1
|
Hatazawa S, Horikoshi N, Kurumizaka H. Structural diversity of noncanonical nucleosomes: Functions in chromatin. Curr Opin Struct Biol 2025; 92:103054. [PMID: 40311546 DOI: 10.1016/j.sbi.2025.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
In eukaryotes, genomic DNA is compacted into chromatin, with nucleosomes acting as its basic structural units. In addition to canonical nucleosomes, noncanonical nucleosomes, such as hexasomes, H3-H4 octasomes, and overlapping dinucleosomes, exhibit alternative histone compositions and play key roles in chromatin remodeling, transcription, and replication. Recent cryo-electron microscopy (cryo-EM) studies have elucidated the structural details of these noncanonical nucleosomes and their interactions with histone chaperones and chromatin remodelers. This review highlights recent advances in the structural and functional understanding of noncanonical nucleosomes and their roles in maintaining chromatin integrity and facilitating transcriptional dynamics.
Collapse
Affiliation(s)
- Suguru Hatazawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Naoki Horikoshi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
2
|
Kable B, Portillo-Ledesma S, Popova EY, Jentink N, Swulius M, Li Z, Schlick T, Grigoryev SA. Compromised 2-start zigzag chromatin folding in immature mouse retina cells driven by irregularly spaced nucleosomes with short DNA linkers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633430. [PMID: 39868111 PMCID: PMC11760397 DOI: 10.1101/2025.01.16.633430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The formation of condensed heterochromatin is critical for establishing cell-specific transcriptional programs. To reveal structural transitions underlying heterochromatin formation in maturing mouse rod photoreceptors, we apply cryo-EM tomography, AI-assisted deep denoising, and molecular modeling. We find that chromatin isolated from immature retina cells contains many closely apposed nucleosomes with extremely short or absent nucleosome linkers, which are inconsistent with the typical two-start zigzag chromatin folding. In mature retina cells, the fraction of short-linker nucleosomes is much lower, supporting stronger chromatin compaction. By Cryo-EM-assisted nucleosome interaction capture we observe that chromatin in immature retina is enriched with i±1 interactions while chromatin in mature retina contains predominantly i±2 interactions typical of the two-start zigzag. By mesoscale modeling and computational simulation, we clarify that the unusually short linkers typical of immature retina are sufficient to inhibit the two-start zigzag and chromatin compaction by the interference of very short linkers with linker DNA stems. We propose that this short linker composition renders nucleosome arrays more open in immature retina and that, as the linker DNA length increases in mature retina, chromatin fibers become globally condensed via tight zigzag folding. This mechanism may be broadly utilized to introduce higher chromatin folding entropy for epigenomic plasticity.
Collapse
|
3
|
Delamarre A, Bailey B, Yavid J, Koche R, Mohibullah N, Whitehouse I. Chromatin architecture mapping by multiplex proximity tagging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.12.623258. [PMID: 39605487 PMCID: PMC11601423 DOI: 10.1101/2024.11.12.623258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chromatin plays a pivotal role in genome expression, maintenance, and replication. To better understand chromatin organization, we developed a novel proximity-tagging method which assigns unique DNA barcodes to molecules that associate in 3D space. Using this method - Proximity Copy Paste (PCP) - we mapped the connectivity of individual nucleosomes in Saccharomyces cerevisiae. By analyzing nucleosome positions and spacing on single molecule fibers, we show that chromatin is predominantly organized into regularly spaced nucleosome arrays that can be positioned or delocalized. Basic features of nucleosome arrays are generally explained by gene size and transcription. PCP can also map long-range, multi-way interactions and we provide the first direct evidence supporting a model that metaphase chromosomes are compacted by cohesin loop clustering. Analyzing single-molecule nuclease footprinting data we define distinct chromatin states within a mixed population to show that non-canonical nucleosomes, notably Overlapping-Di-Nucleosomes (OLDN) are a stable feature of chromatin. PCP is a versatile method allowing the detection of the connectivity of individual molecules locally and over large distance to be mapped at high-resolution in a single experiment.
Collapse
|
4
|
Shimizu M, Tanaka H, Nishimura M, Sato N, Nozawa K, Ehara H, Sekine SI, Morishima K, Inoue R, Takizawa Y, Kurumizaka H, Sugiyama M. Asymmetric fluctuation of overlapping dinucleosome studied by cryoelectron microscopy and small-angle X-ray scattering. PNAS NEXUS 2024; 3:pgae484. [PMID: 39539301 PMCID: PMC11558547 DOI: 10.1093/pnasnexus/pgae484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
Nucleosome remodelers modify the local structure of chromatin to release the region from nucleosome-mediated transcriptional suppression. Overlapping dinucleosomes (OLDNs) are nucleoprotein complexes formed around transcription start sites as a result of remodeling, and they consist of two nucleosome moieties: a histone octamer wrapped by DNA (octasome) and a histone hexamer wrapped by DNA (hexasome). While OLDN formation alters chromatin accessibility to proteins, the structural mechanism behind this process is poorly understood. Thus, this study investigated the characteristics of structural fluctuations in OLDNs. First, multiple structures of the OLDN were visualized through cryoelectron microscopy (cryoEM), providing an overview of the tilting motion of the hexasome relative to the octasome at the near-atomistic resolution. Second, small-angle X-ray scattering (SAXS) revealed the presence of OLDN conformations with a larger radius of gyration than cryoEM structures. A more complete description of OLDN fluctuation was proposed by SAXS-based ensemble modeling, which included possible transient structures. The ensemble model supported the tilting motion of the OLDN outlined by the cryoEM models, further suggesting the presence of more diverse conformations. The amplitude of the relative tilting motion of the hexasome was larger, and the nanoscale fluctuation in distance between the octasome and hexasome was also proposed. The cryoEM models were found to be mapped in the energetically stable region of the conformational distribution of the ensemble. Exhaustive complex modeling using all conformations that appeared in the structural ensemble suggested that conformational and motional asymmetries of the OLDN result in asymmetries in the accessibility of OLDN-binding proteins.
Collapse
Affiliation(s)
- Masahiro Shimizu
- Laboratory of Radiation Material Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Hiroki Tanaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masahiro Nishimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Nobuhiro Sato
- Laboratory of Radiation Material Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Kayo Nozawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ken Morishima
- Laboratory of Radiation Material Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Rintaro Inoue
- Laboratory of Radiation Material Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masaaki Sugiyama
- Laboratory of Radiation Material Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
5
|
Nishimura M, Fujii T, Tanaka H, Maehara K, Morishima K, Shimizu M, Kobayashi Y, Nozawa K, Takizawa Y, Sugiyama M, Ohkawa Y, Kurumizaka H. Genome-wide mapping and cryo-EM structural analyses of the overlapping tri-nucleosome composed of hexasome-hexasome-octasome moieties. Commun Biol 2024; 7:61. [PMID: 38191828 PMCID: PMC10774305 DOI: 10.1038/s42003-023-05694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
The nucleosome is a fundamental unit of chromatin in which about 150 base pairs of DNA are wrapped around a histone octamer. The overlapping di-nucleosome has been proposed as a product of chromatin remodeling around the transcription start site, and previously found as a chromatin unit, in which about 250 base pairs of DNA continuously bind to the histone core composed of a hexamer and an octamer. In the present study, our genome-wide analysis of human cells suggests another higher nucleosome stacking structure, the overlapping tri-nucleosome, which wraps about 300-350 base-pairs of DNA in the region downstream of certain transcription start sites of actively transcribed genes. We determine the cryo-electron microscopy (cryo-EM) structure of the overlapping tri-nucleosome, in which three subnucleosome moieties, hexasome, hexasome, and octasome, are associated by short connecting DNA segments. Small angle X-ray scattering and coarse-grained molecular dynamics simulation analyses reveal that the cryo-EM structure of the overlapping tri-nucleosome may reflect its structure in solution. Our findings suggest that nucleosome stacking structures composed of hexasome and octasome moieties may be formed by nucleosome remodeling factors around transcription start sites for gene regulation.
Collapse
Affiliation(s)
- Masahiro Nishimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, 111 TW, Alexander Drive, Research Triangle Park, NC, 27707, USA
| | - Takeru Fujii
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Hiroki Tanaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Department of Structural Virology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Yuki Kobayashi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kayo Nozawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan.
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
6
|
Stefanova ME, Volokh OI, Chertkov OV, Armeev GA, Shaytan AK, Feofanov AV, Kirpichnikov MP, Sokolova OS, Studitsky VM. Structure and Dynamics of Compact Dinucleosomes: Analysis by Electron Microscopy and spFRET. Int J Mol Sci 2023; 24:12127. [PMID: 37569503 PMCID: PMC10419094 DOI: 10.3390/ijms241512127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Formation of compact dinucleosomes (CODIs) occurs after collision between adjacent nucleosomes at active regulatory DNA regions. Although CODIs are likely dynamic structures, their structural heterogeneity and dynamics were not systematically addressed. Here, single-particle Förster resonance energy transfer (spFRET) and electron microscopy were employed to study the structure and dynamics of CODIs. spFRET microscopy in solution and in gel revealed considerable uncoiling of nucleosomal DNA from the histone octamer in a fraction of CODIs, suggesting that at least one of the nucleosomes is destabilized in the presence of the adjacent closely positioned nucleosome. Accordingly, electron microscopy analysis suggests that up to 30 bp of nucleosomal DNA are involved in transient uncoiling/recoiling on the octamer. The more open and dynamic nucleosome structure in CODIs cannot be stabilized by histone chaperone Spt6. The data suggest that proper internucleosomal spacing is an important determinant of chromatin stability and support the possibility that CODIs could be intermediates of chromatin disruption.
Collapse
Affiliation(s)
- Maria E. Stefanova
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Olesya I. Volokh
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Oleg V. Chertkov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Grigory A. Armeev
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Alexey K. Shaytan
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Alexey V. Feofanov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Mikhail P. Kirpichnikov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Olga S. Sokolova
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
- Biological Faculty, MSU-BIT Shenzhen University, Shenzhen 518115, China
| | - Vasily M. Studitsky
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
7
|
Kujirai T, Ehara H, Sekine SI, Kurumizaka H. Structural Transition of the Nucleosome during Transcription Elongation. Cells 2023; 12:1388. [PMID: 37408222 DOI: 10.3390/cells12101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
In eukaryotes, genomic DNA is tightly wrapped in chromatin. The nucleosome is a basic unit of chromatin, but acts as a barrier to transcription. To overcome this impediment, the RNA polymerase II elongation complex disassembles the nucleosome during transcription elongation. After the RNA polymerase II passage, the nucleosome is rebuilt by transcription-coupled nucleosome reassembly. Nucleosome disassembly-reassembly processes play a central role in preserving epigenetic information, thus ensuring transcriptional fidelity. The histone chaperone FACT performs key functions in nucleosome disassembly, maintenance, and reassembly during transcription in chromatin. Recent structural studies of transcribing RNA polymerase II complexed with nucleosomes have provided structural insights into transcription elongation on chromatin. Here, we review the structural transitions of the nucleosome during transcription.
Collapse
Affiliation(s)
- Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
8
|
Klein DC, Troy K, Tripplehorn SA, Hainer SJ. The esBAF and ISWI nucleosome remodeling complexes influence occupancy of overlapping dinucleosomes and fragile nucleosomes in murine embryonic stem cells. BMC Genomics 2023; 24:201. [PMID: 37055726 PMCID: PMC10103515 DOI: 10.1186/s12864-023-09287-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Nucleosome remodeling factors regulate the occupancy and positioning of nucleosomes genome-wide through ATP-driven DNA translocation. While many nucleosomes are consistently well-positioned, some nucleosomes and alternative nucleosome structures are more sensitive to nuclease digestion or are transitory. Fragile nucleosomes are nucleosome structures that are sensitive to nuclease digestion and may be composed of either six or eight histone proteins, making these either hexasomes or octasomes. Overlapping dinucleosomes are composed of two merged nucleosomes, lacking one H2A:H2B dimer, creating a 14-mer wrapped by ~ 250 bp of DNA. In vitro studies of nucleosome remodeling suggest that the collision of adjacent nucleosomes by sliding stimulates formation of overlapping dinucleosomes. RESULTS To better understand how nucleosome remodeling factors regulate alternative nucleosome structures, we depleted murine embryonic stem cells of the transcripts encoding remodeler ATPases BRG1 or SNF2H, then performed MNase-seq. We used high- and low-MNase digestion to assess the effects of nucleosome remodeling factors on nuclease-sensitive or "fragile" nucleosome occupancy. In parallel we gel-extracted MNase-digested fragments to enrich for overlapping dinucleosomes. We recapitulate prior identification of fragile nucleosomes and overlapping dinucleosomes near transcription start sites, and identify enrichment of these features around gene-distal DNaseI hypersensitive sites, CTCF binding sites, and pluripotency factor binding sites. We find that BRG1 stimulates occupancy of fragile nucleosomes but restricts occupancy of overlapping dinucleosomes. CONCLUSIONS Overlapping dinucleosomes and fragile nucleosomes are prevalent within the ES cell genome, occurring at hotspots of gene regulation beyond their characterized existence at promoters. Although neither structure is fully dependent on either nucleosome remodeling factor, both fragile nucleosomes and overlapping dinucleosomes are affected by knockdown of BRG1, suggesting a role for the complex in creating or removing these structures.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kris Troy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Quantitative and Systems Biology, University of California, 95343, Merced, Merced, CA, USA
| | - Sarah A Tripplehorn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
9
|
Are extraordinary nucleosome structures more ordinary than we thought? Chromosoma 2023:10.1007/s00412-023-00791-w. [PMID: 36917245 DOI: 10.1007/s00412-023-00791-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
The nucleosome is a DNA-protein assembly that is the basic unit of chromatin. A nucleosome can adopt various structures. In the canonical nucleosome structure, 145-147 bp of DNA is wrapped around a histone heterooctamer. The strong histone-DNA interactions cause the DNA to be inaccessible for nuclear processes such as transcription. Therefore, the canonical nucleosome structure has to be altered into different, non-canonical structures to increase DNA accessibility. While it is recognised that non-canonical structures do exist, these structures are not well understood. In this review, we discuss both the evidence for various non-canonical nucleosome structures in the nucleus and the factors that are believed to induce these structures. The wide range of non-canonical structures is likely to regulate the amount of accessible DNA, and thus have important nuclear functions.
Collapse
|
10
|
Krajewski WA. Histone Modifications, Internucleosome Dynamics, and DNA Stresses: How They Cooperate to “Functionalize” Nucleosomes. Front Genet 2022; 13:873398. [PMID: 35571051 PMCID: PMC9096104 DOI: 10.3389/fgene.2022.873398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Tight packaging of DNA in chromatin severely constrains DNA accessibility and dynamics. In contrast, nucleosomes in active chromatin state are highly flexible, can exchange their histones, and are virtually “transparent” to RNA polymerases, which transcribe through gene bodies at rates comparable to that of naked DNA. Defining mechanisms that revert nucleosome repression, in addition to their value for basic science, is of key importance for the diagnosis and treatment of genetic diseases. Chromatin activity is largely regulated by histone posttranslational modifications, ranging from small chemical groups up to the yet understudied “bulky” ubiquitylation and sumoylation. However, it is to be revealed how histone marks are “translated” to permissive or repressive changes in nucleosomes: it is a general opinion that histone modifications act primarily as “signals” for recruiting the regulatory proteins or as a “neutralizer” of electrostatic shielding of histone tails. Here, we would like to discuss recent evidence suggesting that histone ubiquitylation, in a DNA stress–dependent manner, can directly regulate the dynamics of the nucleosome and their primary structure and can promote nucleosome decomposition to hexasome particles or additionally stabilize nucleosomes against unwrapping. In addition, nucleosome repression/ derepression studies are usually performed with single mononucleosomes as a model. We would like to review and discuss recent findings showing that internucleosomal interactions could strongly modulate the dynamics and rearrangements of nucleosomes. Our hypothesis is that bulky histone modifications, nucleosome inherent dynamics, internucleosome interactions, and DNA torsions could act in cooperation to orchestrate the formation of different dynamic states of arrayed nucleosomes and thus promote chromatin functionality and diversify epigenetic programming methods.
Collapse
|
11
|
KURUMIZAKA H. Structural studies of functional nucleosome complexes with transacting factors. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:1-14. [PMID: 35013027 PMCID: PMC8795532 DOI: 10.2183/pjab.98.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
In eukaryotic cells, the genomic DNA is hierarchically organized into chromatin. Chromatin structures and dynamics influence all nuclear functions that are guided by DNA, and thus regulate gene expression. Chromatin structure aberrations cause various health issues, such as cancer, lifestyle-related diseases, mental disorders, infertility, congenital diseases, and infectious diseases. Many studies have unveiled the fundamental features and the heterogeneity of the nucleosome, which is the basic repeating unit of chromatin. The nucleosome is the highly conserved primary chromatin architecture in eukaryotes, but it also has structural versatility. Therefore, analyses of these primary chromatin structures will clarify the higher-order chromatin architecture. This review focuses on structural and functional studies of nucleosomes, based on our research accomplishments.
Collapse
Affiliation(s)
- Hitoshi KURUMIZAKA
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Interplay among ATP-Dependent Chromatin Remodelers Determines Chromatin Organisation in Yeast. BIOLOGY 2020; 9:biology9080190. [PMID: 32722483 PMCID: PMC7466152 DOI: 10.3390/biology9080190] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Cellular DNA is packaged into chromatin, which is composed of regularly-spaced nucleosomes with occasional gaps corresponding to active regulatory elements, such as promoters and enhancers, called nucleosome-depleted regions (NDRs). This chromatin organisation is primarily determined by the activities of a set of ATP-dependent remodeling enzymes that are capable of moving nucleosomes along DNA, or of evicting nucleosomes altogether. In yeast, the nucleosome-spacing enzymes are ISW1 (Imitation SWitch protein 1), Chromodomain-Helicase-DNA-binding (CHD)1, ISW2 (Imitation SWitch protein 2) and INOsitol-requiring 80 (INO80); the nucleosome eviction enzymes are the SWItching/Sucrose Non-Fermenting (SWI/SNF) family, the Remodeling the Structure of Chromatin (RSC) complexes and INO80. We discuss the contributions of each set of enzymes to chromatin organisation. ISW1 and CHD1 are the major spacing enzymes; loss of both enzymes results in major chromatin disruption, partly due to the appearance of close-packed di-nucleosomes. ISW1 and CHD1 compete to set nucleosome spacing on most genes. ISW1 is dominant, setting wild type spacing, whereas CHD1 sets short spacing and may dominate on highly-transcribed genes. We propose that the competing remodelers regulate spacing, which in turn controls the binding of linker histone (H1) and therefore the degree of chromatin folding. Thus, genes with long spacing bind more H1, resulting in increased chromatin compaction. RSC, SWI/SNF and INO80 are involved in NDR formation, either directly by nucleosome eviction or repositioning, or indirectly by affecting the size of the complex that resides in the NDR. The nature of this complex is controversial: some suggest that it is a RSC-bound “fragile nucleosome”, whereas we propose that it is a non-histone transcription complex. In either case, this complex appears to serve as a barrier to nucleosome formation, resulting in the formation of phased nucleosomal arrays on both sides.
Collapse
|
13
|
Matsumoto A, Sugiyama M, Li Z, Martel A, Porcar L, Inoue R, Kato D, Osakabe A, Kurumizaka H, Kono H. Structural Studies of Overlapping Dinucleosomes in Solution. Biophys J 2019; 118:2209-2219. [PMID: 31952809 PMCID: PMC7202943 DOI: 10.1016/j.bpj.2019.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/17/2019] [Accepted: 12/10/2019] [Indexed: 10/27/2022] Open
Abstract
An overlapping dinucleosome (OLDN) is a structure composed of one hexasome and one octasome and appears to be formed through nucleosome collision promoted by nucleosome remodeling factor(s). In this study, the solution structure of the OLDN was investigated through the integration of small-angle x-ray and neutron scattering (SAXS and SANS, respectively), computer modeling, and molecular dynamics simulations. Starting from the crystal structure, we generated a conformational ensemble based on normal mode analysis and searched for the conformations that reproduced the SAXS and SANS scattering curves well. We found that inclusion of histone tails, which are not observed in the crystal structure, greatly improved model quality. The obtained structural models suggest that OLDNs adopt a variety of conformations stabilized by histone tails situated at the interface between the hexasome and octasome, simultaneously binding to both the hexasomal and octasomal DNA. In addition, our models define a possible direction for the conformational changes or dynamics, which may provide important information that furthers our understanding of the role of chromatin dynamics in gene regulation.
Collapse
Affiliation(s)
- Atsushi Matsumoto
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Japan.
| | - Zhenhai Li
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Japan
| | | | | | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Japan
| | - Daiki Kato
- Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
| | - Akihisa Osakabe
- Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan; Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Japan.
| |
Collapse
|
14
|
Kobayashi W, Kurumizaka H. Structural transition of the nucleosome during chromatin remodeling and transcription. Curr Opin Struct Biol 2019; 59:107-114. [DOI: 10.1016/j.sbi.2019.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
|
15
|
Levendosky RF, Bowman GD. Asymmetry between the two acidic patches dictates the direction of nucleosome sliding by the ISWI chromatin remodeler. eLife 2019; 8:45472. [PMID: 31094676 PMCID: PMC6546392 DOI: 10.7554/elife.45472] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/16/2019] [Indexed: 01/15/2023] Open
Abstract
The acidic patch is a functionally important epitope on each face of the nucleosome that affects chromatin remodeling. Although related by 2-fold symmetry of the nucleosome, each acidic patch is uniquely positioned relative to a bound remodeler. An open question is whether remodelers are distinctly responsive to each acidic patch. Previously we reported a method for homogeneously producing asymmetric nucleosomes with distinct H2A/H2B dimers (Levendosky et al., 2016). Here, we use this methodology to show that the Chd1 remodeler from Saccharomyces cerevisiae and ISWI remodelers from human and Drosophila have distinct spatial requirements for the acidic patch. Unlike Chd1, which is equally affected by entry- and exit-side mutations, ISWI remodelers strongly depend on the entry-side acidic patch. Remarkably, asymmetry in the two acidic patches stimulates ISWI to slide mononucleosomes off DNA ends, overriding the remodeler’s preference to shift the histone core toward longer flanking DNA.
Collapse
Affiliation(s)
- Robert F Levendosky
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
| | - Gregory D Bowman
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
16
|
Nishimura M, Nozawa K, Kurumizaka H. Crystallographic analysis of the overlapping dinucleosome as a novel chromatin unit. Biophys Physicobiol 2019; 15:251-254. [PMID: 30713825 PMCID: PMC6353640 DOI: 10.2142/biophysico.15.0_251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/18/2018] [Indexed: 12/01/2022] Open
Abstract
Recent evidence has suggested that chromatin is not simply repeats of the canonical nucleosome, called the “octasome”, but may include diverse repertoires of basic structural units. During the transcription process, a nucleosome is repositioned by a chromatin remodeler and collides with a neighboring nucleosome, thus creating an unusual nucleosome substructure termed the “overlapping dinucleosome”. We previously developed a method for the large-scale preparation of the overlapping dinucleosome. This method enabled us to solve the crystal structure of the overlapping dinucleosome, which revealed an unexpected structure composed of an octameric histone core associated with a hexameric histone core lacking one H2A-H2B dimer.
Collapse
Affiliation(s)
- Masahiro Nishimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.,Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kayo Nozawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.,Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.,Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
17
|
Contrasting roles of the RSC and ISW1/CHD1 chromatin remodelers in RNA polymerase II elongation and termination. Genome Res 2019; 29:407-417. [PMID: 30683752 PMCID: PMC6396426 DOI: 10.1101/gr.242032.118] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Most yeast genes have a nucleosome-depleted region (NDR) at the promoter and an array of regularly spaced nucleosomes phased relative to the transcription start site. We have examined the interplay between RSC (a conserved essential SWI/SNF-type complex that determines NDR size) and the ISW1, CHD1, and ISW2 nucleosome spacing enzymes in chromatin organization and transcription, using isogenic strains lacking all combinations of these enzymes. The contributions of these remodelers to chromatin organization are largely combinatorial, distinct, and nonredundant, supporting a model in which the +1 nucleosome is positioned by RSC and then used as a reference nucleosome by the spacing enzymes. Defective chromatin organization correlates with altered RNA polymerase II (Pol II) distribution. RSC-depleted cells exhibit low levels of elongating Pol II and high levels of terminating Pol II, consistent with defects in both termination and initiation, suggesting that RSC facilitates both. Cells lacking both ISW1 and CHD1 show the opposite Pol II distribution, suggesting elongation and termination defects. These cells have extremely disrupted chromatin, with high levels of closely packed dinucleosomes involving the second (+2) nucleosome. We propose that ISW1 and CHD1 facilitate Pol II elongation by separating closely packed nucleosomes.
Collapse
|
18
|
Martin BJE, Chruscicki AT, Howe LJ. Transcription Promotes the Interaction of the FAcilitates Chromatin Transactions (FACT) Complex with Nucleosomes in Saccharomyces cerevisiae. Genetics 2018; 210:869-881. [PMID: 30237209 PMCID: PMC6218215 DOI: 10.1534/genetics.118.301349] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
The FACT (FAcilitates Chromatin Transactions) complex is a conserved complex that maintains chromatin structure on transcriptionally active genes. Consistent with this, FACT is enriched on highly expressed genes, but how it is targeted to these regions is unknown. In vitro, FACT binds destabilized nucleosomes, supporting the hypothesis that FACT is targeted to transcribed chromatin through recognition of RNA polymerase (RNAP)-disrupted nucleosomes. In this study, we used high-resolution analysis of FACT occupancy in Saccharomyces cerevisiae to test this hypothesis. We demonstrate that FACT interacts with nucleosomes in vivo and that its interaction with chromatin is dependent on transcription by any of the three RNAPs. Deep sequencing of micrococcal nuclease-resistant fragments shows that FACT-bound nucleosomes exhibit differing nuclease sensitivity compared to bulk chromatin, consistent with a modified nucleosome structure being the preferred ligand for this complex. Interestingly, a subset of FACT-bound nucleosomes may be "overlapping dinucleosomes," in which one histone octamer invades the ∼147-bp territory normally occupied by the adjacent nucleosome. While the differing nuclease sensitivity of FACT-bound nucleosomes could also be explained by the demonstrated ability of FACT to alter nucleosome structure, transcription inhibition restores nuclease resistance, suggesting that it is not due to FACT interaction alone. Collectively, these results are consistent with a model in which FACT is targeted to transcribed genes through preferential interaction with RNAP-disrupted nucleosomes.
Collapse
Affiliation(s)
- Benjamin J E Martin
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Adam T Chruscicki
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - LeAnn J Howe
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
19
|
Kato D, Osakabe A, Arimura Y, Mizukami Y, Horikoshi N, Saikusa K, Akashi S, Nishimura Y, Park SY, Nogami J, Maehara K, Ohkawa Y, Matsumoto A, Kono H, Inoue R, Sugiyama M, Kurumizaka H. Crystal structure of the overlapping dinucleosome composed of hexasome and octasome. Science 2017; 356:205-208. [PMID: 28408607 DOI: 10.1126/science.aak9867] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/17/2017] [Indexed: 12/19/2022]
Abstract
Nucleosomes are dynamic entities that are repositioned along DNA by chromatin remodeling processes. A nucleosome repositioned by the switch-sucrose nonfermentable (SWI/SNF) remodeler collides with a neighbor and forms the intermediate "overlapping dinucleosome." Here, we report the crystal structure of the overlapping dinucleosome, in which two nucleosomes are associated, at 3.14-angstrom resolution. In the overlapping dinucleosome structure, the unusual "hexasome" nucleosome, composed of the histone hexamer lacking one H2A-H2B dimer from the conventional histone octamer, contacts the canonical "octasome" nucleosome, and they intimately associate. Consequently, about 250 base pairs of DNA are left-handedly wrapped in three turns, without a linker DNA segment between the hexasome and octasome moieties. The overlapping dinucleosome structure may provide important information to understand how nucleosome repositioning occurs during the chromatin remodeling process.
Collapse
Affiliation(s)
- Daiki Kato
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Akihisa Osakabe
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yasuhiro Arimura
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuka Mizukami
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Naoki Horikoshi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kazumi Saikusa
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Sam-Yong Park
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsushi Matsumoto
- National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - Hidetoshi Kono
- National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan
| | - Rintaro Inoue
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Masaaki Sugiyama
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. .,Institute for Medical-Oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
20
|
Koyama M, Kurumizaka H. Structural diversity of the nucleosome. J Biochem 2017; 163:85-95. [DOI: 10.1093/jb/mvx081] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
- Masako Koyama
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Institute for Medical-Oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Institute for Medical-Oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
21
|
Fuse T, Katsumata K, Morohoshi K, Mukai Y, Ichikawa Y, Kurumizaka H, Yanagida A, Urano T, Kato H, Shimizu M. Parallel mapping with site-directed hydroxyl radicals and micrococcal nuclease reveals structural features of positioned nucleosomes in vivo. PLoS One 2017; 12:e0186974. [PMID: 29073207 PMCID: PMC5658119 DOI: 10.1371/journal.pone.0186974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
Micrococcal nuclease (MNase) has been widely used for analyses of nucleosome locations in many organisms. However, due to its sequence preference, the interpretations of the positions and occupancies of nucleosomes using MNase have remained controversial. Next-generation sequencing (NGS) has also been utilized for analyses of MNase-digests, but some technical biases are commonly present in the NGS experiments. Here, we established a gel-based method to map nucleosome positions in Saccharomyces cerevisiae, using isolated nuclei as the substrate for the histone H4 S47C-site-directed chemical cleavage in parallel with MNase digestion. The parallel mapping allowed us to compare the chemically and enzymatically cleaved sites by indirect end-labeling and primer extension mapping, and thus we could determine the nucleosome positions and the sizes of the nucleosome-free regions (or nucleosome-depleted regions) more accurately, as compared to nucleosome mapping by MNase alone. The analysis also revealed that the structural features of the nucleosomes flanked by the nucleosome-free region were different from those within regularly arrayed nucleosomes, showing that the structures and dynamics of individual nucleosomes strongly depend on their locations. Moreover, we demonstrated that the parallel mapping results were generally consistent with the previous genome-wide chemical mapping and MNase-Seq results. Thus, the gel-based parallel mapping will be useful for the analysis of a specific locus under various conditions.
Collapse
Affiliation(s)
- Tomohiro Fuse
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Koji Katsumata
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Koya Morohoshi
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Yukio Mukai
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yuichi Ichikawa
- Graduate School of Advanced Science and Engineering/RISE/IMSB, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering/RISE/IMSB, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Akio Yanagida
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Mitsuhiro Shimizu
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
- * E-mail:
| |
Collapse
|
22
|
Clapier CR, Kasten MM, Parnell TJ, Viswanathan R, Szerlong H, Sirinakis G, Zhang Y, Cairns BR. Regulation of DNA Translocation Efficiency within the Chromatin Remodeler RSC/Sth1 Potentiates Nucleosome Sliding and Ejection. Mol Cell 2017; 62:453-461. [PMID: 27153540 DOI: 10.1016/j.molcel.2016.03.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 01/29/2016] [Accepted: 03/30/2016] [Indexed: 11/30/2022]
Abstract
The RSC chromatin remodeler slides and ejects nucleosomes, utilizing a catalytic subunit (Sth1) with DNA translocation activity, which can pump DNA around the nucleosome. A central question is whether and how DNA translocation is regulated to achieve sliding versus ejection. Here, we report the regulation of DNA translocation efficiency by two domains residing on Sth1 (Post-HSA and Protrusion 1) and by actin-related proteins (ARPs) that bind Sth1. ARPs facilitated sliding and ejection by improving "coupling"-the amount of DNA translocation by Sth1 relative to ATP hydrolysis. We also identified and characterized Protrusion 1 mutations that promote "coupling," and Post-HSA mutations that improve ATP hydrolysis; notably, the strongest mutations conferred efficient nucleosome ejection without ARPs. Taken together, sliding-to-ejection involves a continuum of DNA translocation efficiency, consistent with higher magnitudes of ATPase and coupling activities (involving ARPs and Sth1 domains), enabling the simultaneous rupture of multiple histone-DNA contacts facilitating ejection.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Margaret M Kasten
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Timothy J Parnell
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ramya Viswanathan
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Heather Szerlong
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - George Sirinakis
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Bradley R Cairns
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
23
|
Azmi IF, Watanabe S, Maloney MF, Kang S, Belsky JA, MacAlpine DM, Peterson CL, Bell SP. Nucleosomes influence multiple steps during replication initiation. eLife 2017; 6. [PMID: 28322723 PMCID: PMC5400510 DOI: 10.7554/elife.22512] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic replication origin licensing, activation and timing are influenced by chromatin but a mechanistic understanding is lacking. Using reconstituted nucleosomal DNA replication assays, we assessed the impact of nucleosomes on replication initiation. To generate distinct nucleosomal landscapes, different chromatin-remodeling enzymes (CREs) were used to remodel nucleosomes on origin-DNA templates. Nucleosomal organization influenced two steps of replication initiation: origin licensing and helicase activation. Origin licensing assays showed that local nucleosome positioning enhanced origin specificity and modulated helicase loading by influencing ORC DNA binding. Interestingly, SWI/SNF- and RSC-remodeled nucleosomes were permissive for origin licensing but showed reduced helicase activation. Specific CREs rescued replication of these templates if added prior to helicase activation, indicating a permissive chromatin state must be established during origin licensing to allow efficient origin activation. Our studies show nucleosomes directly modulate origin licensing and activation through distinct mechanisms and provide insights into the regulation of replication initiation by chromatin.
Collapse
Affiliation(s)
- Ishara F Azmi
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Shinya Watanabe
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Michael F Maloney
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Sukhyun Kang
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States.,Center for Genomic Integrity, Institute for Basic Science, Ulsan, South Korea
| | - Jason A Belsky
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States.,Program in Computational Biology and Bioinformatics, Duke University, Durham, United States
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, United States
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
24
|
Krajewski WA. On the role of inter-nucleosomal interactions and intrinsic nucleosome dynamics in chromatin function. Biochem Biophys Rep 2016; 5:492-501. [PMID: 28955857 PMCID: PMC5600426 DOI: 10.1016/j.bbrep.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 01/10/2023] Open
Abstract
Evidence is emerging that many diseases result from defects in gene functions, which, in turn, depend on the local chromatin environment of a gene. However, it still remains not fully clear how chromatin activity code is 'translated' to the particular 'activating' or 'repressing' chromatin structural transition. Commonly, chromatin remodeling in vitro was studied using mononucleosomes as a model. However, recent data suggest that structural reorganization of a single mononucleosome is not equal to remodeling of a nucleosome particle under multinucleosomal content - such as, interaction of nucleosomes via flexible histone termini could significantly alter the mode (and the resulting products) of nucleosome structural transitions. It is becoming evident that a nucleosome array does not constitute just a 'polymer' of individual 'canonical' nucleosomes due to multiple inter-nucleosomal interactions which affect nucleosome dynamics and structure. It could be hypothesized, that inter-nucleosomal interactions could act in cooperation with nucleosome inherent dynamics to orchestrate DNA-based processes and promote formation and stabilization of highly-dynamic, accessible structure of a nucleosome array. In the proposed paper we would like to discuss the nucleosome dynamics within the chromatin fiber mainly as it pertains to the roles of the structural changes mediated by inter-nucleosomal interactions.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- Institute of Developmental Biology of Russian Academy of Sciences, ul. Vavilova 26, Moscow, 119334 Russia
| |
Collapse
|
25
|
Howard CJ, Yu RR, Gardner ML, Shimko JC, Ottesen JJ. Chemical and biological tools for the preparation of modified histone proteins. Top Curr Chem (Cham) 2015; 363:193-226. [PMID: 25863817 DOI: 10.1007/128_2015_629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through a large network of dynamic post-translational modifications (PTMs) which ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to understand better the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. We also cover the chemical ligation techniques which have been invaluable in the generation of complex modified histones indistinguishable from their natural counterparts. We end with a prospectus on future directions.
Collapse
Affiliation(s)
- Cecil J Howard
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Manuel M. Müller
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
27
|
Bowman GD, Poirier MG. Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 2015; 115:2274-95. [PMID: 25424540 PMCID: PMC4375056 DOI: 10.1021/cr500350x] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Gregory D. Bowman
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael G. Poirier
- Department of Physics, and Department of
Chemistry and Biochemistry, The Ohio State
University, Columbus, Ohio 43210, United
States
| |
Collapse
|
28
|
Mechanisms by which SMARCB1 loss drives rhabdoid tumor growth. Cancer Genet 2014; 207:365-72. [PMID: 24853101 DOI: 10.1016/j.cancergen.2014.04.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 02/02/2023]
Abstract
SMARCB1 (INI1/SNF5/BAF47), a core subunit of the SWI/SNF (BAF) chromatin-remodeling complex, is inactivated in the large majority of rhabdoid tumors, and germline heterozygous SMARCB1 mutations form the basis for rhabdoid predisposition syndrome. Mouse models validated Smarcb1 as a bona fide tumor suppressor, as Smarcb1 inactivation in mice results in 100% of the animals rapidly developing cancer. SMARCB1 was the first subunit of the SWI/SNF complex found mutated in cancer. More recently, at least seven other genes encoding SWI/SNF subunits have been identified as recurrently mutated in cancer. Collectively, 20% of all human cancers contain a SWI/SNF mutation. Consequently, investigation of the mechanisms by which SMARCB1 mutation causes cancer has relevance not only for rhabdoid tumors, but also potentially for the wide variety of SWI/SNF mutant cancers. Here we discuss normal functions of SMARCB1 and the SWI/SNF complex as well as mechanistic and potentially therapeutic insights that have emerged.
Collapse
|
29
|
Krajewski WA. Yeast Isw1a and Isw1b exhibit similar nucleosome mobilization capacities for mononucleosomes, but differently mobilize dinucleosome templates. Arch Biochem Biophys 2014; 546:72-80. [DOI: 10.1016/j.abb.2014.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 11/27/2022]
|
30
|
North JA, Šimon M, Ferdinand MB, Shoffner MA, Picking JW, Howard CJ, Mooney AM, van Noort J, Poirier MG, Ottesen JJ. Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure. Nucleic Acids Res 2014; 42:4922-33. [PMID: 24561803 PMCID: PMC4005658 DOI: 10.1093/nar/gku150] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nucleosomes contain ∼146 bp of DNA wrapped around a histone protein octamer that controls DNA accessibility to transcription and repair complexes. Posttranslational modification (PTM) of histone proteins regulates nucleosome function. To date, only modest changes in nucleosome structure have been directly attributed to histone PTMs. Histone residue H3(T118) is located near the nucleosome dyad and can be phosphorylated. This PTM destabilizes nucleosomes and is implicated in the regulation of transcription and repair. Here, we report gel electrophoretic mobility, sucrose gradient sedimentation, thermal disassembly, micrococcal nuclease digestion and atomic force microscopy measurements of two DNA–histone complexes that are structurally distinct from nucleosomes. We find that H3(T118ph) facilitates the formation of a nucleosome duplex with two DNA molecules wrapped around two histone octamers, and an altosome complex that contains one DNA molecule wrapped around two histone octamers. The nucleosome duplex complex forms within short ∼150 bp DNA molecules, whereas altosomes require at least ∼250 bp of DNA and form repeatedly along 3000 bp DNA molecules. These results are the first report of a histone PTM significantly altering the nucleosome structure.
Collapse
Affiliation(s)
- Justin A North
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA, Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA and Huygens-Kamerlingh Onnes Laboratory, Leiden University, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mueller-Planitz F, Klinker H, Becker PB. Nucleosome sliding mechanisms: new twists in a looped history. Nat Struct Mol Biol 2013; 20:1026-32. [PMID: 24008565 DOI: 10.1038/nsmb.2648] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/12/2013] [Indexed: 01/11/2023]
Abstract
Nucleosomes, the basic organizational units of chromatin, package and regulate eukaryotic genomes. ATP-dependent nucleosome-remodeling factors endow chromatin with structural flexibility by promoting assembly or disruption of nucleosomes and the exchange of histone variants. Furthermore, most remodeling factors induce nucleosome movements through sliding of histone octamers on DNA. We summarize recent progress toward unraveling the basic nucleosome sliding mechanism and the interplay of the remodelers' DNA translocases with accessory domains. Such domains optimize and regulate the basic sliding reaction and exploit sliding to achieve diverse structural effects, such as nucleosome positioning or eviction, or the regular spacing of nucleosomes in chromatin.
Collapse
Affiliation(s)
- Felix Mueller-Planitz
- 1] Adolf-Butenandt-Institute, Ludwig-Maximilians-Universität, Munich, Germany. [2] Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | |
Collapse
|
32
|
Fulvestrant induces resistance by modulating GPER and CDK6 expression: implication of methyltransferases, deacetylases and the hSWI/SNF chromatin remodelling complex. Br J Cancer 2013; 109:2751-62. [PMID: 24169358 PMCID: PMC3833203 DOI: 10.1038/bjc.2013.583] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 02/06/2023] Open
Abstract
Background: Breast cancer is the leading cause of cancer death in women living in the western hemisphere. Despite major advances in first-line endocrine therapy of advanced oestrogen receptor (ER)-positive breast cancer, the frequent recurrence of resistant cancer cells represents a serious obstacle to successful treatment. Understanding the mechanisms leading to acquired resistance, therefore, could pave the way to the development of second-line therapeutics. To this end, we generated an ER-positive breast cancer cell line (MCF-7) with resistance to the therapeutic anti-oestrogen fulvestrant (FUL) and studied the molecular changes involved in resistance. Methods: Naive MCF-7 cells were treated with increasing FUL concentrations and the gene expression profile of the resulting FUL-resistant strain (FR.MCF-7) was compared with that of naive cells using GeneChip arrays. After validation by real-time PCR and/or western blotting, selected resistance-associated genes were functionally studied by siRNA-mediated silencing or pharmacological inhibition. Furthermore, general mechanisms causing aberrant gene expression were investigated. Results: Fulvestrant resistance was associated with repression of GPER and the overexpression of CDK6, whereas ERBB2, ABCG2, ER and ER-related genes (GREB1, RERG) or genes expressed in resistant breast cancer (BCAR1, BCAR3) did not contribute to resistance. Aberrant GPER and CDK6 expression was most likely caused by modification of DNA methylation and histone acetylation, respectively. Therefore, part of the resistance mechanism was loss of RB1 control. The hSWI/SNF (human SWItch/Sucrose NonFermentable) chromatin remodelling complex, which is tightly linked to nucleosome acetylation and repositioning, was also affected, because as a stress response to FUL treatment-naive cells altered the expression of five subunits within a few hours (BRG1, BAF250A, BAF170, BAF155, BAF47). The aberrant constitutive expression of BAF250A, BAF170 and BAF155 and a deviant stress response of BRG1, BAF170 and BAF47 in FR.MCF-7 cells to FUL treatment accompanied acquired FUL resistance. The regular and aberrant expression profiles of BAF155 correlated directly with that of CDK6 in naive and in FR.MCF-7 cells corroborating the finding that CDK6 overexpression was due to nucleosome alterations. Conclusion: The study revealed that FUL resistance is associated with the dysregulation of GPER and CDK6. A mechanism leading to aberrant gene expression was most likely unscheduled chromatin remodelling by hSWI/SNF. Hence, three targets should be conceptually addressed in a second-line adjuvant therapy: the catalytic centre of SWI/SNF (BRG1) to delay the development of FUL resistance, GPER to increase sensitivity to FUL and the reconstitution of the RB1 pathway to overcome resistance.
Collapse
|
33
|
Narlikar G, Sundaramoorthy R, Owen-Hughes T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 2013; 154:490-503. [PMID: 23911317 PMCID: PMC3781322 DOI: 10.1016/j.cell.2013.07.011] [Citation(s) in RCA: 474] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Indexed: 12/28/2022]
Abstract
Chromatin provides both a means to accommodate a large amount of genetic material in a small space and a means to package the same genetic material in different chromatin states. Transitions between chromatin states are enabled by chromatin-remodeling ATPases, which catalyze a diverse range of structural transformations. Biochemical evidence over the last two decades suggests that chromatin-remodeling activities may have emerged by adaptation of ancient DNA translocases to respond to specific features of chromatin. Here, we discuss such evidence and also relate mechanistic insights to our understanding of how chromatin-remodeling enzymes enable different in vivo processes.
Collapse
Affiliation(s)
- Geeta J. Narlikar
- Biochemistry and Biophysics, Genentech Hall 600, 16th Street, University of California, San Francisco, San Francisco, CA 94158, USA
- Corresponding author
| | | | - Tom Owen-Hughes
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Corresponding author
| |
Collapse
|
34
|
Krajewski WA. Comparison of the Isw1a, Isw1b, and Isw2 Nucleosome Disrupting Activities. Biochemistry 2013; 52:6940-9. [DOI: 10.1021/bi400634r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wladyslaw A. Krajewski
- Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
35
|
Abstract
In the eukaryotic nucleus, processes of DNA metabolism such as transcription, DNA replication, and repair occur in the context of DNA packaged into nucleosomes and higher order chromatin structures. In order to overcome the barrier presented by chromatin structures to the protein machinery carrying out these processes, the cell relies on a class of enzymes called chromatin remodeling complexes which catalyze ATP-dependent restructuring and repositioning of nucleosomes. Chromatin remodelers are large multi-subunit complexes which all share a common SF2 helicase ATPase domain in their catalytic subunit, and are classified into four different families-SWI/SNF, ISWI, CHD, INO80-based on the arrangement of other domains in their catalytic subunit as well as their non-catalytic subunit composition. A large body of structural, biochemical, and biophysical evidence suggests chromatin remodelers operate as histone octamer-anchored directional DNA translocases in order to disrupt DNA-histone interactions and catalyze nucleosome sliding. Remodeling mechanisms are family-specific and depend on factors such as how the enzyme engages with nucleosomal and linker DNA, features of DNA loop intermediates, specificity for mono- or oligonucleosomal substrates, and ability to remove histones and exchange histone variants. Ultimately, the biological function of chromatin remodelers and their genomic targeting in vivo is regulated by each complex's subunit composition, association with chromatin modifiers and histone chaperones, and affinity for chromatin signals such as histone posttranslational modifications.
Collapse
|
36
|
Patel A, Chakravarthy S, Morrone S, Nodelman IM, McKnight JN, Bowman GD. Decoupling nucleosome recognition from DNA binding dramatically alters the properties of the Chd1 chromatin remodeler. Nucleic Acids Res 2012; 41:1637-48. [PMID: 23275572 PMCID: PMC3561990 DOI: 10.1093/nar/gks1440] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chromatin remodelers can either organize or disrupt nucleosomal arrays, yet the mechanisms specifying these opposing actions are not clear. Here, we show that the outcome of nucleosome sliding by Chd1 changes dramatically depending on how the chromatin remodeler is targeted to nucleosomes. Using a Chd1–streptavidin fusion remodeler, we found that targeting via biotinylated DNA resulted in directional sliding towards the recruitment site, whereas targeting via biotinylated histones produced a distribution of nucleosome positions. Remarkably, the fusion remodeler shifted nucleosomes with biotinylated histones up to 50 bp off the ends of DNA and was capable of reducing negative supercoiling of plasmids containing biotinylated chromatin, similar to remodelling characteristics observed for SWI/SNF-type remodelers. These data suggest that forming a stable attachment to nucleosomes via histones, and thus lacking sensitivity to extranucleosomal DNA, seems to be sufficient for allowing a chromatin remodeler to possess SWI/SNF-like disruptive properties.
Collapse
Affiliation(s)
- Ashok Patel
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
37
|
Amunugama R, Fishel R. Homologous Recombination in Eukaryotes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:155-206. [DOI: 10.1016/b978-0-12-387665-2.00007-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Mapping assembly favored and remodeled nucleosome positions on polynucleosomal templates. Methods Mol Biol 2011; 833:311-36. [PMID: 22183602 DOI: 10.1007/978-1-61779-477-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Positioning of nucleosomes regulates the access of DNA binding factors to their consensus sequences. Nucleosome positions are determined, at least in part by the effects of DNA sequence during nucleosome assembly. Nucleosomes can also be repositioned (moved in cis) by ATP-dependent nucleosome remodeling complexes. Most studies of repositioning have used short DNA fragments containing a single nucleosome. It is difficult to use this type of template to analyze the role of DNA sequence in repositioning, however, because the many remodeling complexes are strongly influenced by nearby DNA ends. Mononucleosomal templates also cannot provide information about how repositioning occurs in the context of chromatin, where the presence of flanking nucleosomes could limit repositioning options. This protocol describes a newly developed method that allows the mapping of nucleosome positions (with and without remodeling) on any chosen region of a plasmid polynucleosomal template in vitro. The approach uses MNase digestion to release nucleosome-protected DNA fragments, followed by restriction enzyme digestion to locally unique sites, and Southern blotting, to provide a comprehensive map of nucleosome positions within a probe region. It was developed as part of studies which showed that human remodeling enzymes tended to move nucleosomes away from high affinity nucleosome positioning sequences, and also that there were differences in repositioning specificity between different remodeling complexes.
Collapse
|
39
|
Pham CD, Sims HI, Archer TK, Schnitzler GR. Multiple distinct stimuli increase measured nucleosome occupancy around human promoters. PLoS One 2011; 6:e23490. [PMID: 21853138 PMCID: PMC3154950 DOI: 10.1371/journal.pone.0023490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/18/2011] [Indexed: 11/30/2022] Open
Abstract
Nucleosomes can block access to transcription factors. Thus the precise localization of nucleosomes relative to transcription start sites and other factor binding sites is expected to be a critical component of transcriptional regulation. Recently developed microarray approaches have allowed the rapid mapping of nucleosome positions over hundreds of kilobases (kb) of human genomic DNA, although these approaches have not yet been widely used to measure chromatin changes associated with changes in transcription. Here, we use custom tiling microarrays to reveal changes in nucleosome positions and abundance that occur when hormone-bound glucocorticoid receptor (GR) binds to sites near target gene promoters in human osteosarcoma cells. The most striking change is an increase in measured nucleosome occupancy at sites spanning ∼1 kb upstream and downstream of transcription start sites, which occurs one hour after addition of hormone, but is lost at 4 hours. Unexpectedly, this increase was seen both on GR-regulated and GR-non-regulated genes. In addition, the human SWI/SNF chromatin remodeling factor (a GR co-activator) was found to be important for increased occupancy upon hormone treatment and also for low nucleosome occupancy without hormone. Most surprisingly, similar increases in nucleosome occupancy were also seen on both regulated and non-regulated promoters during differentiation of human myeloid leukemia cells and upon activation of human CD4+ T-cells. These results indicate that dramatic changes in chromatin structure over ∼2 kb of human promoters may occur genomewide and in response to a variety of stimuli, and suggest novel models for transcriptional regulation.
Collapse
Affiliation(s)
- Chuong D. Pham
- AstraZeneca R&D Boston, Waltham, Massachusetts, United States of America
| | - Hillel I. Sims
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Trevor K. Archer
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Gavin R. Schnitzler
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Montel F, Castelnovo M, Menoni H, Angelov D, Dimitrov S, Faivre-Moskalenko C. RSC remodeling of oligo-nucleosomes: an atomic force microscopy study. Nucleic Acids Res 2010; 39:2571-9. [PMID: 21138962 PMCID: PMC3074153 DOI: 10.1093/nar/gkq1254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The ‘remodels structure of chromatin’ (RSC) complex is an essential chromatin remodeling factor that is required for the control of several processes including transcription, repair and replication. The ability of RSC to relocate centrally positioned mononucleosomes at the end of nucleosomal DNA is firmly established, but the data on RSC action on oligo-nucleosomal templates remains still scarce. By using atomic force microscopy (AFM) imaging, we have quantitatively studied the RSC-induced mobilization of positioned di- and trinucleosomes as well as the directionality of mobilization on mononucleosomal template labeled at one end with streptavidin. AFM imaging showed only a limited set of distinct configurational states for the remodeling products. No stepwise or preferred directionality of the nucleosome motion was observed. Analysis of the corresponding reaction pathways allows deciphering the mechanistic features of RSC-induced nucleosome relocation. The final outcome of RSC remodeling of oligosome templates is the packing of the nucleosomes at the edge of the template, providing large stretches of DNA depleted of nucleosomes. This feature of RSC may be used by the cell to overcome the barrier imposed by the presence of nucleosomes.
Collapse
Affiliation(s)
- Fabien Montel
- Université de Lyon, Laboratoire de Physique, CNRS UMR 5672, Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
41
|
Rowe CE, Narlikar GJ. The ATP-dependent remodeler RSC transfers histone dimers and octamers through the rapid formation of an unstable encounter intermediate. Biochemistry 2010; 49:9882-90. [PMID: 20853842 PMCID: PMC2976819 DOI: 10.1021/bi101491u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RSC, an essential chromatin remodeling complex in budding yeast, is involved in a variety of biological processes including transcription, recombination, repair, and replication. How RSC participates in such diverse processes is not fully understood. In vitro, RSC uses ATP to carry out several seemingly distinct reactions: it repositions nucleosomes, transfers H2A/H2B dimers between nucleosomes, and transfers histone octamers between pieces of DNA. This raises the intriguing mechanistic question of how this molecular machine can use a single ATPase subunit to create these varied products. Here, we use a FRET-based approach to kinetically order the products of the RSC reaction. Surprisingly, transfer of H2A/H2B dimers and histone octamers is initiated on a time scale of seconds when assayed by FRET, but formation of stable nucleosomal products occurs on a time scale of minutes when assayed by native gel. These results suggest a model in which RSC action rapidly generates an unstable encounter intermediate that contains the two exchange substrates in close proximity. This intermediate then collapses more slowly to form the stable transfer products seen on native gels. The rapid, biologically relevant time scale on which the transfer products are generated implies that such products can play key roles in vivo.
Collapse
Affiliation(s)
- Claire E. Rowe
- Department of Biochemistry and Biophysics, University of California, San Francisco 94158
| | - Geeta J. Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco 94158
| |
Collapse
|
42
|
Krajewski WA, Vassiliev OL. The Saccharomyces cerevisiae Swi/Snf complex can catalyze formation of dimeric nucleosome structures in vitro. Biochemistry 2010; 49:6531-40. [PMID: 20608642 DOI: 10.1021/bi1006157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Swi/Snf chromatin-remodeling complexes, human BAF/PBAF and yeast RSC, can catalyze formation of stably altered dimeric forms of nucleosomes. However, the ability to create remodeled dimers has not yet been reported for the Saccharomyces cerevisiae Swi/Snf complex. Despite its similarity with the other Swi/Snf proteins, the yeast Swi/Snf complex features certain structural and functional differences. This raises the question of whether ySwi/Snf can in fact catalyze formation of dimeric nucleosomes. Dimer formation was proposed to have a specific impact on chromatin regulatory effects. Thus, the answer to the above question may be helpful in clarifying the ySwi/Snf functions in vivo and generalizing the notions of the regulatory principles of Swi/Snf family proteins. Here we describe ySwi/Snf-catalyzed formation of nucleosome dimers using mono- and dinucleosome templates assembled from purified histones and DNA of the high-affinity (601) nucleosome positioning sequence. We evaluated effects of nucleosome template geometry on the formation of altered dimers and assayed formation of altered nucleosome pairs on reconstituted dinucleosomes.
Collapse
Affiliation(s)
- Wladyslaw A Krajewski
- Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
43
|
Dechassa ML, Sabri A, Pondugula S, Kassabov SR, Chatterjee N, Kladde MP, Bartholomew B. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol Cell 2010; 38:590-602. [PMID: 20513433 PMCID: PMC3161732 DOI: 10.1016/j.molcel.2010.02.040] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/26/2009] [Accepted: 02/22/2010] [Indexed: 01/12/2023]
Abstract
The ATP-dependent chromatin remodeling complex SWI/SNF regulates transcription and has been implicated in promoter nucleosome eviction. Efficient nucleosome disassembly by SWI/SNF alone in biochemical assays, however, has not been directly observed. Employing a model system of dinucleosomes rather than mononucleosomes, we demonstrate that remodeling leads to ordered and efficient disassembly of one of the two nucleosomes. An H2A/H2B dimer is first rapidly displaced, and then, in a slower reaction, an entire histone octamer is lost. Nucleosome disassembly by SWI/SNF did not require additional factors such as chaperones or acceptors of histones. Observations in single molecules as well as bulk measurement suggest that a key intermediate in this process is one in which a nucleosome is moved toward the adjacent nucleosome. SWI/SNF recruited by the transcriptional activator Gal4-VP16 preferentially mobilizes the proximal nucleosome and destabilizes the adjacent nucleosome.
Collapse
Affiliation(s)
- Mekonnen Lemma Dechassa
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901-4413, USA
| | - Abdellah Sabri
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901-4413, USA
| | - Santhi Pondugula
- Department of Biochemistry and Molecular Biology and UF Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, 1376 Mowry Road, Box 103633, Gainesville, Florida 32610-3633, USA
| | - Stefan R. Kassabov
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901-4413, USA
| | - Nilanjana Chatterjee
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901-4413, USA
| | - Michael P. Kladde
- Department of Biochemistry and Molecular Biology and UF Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, 1376 Mowry Road, Box 103633, Gainesville, Florida 32610-3633, USA
| | - Blaine Bartholomew
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901-4413, USA
| |
Collapse
|
44
|
Tirosh I, Sigal N, Barkai N. Widespread remodeling of mid-coding sequence nucleosomes by Isw1. Genome Biol 2010; 11:R49. [PMID: 20459718 PMCID: PMC2898075 DOI: 10.1186/gb-2010-11-5-r49] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/24/2010] [Accepted: 05/10/2010] [Indexed: 12/02/2022] Open
Abstract
In yeast, the chromatin remodeler Isw1 shifts nucleosomes from mid-coding, to more 5’ regions of genes and may regulate transcriptional elongation. Background The positions of nucleosomes along eukaryotic DNA are defined by the local DNA sequence and are further tuned by the activity of chromatin remodelers. While the genome-wide effect of most remodelers has not been described, recent studies in Saccharomyces cerevisiae have shown that Isw2 prevents ectopic expression of anti-sense and suppressed transcripts at gene ends. Results We examined the genome-wide function of the Isw2 homologue, Isw1, by mapping nucleosome positioning in S. cerevisiae and Saccharomyces paradoxus strains deleted of ISW1. We found that Isw1 functions primarily within coding regions of genes, consistent with its putative role in transcription elongation. Upon deletion of ISW1, mid-coding nucleosomes were shifted upstream (towards the 5' ends) in about half of the genes. Isw1-dependent shifts were correlated with trimethylation of H3K79 and were enriched at genes with internal cryptic initiation sites. Conclusions Our results suggest a division of labor between Isw1 and Isw2, whereby Isw2 maintains repressive chromatin structure at gene ends while Isw1 has a similar function at mid-coding regions. The differential specificity of the two remodelers may be specified through interactions with particular histone marks.
Collapse
Affiliation(s)
- Itay Tirosh
- Department of Molecular genetics, Weizmann Institute of Science, Herzl street, Rehovot 76100, Israel.
| | | | | |
Collapse
|
45
|
Wee G, Shin ST, Koo DB, Han YM. Behaviors of ATP-dependent chromatin remodeling factors during maturation of bovine oocytes in vitro. Mol Reprod Dev 2010; 77:126-35. [PMID: 19918983 DOI: 10.1002/mrd.21113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian oocyte undergoes dynamic changes in chromatin structure to reach complete maturation. However, little known is about behaviors of ATP-dependent chromatin remodeling factors (ACRFs) during meiosis. Here, we found that respective ACRFs may differently behave in the process of oocyte maturation in the bovine. All ACRFs interacted with oocytic chromatin at the germinal vesicle (GV) stage. Mi-2 and hSNF2H disappeared from GV-chromatin within 1 hr of in vitro culture whereas Brg-1 and BAF-170 were retained throughout germinal vesicle break down (GVBD). Brg-1 was localized on the condensed chromatin outside, whereas BAF-170 was entirely excluded from condensed chromatin. Thereafter, Brg-1 and BAF-170 interacted with metaphase I and metaphase II chromosomes. These results imply that Mi-2 and hSNF2H may initiate the meiotic resumption, and Brg-1 and BAF-170 may support chromatin condensation during meiosis. In addition, DNA methylation and methylation of histone H3 at lysine 9 (H3K9) seem to be constantly retained in the oocyte chromatin throughout in vitro maturation. Inhibition of ACRF activity by treatment with the inhibitor apyrase led to retarded chromatin remodeling in bovine oocytes, thereby resulting in poor development of fertilized embryos. Therefore, these results indicate that precise behaviors of ACRFs during meiosis are critical for nuclear maturation and subsequent embryonic development in the bovine.
Collapse
Affiliation(s)
- Gabbine Wee
- Department of Biological Sciences, Center for Stem Cell Differentiation, KAIST, Daejeon, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Mazloom AR, Basu K, Mandal SS, Das SK. Chromatin remodeling in silico: a stochastic model for SWI/SNF. Biosystems 2009; 99:179-91. [PMID: 19945504 DOI: 10.1016/j.biosystems.2009.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 11/15/2009] [Accepted: 11/19/2009] [Indexed: 12/27/2022]
Abstract
Beside their contribution in DNA packaging, histone-core particles modulate the transcription machinery access to the DNA through dynamic chromatin structure. Chromatin remodeling complexes perturb such modulations through diverse mechanisms. SWI/SNF is a well-studied highly conserved chromatin remodeling complex that is ubiquitous across eukaryotes. Rigorous study of experimental observations suggests randomness in dynamics of SWI/SNF in cis chromatin remodeling process. In this work we propose a stochastic computational model that captures such fluctuations. We incorporate the physiological properties of the process through parametric microevents. Each microevent is then associated with a stochastic model that couples its random temporal and spatial dynamics with the energy landscape of the remodeling process. We further show that DNA sequence stacks and friction force have negligible effect on chromatin remodeling. Our approach shows a promising approximation to the force impinged on the DNA by the SWI/SNF complex. We validate our model predictions with several experimental data sets. The proposed model suggest that the in cis translocation rate of histone-core particle follows a Gamma distribution. By carefully analyzing the simulation results we conjecture that SWI/SNF chromatin remodeling has low energy efficiency (<0.30). We use our model to recapitulate the dynamics of the parallel remodeling processes that occur in close proximity across a typical eukaryotic genome. Our results suggest that the orchestrated chromatin remodeling makes few kilobase-pairs of the DNA accessible to the transcription machinery in a timely manner.
Collapse
Affiliation(s)
- Amin R Mazloom
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
47
|
Pham CD, He X, Schnitzler GR. Divergent human remodeling complexes remove nucleosomes from strong positioning sequences. Nucleic Acids Res 2009; 38:400-13. [PMID: 19906705 PMCID: PMC2811002 DOI: 10.1093/nar/gkp1030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nucleosome positioning plays a major role in controlling the accessibility of DNA to transcription factors and other nuclear processes. Nucleosome positions after assembly are at least partially determined by the relative affinity of DNA sequences for the histone octamer. Nucleosomes can be moved, however, by a class of ATP dependent chromatin remodeling complexes. We recently showed that the human SWI/SNF remodeling complex moves nucleosomes in a sequence specific manner, away from nucleosome positioning sequences (NPSes). Here, we compare the repositioning specificity of five remodelers of diverse biological functions (hSWI/SNF, the SNF2h ATPase and the hACF, CHRAC and WICH complexes than each contain SNF2h) on 5S rDNA, MMTV and 601 NPS polynucleosomal templates. We find that all five remodelers act similarly to reduce nucleosome occupancy over the strongest NPSes, an effect that could directly contribute to the function of WICH in activating 5S rDNA transcription. While some differences were observed between complexes, all five remodelers were found to result in surprisingly similar nucleosome distributions. This suggests that remodeling complexes may share a conserved repositioning specificity, and that their divergent biological functions may largely arise from other properties conferred by complex-specific subunits.
Collapse
Affiliation(s)
- Chuong D Pham
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | | | | |
Collapse
|
48
|
SET domains of histone methyltransferases recognize ISWI-remodeled nucleosomal species. Mol Cell Biol 2009; 30:552-64. [PMID: 19752191 DOI: 10.1128/mcb.00775-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The trithorax (trxG) and Polycomb (PcG) group proteins recognize and propagate inheritable patterns of gene expression through a poorly understood epigenetic mechanism. A distinguishing feature of these proteins is the presence of a 130-amino-acid methyltransferase domain (SET), which catalyzes the methylation of histones. It is still not clear how SET proteins distinguish gene expression states, how they are targeted, or what regulates their substrate specificity. Many SET domain-containing proteins show robust activity on core histones but relatively weak activity on intact nucleosomes, their physiological substrate. Here, we examined the binding of two SET domain-containing proteins, ALL1 and SET7, to chromatin substrates. The SET domains from these proteins bind and methylate intact nucleosomes poorly but can recognize disrupted nucleosomal structures associated with transcribed chromatin. Interestingly, the remodeling of dinucleosomes by the ISWI class of ATP-dependent chromatin remodeling enzymes stimulated the binding of SET domains to chromatin and the methylation of H3 within the nucleosome. Unexpectedly, dinucleosomes remodeled by SWI/SNF were poor substrates. Thus, SET domains can distinguish nucleosomes altered by these two classes of remodeling enzymes. Our study reveals novel insights into the mechanism of how SET domains recognize different chromatin states and specify histone methylation at active loci.
Collapse
|
49
|
van Vugt JJFA, de Jager M, Murawska M, Brehm A, van Noort J, Logie C. Multiple aspects of ATP-dependent nucleosome translocation by RSC and Mi-2 are directed by the underlying DNA sequence. PLoS One 2009; 4:e6345. [PMID: 19626125 PMCID: PMC2710519 DOI: 10.1371/journal.pone.0006345] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/25/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chromosome structure, DNA metabolic processes and cell type identity can all be affected by changing the positions of nucleosomes along chromosomal DNA, a reaction that is catalysed by SNF2-type ATP-driven chromatin remodelers. Recently it was suggested that in vivo, more than 50% of the nucleosome positions can be predicted simply by DNA sequence, especially within promoter regions. This seemingly contrasts with remodeler induced nucleosome mobility. The ability of remodeling enzymes to mobilise nucleosomes over short DNA distances is well documented. However, the nucleosome translocation processivity along DNA remains elusive. Furthermore, it is unknown what determines the initial direction of movement and how new nucleosome positions are adopted. METHODOLOGY/PRINCIPAL FINDINGS We have used AFM imaging and high resolution PAGE of mononucleosomes on 600 and 2500 bp DNA molecules to analyze ATP-dependent nucleosome repositioning by native and recombinant SNF2-type enzymes. We report that the underlying DNA sequence can control the initial direction of translocation, translocation distance, as well as the new positions adopted by nucleosomes upon enzymatic mobilization. Within a strong nucleosomal positioning sequence both recombinant Drosophila Mi-2 (CHD-type) and native RSC from yeast (SWI/SNF-type) repositioned the nucleosome at 10 bp intervals, which are intrinsic to the positioning sequence. Furthermore, RSC-catalyzed nucleosome translocation was noticeably more efficient when beyond the influence of this sequence. Interestingly, under limiting ATP conditions RSC preferred to position the nucleosome with 20 bp intervals within the positioning sequence, suggesting that native RSC preferentially translocates nucleosomes with 15 to 25 bp DNA steps. CONCLUSIONS/SIGNIFICANCE Nucleosome repositioning thus appears to be influenced by both remodeler intrinsic and DNA sequence specific properties that interplay to define ATPase-catalyzed repositioning. Here we propose a successive three-step framework consisting of initiation, translocation and release steps to describe SNF2-type enzyme mediated nucleosome translocation along DNA. This conceptual framework helps resolve the apparent paradox between the high abundance of ATP-dependent remodelers per nucleus and the relative success of sequence-based predictions of nucleosome positioning in vivo.
Collapse
Affiliation(s)
- Joke J. F. A. van Vugt
- Department of Molecular Biology, NCMLS, Radboud University, Nijmegen, The Netherlands
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Martijn de Jager
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Magdalena Murawska
- Institut für Molekularbiologie und Tumorforschung, University of Marburg, Marburg, Germany
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung, University of Marburg, Marburg, Germany
| | - John van Noort
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Colin Logie
- Department of Molecular Biology, NCMLS, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
50
|
Bouazoune K, Miranda TB, Jones PA, Kingston RE. Analysis of individual remodeled nucleosomes reveals decreased histone-DNA contacts created by hSWI/SNF. Nucleic Acids Res 2009; 37:5279-94. [PMID: 19567737 PMCID: PMC2760786 DOI: 10.1093/nar/gkp524] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Chromatin remodeling enzymes use the energy of ATP hydrolysis to alter histone–DNA contacts and regulate DNA-based processes in eukaryotes. Whether different subfamilies of remodeling complexes generate distinct products remains uncertain. We have developed a protocol to analyze nucleosome remodeling on individual products formed in vitro. We used a DNA methyltransferase to examine DNA accessibility throughout nucleosomes that had been remodeled by the ISWI and SWI/SNF families of enzymes. We confirmed that ISWI-family enzymes mainly created patterns of accessibility consistent with canonical nucleosomes. In contrast, SWI/SNF-family enzymes generated widespread DNA accessibility. The protection patterns created by these enzymes were usually located at the extreme ends of the DNA and showed no evidence for stable loop formation on individual molecules. Instead, SWI/SNF family proteins created extensive accessibility by generating heterogeneous products that had fewer histone–DNA contacts than a canonical nucleosome, consistent with models in which a canonical histone octamer has been ‘pushed’ off of the end of the DNA.
Collapse
Affiliation(s)
- Karim Bouazoune
- Department of Molecular Biology & Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|