022]
Abstract
The U6 small nuclear RNA (snRNA) undergoes major conformational changes during the assembly of the spliceosome and catalysis of splicing. It associates with the specific protein Prp24p, and a set of seven LSm2p-8p proteins, to form the U6 small nuclear ribonucleoprotein (snRNP). These proteins have been proposed to act as RNA chaperones that stimulate pairing of U6 with U4 snRNA to form the intermolecular stem I and stem II of the U4/U6 duplex, whose formation is essential for spliceosomal function. However, the mechanism whereby Prp24p and the LSm complex facilitate U4/U6 base-pairing, as well as the exact binding site(s) of Prp24p in the native U6 snRNP, are not well understood. Here, we have investigated the secondary structure of the U6 snRNA in purified U6 snRNPs and compared it with its naked form. Using RNA structure-probing techniques, we demonstrate that within the U6 snRNP a large internal region of the U6 snRNA is unpaired and protected from chemical modification by bound Prp24p. Several of these U6 nucleotides are available for base-pairing interaction, as only their sugar backbone is contacted by Prp24p. Thus, Prp24p can present them to the U4 snRNA and facilitate formation of U4/U6 stem I. We show that the 3' stem-loop is not bound strongly by U6 proteins in native particles. However, when compared to the 3' stem-loop in the naked U6 snRNA, it has a more open conformation, which would facilitate formation of stem II with the U4 snRNA. Our data suggest that the combined association of Prp24p and the LSm complex confers upon U6 nucleotides a conformation favourable for U4/U6 base-pairing. Interestingly, we find that the open structure of the yeast U6 snRNA in native snRNPs can also be adopted by human U6 and U6atac snRNAs.
Collapse
Affiliation(s)
- Ramazan Karaduman
- Max-Planck-Institute of Biophysical Chemistry, Department of Cellular Biochemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
15
|
Kwan SS, Brow DA. The N- and C-terminal RNA recognition motifs of splicing factor Prp24 have distinct functions in U6 RNA binding. RNA (NEW YORK, N.Y.) 2005; 11:808-20. [PMID: 15811912 PMCID: PMC1370765 DOI: 10.1261/rna.2010905] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Prp24 is an essential yeast U6 snRNP protein with four RNA recognition motifs (RRMs) that facilitates the association of U4 and U6 snRNPs during spliceosome assembly. Genetic interactions led to the proposal that RRMs 2 and 3 of Prp24 bind U6 RNA, while RRMs 1 and 4 bind U4 RNA. However, the function of each RRM has yet to be established through biochemical means. We compared the binding of recombinant full-length Prp24 and truncated forms lacking RRM 1 or RRM 4 with U6 RNA. Contrary to expectations, we found that the N-terminal segment containing RRM 1 is important for high-affinity binding to U6 RNA and for discrimination between wild-type U6 RNA and U6 with point mutations in the 3' intramolecular stem-loop. In contrast, deletion of RRM 4 and the C terminus did not significantly alter the affinity for U6 RNA, but resulted in the formation of higher order Prp24.U6 complexes. Truncation and internal deletion of U6 RNA mapped three Prp24-binding sites, with the central site providing most of the affinity for Prp24. A newly identified temperature-sensitive lethal point mutation in RRM 1 is exacerbated by mutations in the U6 RNA telestem, as is a mutation in RRM 2, but not one in RRM 3. We propose that RRMs 1 and 2 of yeast Prp24 bind the same central site in U6 RNA that is bound by the two RRMs of human Prp24, and that RRMs 3 and 4 bind lower affinity flanking sites, thereby restricting the stoichiometry of Prp24 binding.
Collapse
Affiliation(s)
- Sharon S Kwan
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Ave, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
16
|
Stanĕk D, Neugebauer KM. Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. ACTA ACUST UNITED AC 2004; 166:1015-25. [PMID: 15452143 PMCID: PMC2172029 DOI: 10.1083/jcb.200405160] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) are required for pre-mRNA splicing throughout the nucleoplasm, yet snRNPs also concentrate in Cajal bodies (CBs). To address a proposed role of CBs in snRNP assembly, we have used fluorescence resonance energy transfer (FRET) microscopy to investigate the subnuclear distribution of specific snRNP intermediates. Two distinct complexes containing the protein SART3 (p110), required for U4/U6 snRNP assembly, were localized: SART3•U6 snRNP and SART3•U4/U6 snRNP. These complexes segregated to different nuclear compartments, with SART3•U6 snRNPs exclusively in the nucleoplasm and SART3•U4/U6 snRNPs preferentially in CBs. Mutant cells lacking the CB-specific protein coilin and consequently lacking CBs exhibited increased nucleoplasmic levels of SART3•U4/U6 snRNP complexes. Reconstitution of CBs in these cells by expression of exogenous coilin restored accumulation of SART3•U4/U6 snRNP in CBs. Thus, while some U4/U6 snRNP assembly can occur in the nucleoplasm, these data provide evidence that SART3•U6 snRNPs form in the nucleoplasm and translocate to CBs where U4/U6 snRNP assembly occurs.
Collapse
Affiliation(s)
- David Stanĕk
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
17
|
Medenbach J, Schreiner S, Liu S, Lührmann R, Bindereif A. Human U4/U6 snRNP recycling factor p110: mutational analysis reveals the function of the tetratricopeptide repeat domain in recycling. Mol Cell Biol 2004; 24:7392-401. [PMID: 15314151 PMCID: PMC506986 DOI: 10.1128/mcb.24.17.7392-7401.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After each spliceosome cycle, the U4 and U6 snRNAs are released separately and are recycled to the functional U4/U6 snRNP, requiring in the mammalian system the U6-specific RNA binding protein p110 (SART3). Its domain structure is made up of an extensive N-terminal domain with at least seven tetratricopeptide repeat (TPR) motifs, followed by two RNA recognition motifs (RRMs) and a highly conserved C-terminal sequence of 10 amino acids. Here we demonstrate under in vitro recycling conditions that U6-p110 is an essential splicing factor. Recycling activity requires both the RRMs and the TPR domain but not the highly conserved C-terminal sequence. For U6-specific RNA binding, the two RRMs with some flanking regions are sufficient. Yeast two-hybrid assays reveal that p110 interacts through its TPR domain with the U4/U6-specific 90K protein, indicating a specific role of the TPR domain in spliceosome recycling. On the 90K protein, a short internal region (amino acids 416 to 550) suffices for the interaction with p110. Together, these data suggest a model whereby p110 brings together U4 and U6 snRNAs through both RNA-protein and protein-protein interactions.
Collapse
Affiliation(s)
- Jan Medenbach
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|