1
|
Fujioka M, Ke W, Schedl P, Jaynes JB. The homie insulator has sub-elements with different insulating and long-range pairing properties. Genetics 2025; 229:iyaf032. [PMID: 39999387 PMCID: PMC12005253 DOI: 10.1093/genetics/iyaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Chromatin insulators are major determinants of chromosome architecture. Specific architectures induced by insulators profoundly influence nuclear processes, including how enhancers and promoters interact over long distances and between homologous chromosomes. Insulators can pair with copies of themselves in trans to facilitate homolog pairing. They can also pair with other insulators, sometimes with great specificity, inducing long-range chromosomal loops. Contrary to their canonical function of enhancer blocking, these loops can bring distant enhancers and promoters together to activate gene expression, while at the same time blocking other interactions in cis. The details of these effects depend on the choice of pairing partner, and on the orientation specificity of pairing, implicating the 3D architecture as a major functional determinant. Here, we dissect the homie insulator from the Drosophila even skipped (eve) locus, to understand its substructure. We test pairing function based on homie-carrying transgenes interacting with endogenous eve. The assay is sensitive to both pairing strength and orientation. Using this assay, we found that a Su(Hw) binding site in homie is required for efficient long-range interaction, although some activity remains without it. This binding site also contributes to the canonical insulator activities of enhancer blocking and barrier function. Based on this and other results from our functional dissection, each of the canonical insulator activities, chromosomal loop formation, enhancer blocking, and barrier activity, are partially separable. Our results show the complexity inherent in insulator functions, which can be provided by an array of different proteins with both shared and distinct properties.
Collapse
Affiliation(s)
- Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Wenfan Ke
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - James B Jaynes
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Melnikova LS, Molodina VV, Georgiev PG, Golovnin AK. Impact of Interactions between Su(Hw)-Dependent Insulators on the Transvection Effect in Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2024; 517:127-133. [PMID: 38744735 DOI: 10.1134/s1607672924700820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 05/16/2024]
Abstract
Transvection is a phenomenon of interallelic communication in which enhancers can activate a specific promoter located on a homologous chromosome. Insulators play a significant role in ensuring functional interactions between enhancers and promoters. In the presented work, we created a model where two or three copies of the insulator are located next to enhancers and promoters localized on homologous chromosomes. Using the Su(Hw) insulator as a model, we showed that the functional interaction between a pair of insulators promotes enhancer-promoter trans-interactions. The interaction between the three insulators, on the contrary, can lead to the formation of chromatin loops that sterically hinder the full enhancer-promoter interaction. The results of the work suggest the participation of insulators in the regulation of homologous chromosome pairing and in communication between distant genomic loci.
Collapse
Affiliation(s)
- L S Melnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - V V Molodina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A K Golovnin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Blum JA, Wells M, Huxley-Reicher Z, Johnson JE, Bateman JR. Transvection between nonallelic genomic positions in Drosophila. G3 (BETHESDA, MD.) 2024; 14:jkad255. [PMID: 37949840 PMCID: PMC10849331 DOI: 10.1093/g3journal/jkad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
In Drosophila, pairing of maternal and paternal homologous chromosomes can permit trans-interactions between enhancers on one homolog and promoters on another, an example of transvection. Although trans-interactions have been observed at many loci in the Drosophila genome and in other organisms, the parameters that govern enhancer action in trans remain poorly understood. Using a transgenic reporter system, we asked whether enhancers and promoters at nonallelic, but nearby, genomic positions can communication in trans. Using one transgenic insertion carrying the synthetic enhancer GMR and another nearby insertion carrying the hsp70 promoter driving a fluorescent reporter, we show that transgenes separated by 2.6 kb of linear distance can support enhancer action in trans at the 53F8 locus. Furthermore, transvection between the nonallelic insertions can be augmented by a small deletion flanking one insert, likely via changes to the paired configuration of the homologs. Subsequent analyses of other insertions in 53F8 that carry different transgenic sequences demonstrate that the capacity to support transvection between nonallelic sites varies greatly, suggesting that factors beyond the linear distance between insertion sites play an important role. Finally, analysis of transvection between nearby nonallelic sites at other genomic locations shows evidence of position effects, where one locus supported GMR action in trans over a linear distance of over 10 kb, whereas another locus showed no evidence of transvection over a span <200 bp. Overall, our data demonstrate that transvection between nonallelic sites represents a complex interplay between genomic context, interallelic distance, and promoter identity.
Collapse
Affiliation(s)
- Jacob A Blum
- Biology Department, 2 Polar Loop, Bowdoin College, Brunswick, ME 04011, USA
| | - Michelle Wells
- Biology Department, 2 Polar Loop, Bowdoin College, Brunswick, ME 04011, USA
| | | | - Justine E Johnson
- Biology Department, 2 Polar Loop, Bowdoin College, Brunswick, ME 04011, USA
| | - Jack R Bateman
- Biology Department, 2 Polar Loop, Bowdoin College, Brunswick, ME 04011, USA
| |
Collapse
|
4
|
Kahn TG, Savitsky M, Kuong C, Jacquier C, Cavalli G, Chang JM, Schwartz YB. Topological screen identifies hundreds of Cp190- and CTCF-dependent Drosophila chromatin insulator elements. SCIENCE ADVANCES 2023; 9:eade0090. [PMID: 36735780 PMCID: PMC9897668 DOI: 10.1126/sciadv.ade0090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Drosophila insulators were the first DNA elements found to regulate gene expression by delimiting chromatin contacts. We still do not know how many of them exist and what impact they have on the Drosophila genome folding. Contrary to vertebrates, there is no evidence that fly insulators block cohesin-mediated chromatin loop extrusion. Therefore, their mechanism of action remains uncertain. To bridge these gaps, we mapped chromatin contacts in Drosophila cells lacking the key insulator proteins CTCF and Cp190. With this approach, we found hundreds of insulator elements. Their study indicates that Drosophila insulators play a minor role in the overall genome folding but affect chromatin contacts locally at many loci. Our observations argue that Cp190 promotes cobinding of other insulator proteins and that the model, where Drosophila insulators block chromatin contacts by forming loops, needs revision. Our insulator catalog provides an important resource to study mechanisms of genome folding.
Collapse
Affiliation(s)
- Tatyana G. Kahn
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Chikuan Kuong
- Department of Computer Science, National Chengchi University, Taipei City, Taiwan
| | | | - Giacomo Cavalli
- Institute of Human Genetics, UMR9002 CNRS, Montpellier, France
| | - Jia-Ming Chang
- Department of Computer Science, National Chengchi University, Taipei City, Taiwan
| | | |
Collapse
|
5
|
Urban EA, Chernoff C, Layng KV, Han J, Anderson C, Konzman D, Johnston RJ. Activating and repressing gene expression between chromosomes during stochastic fate specification. Cell Rep 2023; 42:111910. [PMID: 36640351 PMCID: PMC9976292 DOI: 10.1016/j.celrep.2022.111910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
DNA elements act across long genomic distances to regulate gene expression. During transvection in Drosophila, DNA elements on one allele of a gene act between chromosomes to regulate expression of the other allele. Little is known about the biological roles and developmental regulation of transvection. Here, we study the stochastic expression of spineless (ss) in photoreceptors in the fly eye to understand transvection. We determine a biological role for transvection in regulating expression of naturally occurring ss alleles. We identify DNA elements required for activating and repressing transvection. Different enhancers participate in transvection at different times during development to promote gene expression and specify cell fates. Bringing a silencer element on a heterologous chromosome into proximity with the ss locus "reconstitutes" the gene, leading to repression. Our studies show that transvection regulates gene expression via distinct DNA elements at specific timepoints in development, with implications for genome organization and architecture.
Collapse
Affiliation(s)
- Elizabeth A. Urban
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA,These authors contributed equally
| | - Chaim Chernoff
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA,Present address: Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA,These authors contributed equally
| | - Kayla Viets Layng
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Jeong Han
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Daniel Konzman
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Robert J. Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA,Lead contact,Correspondence:
| |
Collapse
|
6
|
Fleck K, Raj R, Erceg J. The 3D genome landscape: Diverse chromosomal interactions and their functional implications. Front Cell Dev Biol 2022; 10:968145. [PMID: 36036013 PMCID: PMC9402908 DOI: 10.3389/fcell.2022.968145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Genome organization includes contacts both within a single chromosome and between distinct chromosomes. Thus, regulatory organization in the nucleus may include interplay of these two types of chromosomal interactions with genome activity. Emerging advances in omics and single-cell imaging technologies have allowed new insights into chromosomal contacts, including those of homologs and sister chromatids, and their significance to genome function. In this review, we highlight recent studies in this field and discuss their impact on understanding the principles of chromosome organization and associated functional implications in diverse cellular processes. Specifically, we describe the contributions of intra-chromosomal, inter-homolog, and inter-sister chromatid contacts to genome organization and gene expression.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Romir Raj
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
7
|
Galouzis CC, Prud’homme B. Relevance and mechanisms of transvection. C R Biol 2021; 344:373-387. [DOI: 10.5802/crbiol.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
|
8
|
Peterson SC, Samuelson KB, Hanlon SL. Multi-Scale Organization of the Drosophila melanogaster Genome. Genes (Basel) 2021; 12:817. [PMID: 34071789 PMCID: PMC8228293 DOI: 10.3390/genes12060817] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Interphase chromatin, despite its appearance, is a highly organized framework of loops and bends. Chromosomes are folded into topologically associating domains, or TADs, and each chromosome and its homolog occupy a distinct territory within the nucleus. In Drosophila, genome organization is exceptional because homologous chromosome pairing is in both germline and somatic tissues, which promote interhomolog interactions such as transvection that can affect gene expression in trans. In this review, we focus on what is known about genome organization in Drosophila and discuss it from TADs to territory. We start by examining intrachromosomal organization at the sub-chromosome level into TADs, followed by a comprehensive analysis of the known proteins that play a key role in TAD formation and boundary establishment. We then zoom out to examine interhomolog interactions such as pairing and transvection that are abundant in Drosophila but rare in other model systems. Finally, we discuss chromosome territories that form within the nucleus, resulting in a complete picture of the multi-scale organization of the Drosophila genome.
Collapse
Affiliation(s)
| | | | - Stacey L. Hanlon
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (S.C.P.); (K.B.S.)
| |
Collapse
|
9
|
Kyrchanova O, Georgiev P. Mechanisms of Enhancer-Promoter Interactions in Higher Eukaryotes. Int J Mol Sci 2021; 22:ijms22020671. [PMID: 33445415 PMCID: PMC7828040 DOI: 10.3390/ijms22020671] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
In higher eukaryotes, enhancers determine the activation of developmental gene transcription in specific cell types and stages of embryogenesis. Enhancers transform the signals produced by various transcription factors within a given cell, activating the transcription of the targeted genes. Often, developmental genes can be associated with dozens of enhancers, some of which are located at large distances from the promoters that they regulate. Currently, the mechanisms underlying specific distance interactions between enhancers and promoters remain poorly understood. This review briefly describes the properties of enhancers and discusses the mechanisms of distance interactions and potential proteins involved in this process.
Collapse
|
10
|
Melnikova LS, Georgiev PG, Golovnin AK. The Functions and Mechanisms of Action of Insulators in the Genomes of Higher Eukaryotes. Acta Naturae 2020; 12:15-33. [PMID: 33456975 PMCID: PMC7800606 DOI: 10.32607/actanaturae.11144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The mechanisms underlying long-range interactions between chromatin regions and the principles of chromosomal architecture formation are currently under extensive scrutiny. A special class of regulatory elements known as insulators is believed to be involved in the regulation of specific long-range interactions between enhancers and promoters. This review focuses on the insulators of Drosophila and mammals, and it also briefly characterizes the proteins responsible for their functional activity. It was initially believed that the main properties of insulators are blocking of enhancers and the formation of independent transcription domains. We present experimental data proving that the chromatin loops formed by insulators play only an auxiliary role in enhancer blocking. The review also discusses the mechanisms involved in the formation of topologically associating domains and their role in the formation of the chromosomal architecture and regulation of gene transcription.
Collapse
Affiliation(s)
- L. S. Melnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - P. G. Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. K. Golovnin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
11
|
King TD, Johnson JE, Bateman JR. Position Effects Influence Transvection in Drosophila melanogaster. Genetics 2019; 213:1289-1299. [PMID: 31611231 PMCID: PMC6893391 DOI: 10.1534/genetics.119.302583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/03/2019] [Indexed: 01/14/2023] Open
Abstract
Transvection is an epigenetic phenomenon wherein regulatory elements communicate between different chromosomes in trans, and is thereby dependent upon the three-dimensional organization of the genome. Transvection is best understood in Drosophila, where homologous chromosomes are closely paired in most somatic nuclei, although similar phenomena have been observed in other species. Previous data have supported that the Drosophila genome is generally permissive to enhancer action in trans, a form of transvection where an enhancer on one homolog activates gene expression from a promoter on a paired homolog. However, the capacity of different genomic positions to influence the quantitative output of transvection has yet to be addressed. To investigate this question, we employed a transgenic system that assesses and compares enhancer action in cis and in trans at defined chromosomal locations. Using the strong synthetic eye-specific enhancer GMR, we show that loci supporting strong cis-expression tend to support robust enhancer action in trans, whereas locations with weaker cis-expression show reduced transvection in a fluorescent reporter assay. Our subsequent analysis is consistent with a model wherein the chromatin state of the transgenic insertion site is a primary determinant of the degree to which enhancer action in trans will be supported, whereas other factors such as locus-specific variation in somatic homolog pairing are of less importance in influencing position effects on transvection.
Collapse
Affiliation(s)
- Thomas D King
- Biology Department, Bowdoin College, Brunswick, Maine 04011
| | | | - Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, Maine 04011
| |
Collapse
|
12
|
Viets K, Sauria MEG, Chernoff C, Rodriguez Viales R, Echterling M, Anderson C, Tran S, Dove A, Goyal R, Voortman L, Gordus A, Furlong EEM, Taylor J, Johnston RJ. Characterization of Button Loci that Promote Homologous Chromosome Pairing and Cell-Type-Specific Interchromosomal Gene Regulation. Dev Cell 2019; 51:341-356.e7. [PMID: 31607649 DOI: 10.1016/j.devcel.2019.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/07/2019] [Accepted: 09/09/2019] [Indexed: 01/05/2023]
Abstract
Homologous chromosomes colocalize to regulate gene expression in processes including genomic imprinting, X-inactivation, and transvection. In Drosophila, homologous chromosomes pair throughout development, promoting transvection. The "button" model of pairing proposes that specific regions along chromosomes pair with high affinity. Here, we identify buttons interspersed across the fly genome that pair with their homologous sequences, even when relocated to multiple positions in the genome. A majority of transgenes that span a full topologically associating domain (TAD) function as buttons, but not all buttons contain TADs. Additionally, buttons are enriched for insulator protein clusters. Fragments of buttons do not pair, suggesting that combinations of elements within a button are required for pairing. Pairing is necessary but not sufficient for transvection. Additionally, pairing and transvection are stronger in some cell types than in others, suggesting that pairing strength regulates transvection efficiency between cell types. Thus, buttons pair homologous chromosomes to facilitate cell-type-specific interchromosomal gene regulation.
Collapse
Affiliation(s)
- Kayla Viets
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael E G Sauria
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chaim Chernoff
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Max Echterling
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sang Tran
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Abigail Dove
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Raghav Goyal
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lukas Voortman
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eileen E M Furlong
- European Molecular Biology Laboratory, Department of Genome Biology, Heidelberg 69117, Germany
| | - James Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
13
|
AlHaj Abed J, Erceg J, Goloborodko A, Nguyen SC, McCole RB, Saylor W, Fudenberg G, Lajoie BR, Dekker J, Mirny LA, Wu CT. Highly structured homolog pairing reflects functional organization of the Drosophila genome. Nat Commun 2019; 10:4485. [PMID: 31582763 PMCID: PMC6776532 DOI: 10.1038/s41467-019-12208-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/27/2019] [Indexed: 01/14/2023] Open
Abstract
Trans-homolog interactions have been studied extensively in Drosophila, where homologs are paired in somatic cells and transvection is prevalent. Nevertheless, the detailed structure of pairing and its functional impact have not been thoroughly investigated. Accordingly, we generated a diploid cell line from divergent parents and applied haplotype-resolved Hi-C, showing that homologs pair with varying precision genome-wide, in addition to establishing trans-homolog domains and compartments. We also elucidate the structure of pairing with unprecedented detail, observing significant variation across the genome and revealing at least two forms of pairing: tight pairing, spanning contiguous small domains, and loose pairing, consisting of single larger domains. Strikingly, active genomic regions (A-type compartments, active chromatin, expressed genes) correlated with tight pairing, suggesting that pairing has a functional implication genome-wide. Finally, using RNAi and haplotype-resolved Hi-C, we show that disruption of pairing-promoting factors results in global changes in pairing, including the disruption of some interaction peaks.
Collapse
Affiliation(s)
- Jumana AlHaj Abed
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Anton Goloborodko
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Son C Nguyen
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6145, USA
| | - Ruth B McCole
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Wren Saylor
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Geoffrey Fudenberg
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Gladstone Institutes of Data Science and Biotechnology, San Francisco, CA, 94158, USA
| | - Bryan R Lajoie
- Howard Hughes Medical Institute and Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605-0103, USA
- Illumina, San Diego, CA, USA
| | - Job Dekker
- Howard Hughes Medical Institute and Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605-0103, USA
| | - Leonid A Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
| | - C-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
The Role of Insulation in Patterning Gene Expression. Genes (Basel) 2019; 10:genes10100767. [PMID: 31569427 PMCID: PMC6827083 DOI: 10.3390/genes10100767] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Development is orchestrated by regulatory elements that turn genes ON or OFF in precise spatial and temporal patterns. Many safety mechanisms prevent inappropriate action of a regulatory element on the wrong gene promoter. In flies and mammals, dedicated DNA elements (insulators) recruit protein factors (insulator binding proteins, or IBPs) to shield promoters from regulatory elements. In mammals, a single IBP called CCCTC-binding factor (CTCF) is known, whereas genetic and biochemical analyses in Drosophila have identified a larger repertoire of IBPs. How insulators function at the molecular level is not fully understood, but it is currently thought that they fold chromosomes into conformations that affect regulatory element-promoter communication. Here, we review the discovery of insulators and describe their properties. We discuss recent genetic studies in flies and mice to address the question: Is gene insulation important for animal development? Comparing and contrasting observations in these two species reveal that they have different requirements for insulation, but that insulation is a conserved and critical gene regulation strategy.
Collapse
|
15
|
Piwko P, Vitsaki I, Livadaras I, Delidakis C. The Role of Insulators in Transgene Transvection in Drosophila. Genetics 2019; 212:489-508. [PMID: 30948430 PMCID: PMC6553826 DOI: 10.1534/genetics.119.302165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Transvection is the phenomenon where a transcriptional enhancer activates a promoter located on the homologous chromosome. It has been amply documented in Drosophila where homologs are closely paired in most, if not all, somatic nuclei, but it has been known to rarely occur in mammals as well. We have taken advantage of site-directed transgenesis to insert reporter constructs into the same genetic locus in Drosophila and have evaluated their ability to engage in transvection by testing many heterozygous combinations. We find that transvection requires the presence of an insulator element on both homologs. Homotypic trans-interactions between four different insulators can support transvection: the gypsy insulator (GI), Wari, Fab-8 and 1A2; GI and Fab-8 are more effective than Wari or 1A2 We show that, in the presence of insulators, transvection displays the characteristics that have been previously described: it requires homolog pairing, but can happen at any of several loci in the genome; a solitary enhancer confronted with an enhancerless reporter is sufficient to drive transcription; it is weaker than the action of the same enhancer-promoter pair in cis, and it is further suppressed by cis-promoter competition. Though necessary, the presence of homotypic insulators is not sufficient for transvection; their position, number and orientation matters. A single GI adjacent to both enhancer and promoter is the optimal configuration. The identity of enhancers and promoters in the vicinity of a trans-interacting insulator pair is also important, indicative of complex insulator-enhancer-promoter interactions.
Collapse
Affiliation(s)
- Pawel Piwko
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, Heraklion 70013, Crete, Greece
| | - Ilektra Vitsaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, Heraklion 70013, Crete, Greece
| | - Ioannis Livadaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Crete, Greece
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, Heraklion 70013, Crete, Greece
| |
Collapse
|
16
|
Tian K, Henderson RE, Parker R, Brown A, Johnson JE, Bateman JR. Two modes of transvection at the eyes absent gene of Drosophila demonstrate plasticity in transcriptional regulatory interactions in cis and in trans. PLoS Genet 2019; 15:e1008152. [PMID: 31075100 PMCID: PMC6530868 DOI: 10.1371/journal.pgen.1008152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/22/2019] [Accepted: 04/23/2019] [Indexed: 01/10/2023] Open
Abstract
For many genes, proper gene expression requires coordinated and dynamic interactions between multiple regulatory elements, each of which can either promote or silence transcription. In Drosophila, the complexity of the regulatory landscape is further complicated by the tight physical pairing of homologous chromosomes, which can permit regulatory elements to interact in trans, a phenomenon known as transvection. To better understand how gene expression can be programmed through cis- and trans-regulatory interactions, we analyzed transvection effects for a collection of alleles of the eyes absent (eya) gene. We find that trans-activation of a promoter by the eya eye-specific enhancers is broadly supported in many allelic backgrounds, and that the availability of an enhancer to act in trans can be predicted based on the molecular lesion of an eya allele. Furthermore, by manipulating promoter availability in cis and in trans, we demonstrate that the eye-specific enhancers of eya show plasticity in their promoter preference between two different transcriptional start sites, which depends on promoter competition between the two potential targets. Finally, we show that certain alleles of eya demonstrate pairing-sensitive silencing resulting from trans-interactions between Polycomb Response Elements (PREs), and genetic and genomic data support a general role for PcG proteins in mediating transcriptional silencing at eya. Overall, our data highlight how eya gene regulation relies upon a complex but plastic interplay between multiple enhancers, promoters, and PREs. Gene regulation requires interactions between regions of DNA known as regulatory elements, which, in combination, determine where and when a gene will be active or silenced. Some genes use just a few regulatory elements, whereas others rely on highly complex interactions between many different elements that are poorly understood. While we typically imagine regulatory elements interacting with one another along the length of a single chromosome, in a curious phenomenon called transvection, elements can communicate between two different chromosomes that are held in close proximity. Here, we use the study of transvection to better understand how different regulatory elements contribute to the expression of eyes absent (eya), a gene required for proper eye development in Drosophila. Our data show that a class of elements that initiate eya gene expression, called promoters, will compete with one another for activation by eya’s enhancers, a second class of regulatory element, with the promoter that is closest to the enhancers being the favored target for activation. Furthermore, our study of transvection uncovers an important role for a silencing element, called a PRE, in opposing eya gene expression. Overall, our study sheds new light on how different elements combine to produce patterned expression of eya.
Collapse
Affiliation(s)
- Katherine Tian
- Biology Department, Bowdoin College, Brunswick, Maine, United States of America
| | - Rachel E. Henderson
- Biology Department, Bowdoin College, Brunswick, Maine, United States of America
| | - Reyna Parker
- Biology Department, Bowdoin College, Brunswick, Maine, United States of America
| | - Alexia Brown
- Biology Department, Bowdoin College, Brunswick, Maine, United States of America
| | - Justine E. Johnson
- Biology Department, Bowdoin College, Brunswick, Maine, United States of America
| | - Jack R. Bateman
- Biology Department, Bowdoin College, Brunswick, Maine, United States of America
- * E-mail:
| |
Collapse
|
17
|
Tsai A, Singer RH, Crocker J. Transvection Goes Live-Visualizing Enhancer-Promoter Communication between Chromosomes. Mol Cell 2019; 70:195-196. [PMID: 29677489 DOI: 10.1016/j.molcel.2018.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Lim et al. (2018) use live imaging in Drosophila embryos to show that enhancers can drive transcription from promoters on another chromosome when they are in close proximity. In addition, they show that multiple promoters can access the same enhancer without competition, potentially sharing a pool of factors in a transcriptional "hub."
Collapse
Affiliation(s)
- Albert Tsai
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA; Janelia Research Campus of the HHMI, Ashburn, Virginia, USA
| | - Justin Crocker
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
18
|
Fedotova A, Clendinen C, Bonchuk A, Mogila V, Aoki T, Georgiev P, Schedl P. Functional dissection of the developmentally restricted BEN domain chromatin boundary factor Insensitive. Epigenetics Chromatin 2019; 12:2. [PMID: 30602385 PMCID: PMC6317261 DOI: 10.1186/s13072-018-0249-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background Boundaries in the Drosophila bithorax complex delimit autonomous regulatory domains that activate the parasegment (PS)-specific expression of homeotic genes. The Fab-7 boundary separates the iab-6 and iab-7 regulatory domains that control Abd-B expression in PS11 and PS12. This boundary is composed of multiple functionally redundant elements and has two key activities: it blocks crosstalk between iab-6 and iab-7 and facilitates boundary bypass. Results Here, we have used a structure–function approach to elucidate the biochemical properties and the in vivo activities of a conserved BEN domain protein, Insensitive, that is associated with Fab-7. Our biochemical studies indicate that in addition to the C-terminal BEN DNA-binding domain, Insv has two domains that mediate multimerization: one is a coiled-coil domain in the N-terminus, and the other is next to the BEN domain. These multimerization domains enable Insv to bind simultaneously to two canonical 8-bp recognition motifs, as well as to a ~ 100-bp non-canonical recognition sequence. They also mediate the assembly of higher-order multimers in the presence of DNA. Transgenic proteins lacking the N-terminal coiled-coil domain are compromised for boundary function in vivo. We also show that Insv interacts directly with CP190, a protein previously implicated in the boundary functions of several DNA-binding proteins, including Su(Hw) and dCTCF. While CP190 interaction is required for Insv binding to a subset of sites on polytene chromosomes, it has only a minor role in the boundary activity of Insv in the context of Fab-7. Conclusions The subdivision of eukaryotic chromosomes into discrete topological domains depends upon the pairing of boundary elements. In flies, pairing interactions are specific and typically orientation dependent. They occur in cis between neighboring heterologous boundaries, and in trans between homologous boundaries. One potential mechanism for ensuring pairing-interaction specificity is the use of sequence-specific DNA-binding proteins that can bind simultaneously with two or more recognition sequences. Our studies indicate that Insv can assemble into a multivalent DNA-binding complex and that the N-terminal Insv multimerization domain is critical for boundary function. Electronic supplementary material The online version of this article (10.1186/s13072-018-0249-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Fedotova
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Chaevia Clendinen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Artem Bonchuk
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladic Mogila
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tsutomu Aoki
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Pavel Georgiev
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
19
|
Abstract
Fukaya and Levine explain the basic features of the genetic phenomenon of transvection, a special class of genetic complementation of mutant alleles on homologous chromosomes.
Collapse
Affiliation(s)
- Takashi Fukaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
20
|
Spermiogenesis and Male Fertility Require the Function of Suppressor of Hairy-Wing in Somatic Cyst Cells of Drosophila. Genetics 2018; 209:757-772. [PMID: 29739818 DOI: 10.1534/genetics.118.301088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023] Open
Abstract
Drosophila Suppressor of Hairy-wing [Su(Hw)] protein is an example of a multivalent transcription factor. Although best known for its role in establishing the chromatin insulator of the gypsy retrotransposon, Su(Hw) functions as an activator and repressor at non-gypsy genomic sites. It remains unclear how the different regulatory activities of Su(Hw) are utilized during development. Motivated from observations of spatially restricted expression of Su(Hw) in the testis, we investigated the role of Su(Hw) in spermatogenesis to advance an understanding of its developmental contributions as an insulator, repressor, and activator protein. We discovered that Su(Hw) is required for sustained male fertility. Although dynamics of Su(Hw) expression coincide with changes in nuclear architecture and activation of coregulated testis-specific gene clusters, we show that loss of Su(Hw) does not disrupt meiotic chromosome pairing or transcription of testis-specific genes, suggesting that Su(Hw) has minor architectural or insulator functions in the testis. Instead, Su(Hw) has a prominent role as a repressor of neuronal genes, consistent with suggestions that Su(Hw) is a functional homolog of mammalian REST, a repressor of neuronal genes in non-neuronal tissues. We show that Su(Hw) regulates transcription in both germline and somatic cells. Surprisingly, the essential spermatogenesis function of Su(Hw) resides in somatic cyst cells, implying context-specific consequences due to loss of this transcription factor. Together, our studies highlight that Su(Hw) has a major developmental function as a transcriptional repressor, with the effect of its loss dependent upon the cell-specific factors.
Collapse
|
21
|
Lim B, Heist T, Levine M, Fukaya T. Visualization of Transvection in Living Drosophila Embryos. Mol Cell 2018; 70:287-296.e6. [PMID: 29606591 DOI: 10.1016/j.molcel.2018.02.029] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 01/01/2023]
Abstract
How remote enhancers interact with appropriate target genes persists as a central mystery in gene regulation. Here, we exploit the properties of transvection to explore enhancer-promoter communication between homologous chromosomes in living Drosophila embryos. We successfully visualized the activation of an MS2-tagged reporter gene by a defined developmental enhancer located in trans on the other homolog. This trans-homolog activation depends on insulator DNAs, which increase the stability-but not the frequency-of homolog pairing. A pair of heterotypic insulators failed to mediate transvection, raising the possibility that insulator specificity underlies the formation of chromosomal loop domains. Moreover, we found that a shared enhancer co-activates separate PP7 and MS2 reporter genes incis and intrans. Transvecting alleles weakly compete with one another, raising the possibility that they share a common pool of the transcription machinery. We propose that transvecting alleles form a trans-homolog "hub," which serves as a scaffold for the accumulation of transcription complexes.
Collapse
Affiliation(s)
- Bomyi Lim
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Tyler Heist
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Takashi Fukaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
22
|
Stadler MR, Haines JE, Eisen MB. Convergence of topological domain boundaries, insulators, and polytene interbands revealed by high-resolution mapping of chromatin contacts in the early Drosophila melanogaster embryo. eLife 2017; 6:29550. [PMID: 29148971 PMCID: PMC5739541 DOI: 10.7554/elife.29550] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/13/2017] [Indexed: 11/13/2022] Open
Abstract
High-throughput assays of three-dimensional interactions of chromosomes have shed considerable light on the structure of animal chromatin. Despite this progress, the precise physical nature of observed structures and the forces that govern their establishment remain poorly understood. Here we present high resolution Hi-C data from early Drosophila embryos. We demonstrate that boundaries between topological domains of various sizes map to DNA elements that resemble classical insulator elements: short genomic regions sensitive to DNase digestion that are strongly bound by known insulator proteins and are frequently located between divergent promoters. Further, we show a striking correspondence between these elements and the locations of mapped polytene interband regions. We believe it is likely this relationship between insulators, topological boundaries, and polytene interbands extends across the genome, and we therefore propose a model in which decompaction of boundary-insulator-interband regions drives the organization of interphase chromosomes by creating stable physical separation between adjacent domains.
Collapse
Affiliation(s)
- Michael R Stadler
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Jenna E Haines
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Michael B Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States.,Department of Integrative Biology, University of California, Berkeley, CA, United States.,Howard Hughes Medical Institute, Berkeley, CA, United States
| |
Collapse
|
23
|
Three-Dimensional Genome Organization and Function in Drosophila. Genetics 2017; 205:5-24. [PMID: 28049701 PMCID: PMC5223523 DOI: 10.1534/genetics.115.185132] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/15/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques.
Collapse
|
24
|
Chetverina D, Fujioka M, Erokhin M, Georgiev P, Jaynes JB, Schedl P. Boundaries of loop domains (insulators): Determinants of chromosome form and function in multicellular eukaryotes. Bioessays 2017; 39. [PMID: 28133765 DOI: 10.1002/bies.201600233] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chromosomes in multicellular animals are subdivided into a series of looped domains. In addition to being the underlying principle for organizing the chromatin fiber, looping is critical for processes ranging from gene regulation to recombination and repair. The subdivision of chromosomes into looped domains depends upon a special class of architectural elements called boundaries or insulators. These elements are distributed throughout the genome and are ubiquitous building blocks of chromosomes. In this review, we focus on features of boundaries that are critical in determining the topology of the looped domains and their genetic properties. We highlight the properties of fly boundaries that are likely to have an important bearing on the organization of looped domains in vertebrates, and discuss the functional consequences of the observed similarities and differences.
Collapse
Affiliation(s)
- Darya Chetverina
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maksim Erokhin
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - James B Jaynes
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.,Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Buffry AD, Mendes CC, McGregor AP. The Functionality and Evolution of Eukaryotic Transcriptional Enhancers. ADVANCES IN GENETICS 2016; 96:143-206. [PMID: 27968730 DOI: 10.1016/bs.adgen.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhancers regulate precise spatial and temporal patterns of gene expression in eukaryotes and, moreover, evolutionary changes in these modular cis-regulatory elements may represent the predominant genetic basis for phenotypic evolution. Here, we review approaches to identify and functionally analyze enhancers and their transcription factor binding sites, including assay for transposable-accessible chromatin-sequencing (ATAC-Seq) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, respectively. We also explore enhancer functionality, including how transcription factor binding sites combine to regulate transcription, as well as research on shadow and super enhancers, and how enhancers can act over great distances and even in trans. Finally, we discuss recent theoretical and empirical data on how transcription factor binding sites and enhancers evolve. This includes how the function of enhancers is maintained despite the turnover of transcription factor binding sites as well as reviewing studies where mutations in enhancers have been shown to underlie morphological change.
Collapse
Affiliation(s)
- A D Buffry
- Oxford Brookes University, Oxford, United Kingdom
| | - C C Mendes
- Oxford Brookes University, Oxford, United Kingdom
| | - A P McGregor
- Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
26
|
Kyrchanova O, Mogila V, Wolle D, Deshpande G, Parshikov A, Cléard F, Karch F, Schedl P, Georgiev P. Functional Dissection of the Blocking and Bypass Activities of the Fab-8 Boundary in the Drosophila Bithorax Complex. PLoS Genet 2016; 12:e1006188. [PMID: 27428541 PMCID: PMC4948906 DOI: 10.1371/journal.pgen.1006188] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/22/2016] [Indexed: 12/16/2022] Open
Abstract
Functionally autonomous regulatory domains direct the parasegment-specific expression of the Drosophila Bithorax complex (BX-C) homeotic genes. Autonomy is conferred by boundary/insulator elements that separate each regulatory domain from its neighbors. For six of the nine parasegment (PS) regulatory domains in the complex, at least one boundary is located between the domain and its target homeotic gene. Consequently, BX-C boundaries must not only block adventitious interactions between neighboring regulatory domains, but also be permissive (bypass) for regulatory interactions between the domains and their gene targets. To elucidate how the BX-C boundaries combine these two contradictory activities, we have used a boundary replacement strategy. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site and lacking all but 83 bp of the 625 bp Fab-8 PTS (promoter targeting sequence) fully rescues a Fab-7 deletion. It blocks crosstalk between the iab-6 and iab-7 regulatory domains, and has bypass activity that enables the two downstream domains, iab-5 and iab-6, to regulate Abdominal-B (Abd-B) transcription in spite of two intervening boundary elements. Fab-8 has two dCTCF sites and we show that they are necessary both for blocking and bypass activity. However, CTCF sites on their own are not sufficient for bypass. While multimerized dCTCF (or Su(Hw)) sites have blocking activity, they fail to support bypass. Moreover, this bypass defect is not rescued by the full length PTS. Finally, we show that orientation is critical for the proper functioning the Fab-8 replacement. Though the inverted Fab-8 boundary still blocks crosstalk, it disrupts the topology of the Abd-B regulatory domains and does not support bypass. Importantly, altering the orientation of the Fab-8 dCTCF sites is not sufficient to disrupt bypass, indicating that orientation dependence is conferred by other factors. Boundary elements in the Bithorax complex have two seemingly contradictory activities. They must block crosstalk between neighboring regulatory domains, but at the same time be permissive (insulator bypass) for regulatory interactions between the domains and the BX-C homeotic genes. We have used a replacement strategy to investigate how they carry out these two functions. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site is sufficient to fully rescue a Fab-7 boundary deletion. It blocks crosstalk and supports bypass. As has been observed in transgene assays, blocking activity requires the Fab-8 dCTCF sites, while full bypass activity requires the dCTCF sites plus a small part of PTS. In transgene assays, bypass activity typically depends on the orientation of the two insulators relative to each other. A similar orientation dependence is observed for the Fab-8 replacement in BX-C. When the orientation of the Fab-8 boundary is reversed, bypass activity is lost, while blocking is unaffected. Interestingly, unlike what has been observed in mammals, reversing the orientation of only the Fab-8 dCTCF sites does not affect boundary function. This finding indicates that other Fab-8 factors must play a critical role in determining orientation. Taken together, our findings argue that carrying out the paradoxical functions of the BX-C boundaries does not require any unusual or special properties; rather BX-C boundaries utilize generic blocking and insulator bypass activities that are appropriately adapted to their regulatory context. Thus making them a good model for studying the functional properties of boundaries/insulators in their native setting.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (OK); (PG)
| | - Vladic Mogila
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Wolle
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Alexander Parshikov
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Fabienne Cléard
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Francois Karch
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Paul Schedl
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Pavel Georgiev
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (OK); (PG)
| |
Collapse
|
27
|
Transvection in Drosophila: trans-interaction between yellow enhancers and promoter is strongly suppressed by a cis-promoter only in certain genomic regions. Chromosoma 2016; 126:431-441. [DOI: 10.1007/s00412-016-0605-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 01/26/2023]
|
28
|
Zolotarev N, Fedotova A, Kyrchanova O, Bonchuk A, Penin AA, Lando AS, Eliseeva IA, Kulakovskiy IV, Maksimenko O, Georgiev P. Architectural proteins Pita, Zw5,and ZIPIC contain homodimerization domain and support specific long-range interactions in Drosophila. Nucleic Acids Res 2016; 44:7228-41. [PMID: 27137890 PMCID: PMC5009728 DOI: 10.1093/nar/gkw371] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/23/2016] [Indexed: 12/18/2022] Open
Abstract
According to recent models, as yet poorly studied architectural proteins appear to be required for local regulation of enhancer-promoter interactions, as well as for global chromosome organization. Transcription factors ZIPIC, Pita and Zw5 belong to the class of chromatin insulator proteins and preferentially bind to promoters near the TSS and extensively colocalize with cohesin and condensin complexes. ZIPIC, Pita and Zw5 are structurally similar in containing the N-terminal zinc finger-associated domain (ZAD) and different numbers of C2H2-type zinc fingers at the C-terminus. Here we have shown that the ZAD domains of ZIPIC, Pita and Zw5 form homodimers. In Drosophila transgenic lines, these proteins are able to support long-distance interaction between GAL4 activator and the reporter gene promoter. However, no functional interaction between binding sites for different proteins has been revealed, suggesting that such interactions are highly specific. ZIPIC facilitates long-distance stimulation of the reporter gene by GAL4 activator in yeast model system. Many of the genomic binding sites of ZIPIC, Pita and Zw5 are located at the boundaries of topologically associated domains (TADs). Thus, ZAD-containing zinc-finger proteins can be attributed to the class of architectural proteins.
Collapse
Affiliation(s)
- Nikolay Zolotarev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Anna Fedotova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Olga Kyrchanova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Artem Bonchuk
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Aleksey A Penin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia; Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051 Russia; Department of Genetics, Faculty of Biology, Moscow State University, Moscow 119991, Russia
| | - Andrey S Lando
- Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region 141700, Russia Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow, GSP-1, 119991, Russia
| | - Irina A Eliseeva
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Institutskaya str. 4, Pushchino 142290, Russia
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow, GSP-1, 119991, Russia Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, Moscow, GSP-1, 119991, Russia
| | - Oksana Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Pavel Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| |
Collapse
|
29
|
Blick AJ, Mayer-Hirshfeld I, Malibiran BR, Cooper MA, Martino PA, Johnson JE, Bateman JR. The Capacity to Act in Trans Varies Among Drosophila Enhancers. Genetics 2016; 203:203-18. [PMID: 26984057 PMCID: PMC4858774 DOI: 10.1534/genetics.115.185645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/07/2016] [Indexed: 01/10/2023] Open
Abstract
The interphase nucleus is organized such that genomic segments interact in cis, on the same chromosome, and in trans, between different chromosomes. In Drosophila and other Dipterans, extensive interactions are observed between homologous chromosomes, which can permit enhancers and promoters to communicate in trans Enhancer action in trans has been observed for a handful of genes in Drosophila, but it is as yet unclear whether this is a general property of all enhancers or specific to a few. Here, we test a collection of well-characterized enhancers for the capacity to act in trans Specifically, we tested 18 enhancers that are active in either the eye or wing disc of third instar Drosophila larvae and, using two different assays, found evidence that each enhancer can act in trans However, the degree to which trans-action was supported varied greatly between enhancers. Quantitative analysis of enhancer activity supports a model wherein an enhancer's strength of transcriptional activation is a major determinant of its ability to act in trans, but that additional factors may also contribute to an enhancer's trans-activity. In sum, our data suggest that a capacity to activate a promoter on a paired chromosome is common among Drosophila enhancers.
Collapse
Affiliation(s)
- Amanda J Blick
- Biology Department, Bowdoin College, Brunswick, Maine 04011
| | | | | | | | | | | | - Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, Maine 04011
| |
Collapse
|
30
|
Tang SJ. The R-Operon: A Model of Repetitive DNA-Organized Transcriptional Compartmentation of Eukaryotic Chromosomes for Coordinated Gene Expression. Genes (Basel) 2016; 7:genes7040016. [PMID: 27110825 PMCID: PMC4846846 DOI: 10.3390/genes7040016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/20/2016] [Accepted: 04/05/2016] [Indexed: 11/29/2022] Open
Abstract
In eukaryotic genomes, it is essential to coordinate the activity of genes that function together to fulfill the same biological processes. Genomic organization likely plays a key role in coordinating transcription of different genes. However, little is known about how co-regulated genes are organized in the cell nucleus and how the chromosomal organization facilitates the co-regulation of different genes. I propose that eukaryotic genomes are organized into repeat assembly (RA)-based structural domains (“R-operons”) in the nuclear space. R-operons result from the interaction of homologous DNA repeats. In an R-operon, genes in different loci of the linear genome are brought into spatial vicinity and co-regulated by the same pool of transcription factors. This type of large-scale chromosomal organization may provide a mechanism for functional compartmentation of chromosomes to facilitate the transcriptional coordination of gene expression.
Collapse
Affiliation(s)
- Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
31
|
Georgiev G. Discovery of Nuclear DNA-like RNA (dRNA, hnRNA) and Ribonucleoproteins Particles Containing hnRNA. Acta Naturae 2016; 8:6-12. [PMID: 27099780 PMCID: PMC4837567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
On August 9-11, 2014, Cold Spring Harbor (USA) hosted a special symposium dedicated to the discovery of messenger or informational RNA and the main events in the subsequent studies of its synthesis, regulation of synthesis, maturation, and transport. The existence of mRNA in bacteria was first suggested in 1961 by Jacob and Monod, based on genetic studies [1]. The same year, Brenner et al. confirmed the hypothesis [2]. Our laboratory played a key role in the discovery of messenger RNA in eukaryotes, as well as in the discovery of the nuclear ribonucleoproteins that contain it and in the elucidation of their structural organization. Therefore, I was invited to represent Russia at the Symposium and deliver a speech on these topics. However, my visa had only been issued after the end of the Symposium, and, therefore, the presentation was delivered by my former colleague G.N. Yenikolopov, who works at Cold Spring Harbor Laboratory. The transcript of the lecture is presented below.
Collapse
Affiliation(s)
- G.P. Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova Str., 34/5, Moscow, 119334, Russia
| |
Collapse
|
32
|
Maksimenko O, Gasanov NB, Georgiev P. Regulatory Elements in Vectors for Efficient Generation of Cell Lines Producing Target Proteins. Acta Naturae 2015; 7:15-26. [PMID: 26483956 PMCID: PMC4610161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date, there has been an increasing number of drugs produced in mammalian cell cultures. In order to enhance the expression level and stability of target recombinant proteins in cell cultures, various regulatory elements with poorly studied mechanisms of action are used. In this review, we summarize and discuss the potential mechanisms of action of such regulatory elements.
Collapse
Affiliation(s)
- O. Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, 119334, Moscow, Russia
| | - N. B. Gasanov
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, 119334, Moscow, Russia
| | - P. Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, 119334, Moscow, Russia
| |
Collapse
|
33
|
Ibn-Salem J, Köhler S, Love MI, Chung HR, Huang N, Hurles ME, Haendel M, Washington NL, Smedley D, Mungall CJ, Lewis SE, Ott CE, Bauer S, Schofield PN, Mundlos S, Spielmann M, Robinson PN. Deletions of chromosomal regulatory boundaries are associated with congenital disease. Genome Biol 2014; 15:423. [PMID: 25315429 PMCID: PMC4180961 DOI: 10.1186/s13059-014-0423-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022] Open
Abstract
Background Recent data from genome-wide chromosome conformation capture analysis indicate that the human genome is divided into conserved megabase-sized self-interacting regions called topological domains. These topological domains form the regulatory backbone of the genome and are separated by regulatory boundary elements or barriers. Copy-number variations can potentially alter the topological domain architecture by deleting or duplicating the barriers and thereby allowing enhancers from neighboring domains to ectopically activate genes causing misexpression and disease, a mutational mechanism that has recently been termed enhancer adoption. Results We use the Human Phenotype Ontology database to relate the phenotypes of 922 deletion cases recorded in the DECIPHER database to monogenic diseases associated with genes in or adjacent to the deletions. We identify combinations of tissue-specific enhancers and genes adjacent to the deletion and associated with phenotypes in the corresponding tissue, whereby the phenotype matched that observed in the deletion. We compare this computationally with a gene-dosage pathomechanism that attempts to explain the deletion phenotype based on haploinsufficiency of genes located within the deletions. Up to 11.8% of the deletions could be best explained by enhancer adoption or a combination of enhancer adoption and gene-dosage effects. Conclusions Our results suggest that enhancer adoption caused by deletions of regulatory boundaries may contribute to a substantial minority of copy-number variation phenotypes and should thus be taken into account in their medical interpretation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0423-1) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Maksimenko O, Georgiev P. Mechanisms and proteins involved in long-distance interactions. Front Genet 2014; 5:28. [PMID: 24600469 PMCID: PMC3927085 DOI: 10.3389/fgene.2014.00028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/25/2014] [Indexed: 12/28/2022] Open
Abstract
Due to advances in genome-wide technologies, consistent distant interactions within chromosomes of higher eukaryotes have been revealed. In particular, it has been shown that enhancers can specifically and directly interact with promoters by looping out intervening sequences, which can be up to several hundred kilobases long. This review is focused on transcription factors that are supposed to be involved in long-range interactions. Available data are in agreement with the model that several known transcription factors and insulator proteins belong to an abundant but poorly studied class of proteins that are responsible for chromosomal architecture.
Collapse
Affiliation(s)
- Oksana Maksimenko
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
35
|
Chetverina D, Aoki T, Erokhin M, Georgiev P, Schedl P. Making connections: insulators organize eukaryotic chromosomes into independent cis-regulatory networks. Bioessays 2013; 36:163-72. [PMID: 24277632 DOI: 10.1002/bies.201300125] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Insulators play a central role in subdividing the chromosome into a series of discrete topologically independent domains and in ensuring that enhancers and silencers contact their appropriate target genes. In this review we first discuss the general characteristics of insulator elements and their associated protein factors. A growing collection of insulator proteins have been identified including a family of proteins whose expression is developmentally regulated. We next consider several unexpected discoveries that require us to completely rethink how insulators function (and how they can best be assayed). These discoveries also require a reevaluation of how insulators might restrict or orchestrate (by preventing or promoting) interactions between regulatory elements and their target genes. We conclude by connecting these new insights into the mechanisms of insulator action to dynamic changes in the three-dimensional topology of the chromatin fiber and the generation of specific patterns of gene activity during development and differentiation.
Collapse
Affiliation(s)
- Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
36
|
Kyrchanova O, Georgiev P. Chromatin insulators and long-distance interactions in Drosophila. FEBS Lett 2013; 588:8-14. [PMID: 24211836 DOI: 10.1016/j.febslet.2013.10.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 10/25/2013] [Accepted: 10/25/2013] [Indexed: 12/31/2022]
Abstract
Data on long-distance enhancer-mediated activation of gene promoters and complex regulation of gene expression by multiple enhancers have prompted the hypothesis that the action of enhancers is restricted by insulators. Studies with transgenic lines have shown that insulators are responsible for establishing proper local interactions between regulatory elements, but not for defining independent transcriptional domains that restrict the activity of enhancers. It has also become apparent that enhancer blocking is only one of several functional activities of known insulator proteins, which also contribute to the organization of chromosome architecture and the integrity of regulatory elements.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Group of Transcriptional Regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia.
| |
Collapse
|
37
|
Effective blocking of the white enhancer requires cooperation between two main mechanisms suggested for the insulator function. PLoS Genet 2013; 9:e1003606. [PMID: 23861668 PMCID: PMC3701704 DOI: 10.1371/journal.pgen.1003606] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 05/20/2013] [Indexed: 11/24/2022] Open
Abstract
Chromatin insulators block the action of transcriptional enhancers when interposed between an enhancer and a promoter. In this study, we examined the role of chromatin loops formed by two unrelated insulators, gypsy and Fab-7, in their enhancer-blocking activity. To test for this activity, we selected the white reporter gene that is activated by the eye-specific enhancer. The results showed that one copy of the gypsy or Fab-7 insulator failed to block the eye enhancer in most of genomic sites, whereas a chromatin loop formed by two gypsy insulators flanking either the eye enhancer or the reporter completely blocked white stimulation by the enhancer. However, strong enhancer blocking was achieved due not only to chromatin loop formation but also to the direct interaction of the gypsy insulator with the eye enhancer, which was confirmed by the 3C assay. In particular, it was observed that Mod(mdg4)-67.2, a component of the gypsy insulator, interacted with the Zeste protein, which is critical for the eye enhancer–white promoter communication. These results suggest that efficient enhancer blocking depends on the combination of two factors: chromatin loop formation by paired insulators, which generates physical constraints for enhancer–promoter communication, and the direct interaction of proteins recruited to an insulator and to the enhancer–promoter pair. The mechanism underlying enhancer blocking by insulators is unclear. Current models suggest that insulator proteins block enhancers either by formation of chromatin loops or by direct interaction with protein complexes bound to the enhancers and promoters. Here, we tested the role of a chromatin loop in blocking the activity of two Drosophila insulators, gypsy and Fab-7. Both insulators failed to effectively block the interaction between the eye enhancer and the white promoter at most of genomic sites. Insertion of an additional gypsy copy either upstream of the eye enhancer or downstream from the white gene led to complete blocking of the enhancer–promoter communication. In contrast, flanking of the eye enhancer by Fab-7 insulators only weakly improved enhancer blocking. Such a difference in enhancer blocking may be explained by finding that Mod(mdg4)-67.2, a component of gypsy insulator, directly interacts with the Zeste protein, which is critical for enhancer–promoter communication in the white gene.
Collapse
|
38
|
Davydova AI, Erokhin MM, Georgiev PG, Chetverina DA. Distant interactions between enhancers and promoters in Drosophila melanogaster are mediated by transgene-flanking Su(Hw) insulators. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411080047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Insulators, not Polycomb response elements, are required for long-range interactions between Polycomb targets in Drosophila melanogaster. Mol Cell Biol 2010; 31:616-25. [PMID: 21135119 DOI: 10.1128/mcb.00849-10] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomic binding sites of Polycomb group (PcG) complexes have been found to cluster, forming Polycomb "bodies" or foci in mammalian or fly nuclei. These associations are thought to be driven by interactions between PcG complexes and result in enhanced repression. Here, we show that a Polycomb response element (PRE) with strong PcG binding and repressive activity cannot mediate trans interactions. In the case of the two best-studied interacting PcG targets in Drosophila, the Mcp and the Fab-7 regulatory elements, we find that these associations are not dependent on or caused by the Polycomb response elements they contain. Using functional assays and physical colocalization by in vivo fluorescence imaging or chromosome conformation capture (3C) methods, we show that the interactions between remote copies of Mcp or Fab-7 elements are dependent on the insulator activities present in these elements and not on their PREs. We conclude that insulator binding proteins rather than PcG complexes are likely to be the major determinants of the long-range higher-order organization of PcG targets in the nucleus.
Collapse
|
40
|
Fujioka M, Wu X, Jaynes JB. A chromatin insulator mediates transgene homing and very long-range enhancer-promoter communication. Development 2009; 136:3077-87. [PMID: 19675129 PMCID: PMC2730365 DOI: 10.1242/dev.036467] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2009] [Indexed: 12/11/2022]
Abstract
Insulator sequences help to organize the genome into discrete functional regions by preventing inappropriate cross-regulation. This is thought to be mediated in part through associations with other insulators located elsewhere in the genome. Enhancers that normally drive Drosophila even skipped (eve) expression are located closer to the TER94 transcription start site than to that of eve. We discovered that the region between these genes has enhancer-blocking activity, and that this insulator region also mediates homing of P-element transgenes to the eve-TER94 genomic neighborhood. Localization of these activities to within 0.6 kb failed to separate them. Importantly, homed transgenic promoters respond to endogenous eve enhancers from great distances, and this long-range communication depends on the homing/insulator region, which we call Homie. We also find that the eve promoter contributes to long-distance communication. However, even the basal hsp70 promoter can communicate with eve enhancers across distances of several megabases, when the communication is mediated by Homie. These studies show that, while Homie blocks enhancer-promoter communication at short range, it facilitates long-range communication between distant genomic regions, possibly by organizing a large chromosomal loop between endogenous and transgenic Homies.
Collapse
Affiliation(s)
- Miki Fujioka
- Department of Biochemistry and Molecular Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
41
|
Chopra VS, Cande J, Hong JW, Levine M. Stalled Hox promoters as chromosomal boundaries. Genes Dev 2009; 23:1505-9. [PMID: 19515973 DOI: 10.1101/gad.1807309] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many developmental control genes contain stalled RNA Polymerase II (Pol II) in the early Drosophila embryo, including four of the eight Hox genes. Here, we present evidence that the stalled Hox promoters possess an intrinsic insulator activity. The enhancer-blocking activities of these promoters are dependent on general transcription factors that inhibit Pol II elongation, including components of the DSIF and NELF complexes. The activities of conventional insulators are also impaired in embryos containing reduced levels of DSIF and NELF. Thus, promoter-proximal stalling factors might help promote insulator-promoter interactions. We propose that stalled promoters help organize gene complexes within chromosomal loop domains.
Collapse
Affiliation(s)
- Vivek S Chopra
- Department of Molecular and Cellular Biology, Division of Genetics, Genomics, and Development, University of California at Berkeley, Berkeley, California 94720, USA.
| | | | | | | |
Collapse
|
42
|
Kyrchanova O, Chetverina D, Maksimenko O, Kullyev A, Georgiev P. Orientation-dependent interaction between Drosophila insulators is a property of this class of regulatory elements. Nucleic Acids Res 2008; 36:7019-28. [PMID: 18987002 PMCID: PMC2602758 DOI: 10.1093/nar/gkn781] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. According to previous data, an interaction (pairing) between some Drosophila insulators can support distant activation of a promoter by an enhancer. Here, we have demonstrated that pairs of well-studied insulators such as scs-scs, scs'-scs', 1A2-1A2 and Wari-Wari support distant activation of the white promoter by the yeast GAL4 activator in an orientation-dependent manner. The same is true for the efficiency of the enhancer that stimulates white expression in the eyes. In all insulator pairs tested, stimulation of the white gene was stronger when insulators were inserted between the eye enhancer or GAL4 and the white promoter in opposite orientations relative to each other. As shown previously, Zw5, Su(Hw) and dCTCF proteins are required for the functioning of different insulators that do not interact with each other. Here, strong functional interactions have been revealed between DNA fragments containing binding sites for either Zw5 or Su(Hw) or dCTCF protein but not between heterologous binding sites [Zw5-Su(Hw), dCTCF-Su(Hw), or dCTCF-Zw5]. These results suggest that insulator proteins can support selective interactions between distant regulatory elements.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
43
|
A genomewide survey argues that every zygotic gene product is dispensable for the initiation of somatic homolog pairing in Drosophila. Genetics 2008; 180:1329-42. [PMID: 18791221 DOI: 10.1534/genetics.108.094862] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Studies from diverse organisms show that distinct interchromosomal interactions are associated with many developmental events. Despite recent advances in uncovering such phenomena, our understanding of how interchromosomal interactions are initiated and regulated is incomplete. During the maternal-to-zygotic transition (MZT) of Drosophila embryogenesis, stable interchromosomal contacts form between maternal and paternal homologous chromosomes, a phenomenon known as somatic homolog pairing. To better understand the events that initiate pairing, we performed a genomewide assessment of the zygotic contribution to this process. Specifically, we took advantage of the segregational properties of compound chromosomes to generate embryos lacking entire chromosome arms and, thus, all zygotic gene products derived from those arms. Using DNA fluorescence in situ hybridization (FISH) to assess the initiation of pairing at five separate loci, this approach allowed us to survey the entire zygotic genome using just a handful of crosses. Remarkably, we found no defect in pairing in embryos lacking any chromosome arm, indicating that no zygotic gene product is essential for pairing to initiate. From these data, we conclude that the initiation of pairing can occur independently of zygotic control and may therefore be part of the developmental program encoded by the maternal genome.
Collapse
|
44
|
Kyrchanova O, Toshchakov S, Podstreshnaya Y, Parshikov A, Georgiev P. Functional interaction between the Fab-7 and Fab-8 boundaries and the upstream promoter region in the Drosophila Abd-B gene. Mol Cell Biol 2008; 28:4188-95. [PMID: 18426914 PMCID: PMC2423118 DOI: 10.1128/mcb.00229-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/05/2008] [Indexed: 11/20/2022] Open
Abstract
Boundary elements have been found in the regulatory region of the Drosophila melanogaster Abdominal-B (Abd-B) gene, which is subdivided into a series of iab domains. The best-studied Fab-7 and Fab-8 boundaries flank the iab-7 enhancer and isolate it from the four promoters regulating Abd-B expression. Recently binding sites for the Drosophila homolog of the vertebrate insulator protein CTCF (dCTCF) were identified in the Fab-8 boundary and upstream of Abd-B promoter A, with no binding of CTCF to the Fab-7 boundary being detected either in vivo or in vitro. Taking into account the inability of the yeast GAL4 activator to stimulate the white promoter when its binding sites are separated by a 5-kb yellow gene, we have tested the functional interactions between the Fab-7 and Fab-8 boundaries and between these boundaries and the upstream promoter A region containing a dCTCF binding site. It has been found that dCTCF binding sites are essential for pairing between two Fab-8 insulators. However, a strong functional interaction between the Fab-7 and Fab-8 boundaries suggests that additional, as yet unidentified proteins are involved in long-distance interactions between them. We have also shown that Fab-7 and Fab-8 boundaries effectively interact with the upstream region of the Abd-B promoter.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | | | | | | | | |
Collapse
|
45
|
Chetverina D, Savitskaya E, Maksimenko O, Melnikova L, Zaytseva O, Parshikov A, Galkin AV, Georgiev P. Red flag on the white reporter: a versatile insulator abuts the white gene in Drosophila and is omnipresent in mini-white constructs. Nucleic Acids Res 2007; 36:929-37. [PMID: 18086699 PMCID: PMC2241909 DOI: 10.1093/nar/gkm992] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Much of the research on insulators in Drosophila has been done with transgenic constructs using the white gene (mini-white) as reporter. Hereby we report that the sequence between the white and CG32795 genes in Drosophila melanogaster contains an insulator of a novel kind. Its functional core is within a 368 bp segment almost contiguous to the white 3′UTR, hence we name it as Wari (white-abutting resident insulator). Though Wari contains no binding sites for known insulator proteins and does not require Su(Hw) or Mod(mdg4) for its activity, it can equally well interact with another copy of Wari and with unrelated Su(Hw)-dependent insulators, gypsy or 1A2. In its natural downstream position, Wari reinforces enhancer blocking by any of the three insulators placed between the enhancer and the promoter; again, Wari–Wari, Wari–gypsy or 1A2–Wari pairing results in mutual neutralization (insulator bypass) when they precede the promoter. The distressing issue is that this element hides in all mini-white constructs employed worldwide to study various insulators and other regulatory elements as well as long-range genomic interactions, and its versatile effects could have seriously influenced the results and conclusions of many works.
Collapse
Affiliation(s)
- Darya Chetverina
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, University of Oslo, Centre for Medical Studies in Russia, Moscow 199334, Russia
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Williams BR, Bateman JR, Novikov ND, Wu CT. Disruption of topoisomerase II perturbs pairing in drosophila cell culture. Genetics 2007; 177:31-46. [PMID: 17890361 PMCID: PMC2013714 DOI: 10.1534/genetics.107.076356] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 06/22/2007] [Indexed: 12/16/2022] Open
Abstract
Homolog pairing refers to the alignment and physical apposition of homologous chromosomal segments. Although commonly observed during meiosis, homolog pairing also occurs in nonmeiotic cells of several organisms, including humans and Drosophila. The mechanism underlying nonmeiotic pairing, however, remains largely unknown. Here, we explore the use of established Drosophila cell lines for the analysis of pairing in somatic cells. Using fluorescent in situ hybridization (FISH), we assayed pairing at nine regions scattered throughout the genome of Kc167 cells, observing high levels of homolog pairing at all six euchromatic regions assayed and variably lower levels in regions in or near centromeric heterochromatin. We have also observed extensive pairing in six additional cell lines representing different tissues of origin, different ploidies, and two different species, demonstrating homolog pairing in cell culture to be impervious to cell type or culture history. Furthermore, by sorting Kc167 cells into G1, S, and G2 subpopulations, we show that even progression through these stages of the cell cycle does not significantly change pairing levels. Finally, our data indicate that disrupting Drosophila topoisomerase II (Top2) gene function with RNAi and chemical inhibitors perturbs homolog pairing, suggesting Top2 to be a gene important for pairing.
Collapse
Affiliation(s)
- Benjamin R Williams
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
47
|
Brasset E, Bantignies F, Court F, Cheresiz S, Conte C, Vaury C. Idefix insulator activity can be modulated by nearby regulatory elements. Nucleic Acids Res 2007; 35:2661-70. [PMID: 17426135 PMCID: PMC1885662 DOI: 10.1093/nar/gkm140] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Insulators play important roles in controlling gene activity and maintaining regulatory independence between neighbouring genes. In this article, we show that the enhancer-blocking activity of the insulator present within the LTR retrotransposon Idefix can be abolished if two copies of the region containing the insulator—specifically, the long terminal repeat (LTR)—are fused to the retrotransposon's 5′ untranslated region (5′ UTR). The presence of this combination of two [LTR-5′ UTR] modules is a prerequisite for the loss of enhancer-blocking activity. We further show that the 5′ UTR causes flanking genomic sequences to be displaced to the nuclear periphery, which is not observed when two insulators are present by themselves. This study thus provides a functional link between insulators and independent genomic modules, which may cooperate to allow the specific regulation of defined genomic loci via nuclear repositioning. It further illustrates the complexity of genomic regulation within a chromatic environment with multiple functional elements.
Collapse
Affiliation(s)
- E. Brasset
- INSERM, U384, Faculté de Médecine, BP38, 63001 Clermont-Ferrand, France, Institut de Génétique Humaine, UPR 1142 – CNRS, 34396 Montpellier, France, Institute of Cytology and Genetics, Novosibirsk, Russia and INSERM, U589, 31432 Toulouse, France
| | - F. Bantignies
- INSERM, U384, Faculté de Médecine, BP38, 63001 Clermont-Ferrand, France, Institut de Génétique Humaine, UPR 1142 – CNRS, 34396 Montpellier, France, Institute of Cytology and Genetics, Novosibirsk, Russia and INSERM, U589, 31432 Toulouse, France
| | - F. Court
- INSERM, U384, Faculté de Médecine, BP38, 63001 Clermont-Ferrand, France, Institut de Génétique Humaine, UPR 1142 – CNRS, 34396 Montpellier, France, Institute of Cytology and Genetics, Novosibirsk, Russia and INSERM, U589, 31432 Toulouse, France
| | - S. Cheresiz
- INSERM, U384, Faculté de Médecine, BP38, 63001 Clermont-Ferrand, France, Institut de Génétique Humaine, UPR 1142 – CNRS, 34396 Montpellier, France, Institute of Cytology and Genetics, Novosibirsk, Russia and INSERM, U589, 31432 Toulouse, France
| | - C. Conte
- INSERM, U384, Faculté de Médecine, BP38, 63001 Clermont-Ferrand, France, Institut de Génétique Humaine, UPR 1142 – CNRS, 34396 Montpellier, France, Institute of Cytology and Genetics, Novosibirsk, Russia and INSERM, U589, 31432 Toulouse, France
| | - C. Vaury
- INSERM, U384, Faculté de Médecine, BP38, 63001 Clermont-Ferrand, France, Institut de Génétique Humaine, UPR 1142 – CNRS, 34396 Montpellier, France, Institute of Cytology and Genetics, Novosibirsk, Russia and INSERM, U589, 31432 Toulouse, France
- *To whom correspondence should be addressed 33 4 73 17 81 7133 4 73 27 61 32
| |
Collapse
|
48
|
Kyrchanova O, Toshchakov S, Parshikov A, Georgiev P. Study of the functional interaction between Mcp insulators from the Drosophila bithorax complex: effects of insulator pairing on enhancer-promoter communication. Mol Cell Biol 2007; 27:3035-43. [PMID: 17283051 PMCID: PMC1899939 DOI: 10.1128/mcb.02203-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Boundary elements have been found in the Abd-B 3' cis-regulatory region, which is subdivided into a series of iab domains. Previously, a 340-bp insulator-like element, M(340), was identified in one such 755-bp Mcp fragment linked to the PcG-dependent silencer. In this study, we identified a 210-bp core that was sufficient for pairing of sequence-remote Mcp elements. In two-gene transgenic constructs with two Mcp insulators (or their cores) surrounding yellow, the upstream yeast GAL4 sites were able to activate the distal white only if the insulators were in the opposite orientations (head-to-head or tail-to-tail), which is consistent with the looping/bypass model. The same was true for the efficiency of the cognate eye enhancer, while yellow thus isolated in the loop from its enhancers was blocked more strongly. These results indicate that the relative placement and orientation of insulator-like elements can determine proper enhancer-promoter communication.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | | | | | | |
Collapse
|
49
|
Lomvardas S, Barnea G, Pisapia DJ, Mendelsohn M, Kirkland J, Axel R. Interchromosomal interactions and olfactory receptor choice. Cell 2006; 126:403-13. [PMID: 16873069 DOI: 10.1016/j.cell.2006.06.035] [Citation(s) in RCA: 473] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 04/28/2006] [Accepted: 06/22/2006] [Indexed: 12/31/2022]
Abstract
The expression of a single odorant receptor (OR) gene from a large gene family in individual sensory neurons is an essential feature of the organization and function of the olfactory system. We have used chromosome conformation capture to demonstrate the specific association of an enhancer element, H, on chromosome 14 with multiple OR gene promoters on different chromosomes. DNA and RNA fluorescence in situ hybridization (FISH) experiments allow us to visualize the colocalization of the H enhancer with the single OR allele that is transcribed in a sensory neuron. In transgenic mice bearing additional H elements, sensory neurons that express OR pseudogenes also express a second functional receptor. These data suggest a model of receptor choice in which a single trans-acting enhancer element may allow the stochastic activation of only one OR allele in an olfactory sensory neuron.
Collapse
Affiliation(s)
- Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics and Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
50
|
Maksimenko OG, Chetverina DA, Georgiev PG. Insulators of higher eukaryotes: Properties, mechanisms of action, and role in transcriptional regulation. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406080023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|