1
|
Ahmed A, Ahmed A, Zahra Z, Alnefeesi Y, Hanif A, Ali M, Jawad Y, Shad MU. A scoping review and hypothetical framework about the interplay between oxytocin and eating disorders. Physiol Behav 2025; 290:114777. [PMID: 39647564 DOI: 10.1016/j.physbeh.2024.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Despite emerging evidence on oxytocin's role in eating disorders,there is a need for a comprehensive review to integrate findings across neurobiological, genetic, hormonal, and therapeutic dimensions. This scoping review synthesizes existing literature on OXT's role in EDs and proposes a new theoretical perspective based on diverse research findings. METHODS In accordance with PRISMA guidelines, we systematically synthesized all peer-reviewed articles indexed on PubMed which focused on both OXT and EDs as of December 2023 (k = 32 studies, n = 1942 participants). After summarizing this literature in tables, we completed the narrative synthesis with a discussion of mechanisms informed by an unstructured literature review. RESULTS The existing studies propose a connection between OXT receptor Oxtr polymorphisms and ED diagnoses, severity of symptoms, macronutrient preferences, reward function, and early life stress. In addition, OXT plasma levels normalized with ED symptom reduction. Although some OXT studies have failed to show therapeutic changes in food intake and weight, few have reported ameliorations in brain function, food-related attentional bias, cognition, and emotional regulation. Some data have also suggested a contributory role of the transforming growth factor β (TGFβ) and sterol regulatory element binding proteins (SREBPs) to the etiology of EDs through Oxtr expression. CONCLUSION Although the current evidence does not support OXT as a standalone cause of or treatment for EDs, OXT research holds promise as a way of identifying future therapies, and OXT itself may serve as a valuable adjunct.
Collapse
Affiliation(s)
- Aleena Ahmed
- King Edward Medical University, Lahore, Pakistan.
| | - Ayesha Ahmed
- King Edward Medical University, Lahore, Pakistan
| | - Zuha Zahra
- King Edward Medical University, Lahore, Pakistan
| | - Yazen Alnefeesi
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ahsan Hanif
- King Edward Medical University, Lahore, Pakistan
| | - Mohsan Ali
- King Edward Medical University, Lahore, Pakistan
| | - Youshay Jawad
- Department of Psychiatry and Behavioral Health, Penn State University College of, Medicine, Hershey, PA, 17033, USA
| | - Mujeeb U Shad
- Psychiatry Residency Program Director, Valley Health System (VHS)/Universal Health, Services (UHS), Las Vegas, NV; Adjunct Professor of Psychiatry, The Touro University of, Nevada College of Osteopathic Medicine (TUNCOM); Adjunct Professor of Psychiatry, The, University of Nevada, Las Vegas (UNLV), Las Vegas, NV, USA
| |
Collapse
|
2
|
Ozkan-Nikitaras T, Grzesik DJ, Romano LEL, Chapple JP, King PJ, Shoulders CC. N-SREBP2 Provides a Mechanism for Dynamic Control of Cellular Cholesterol Homeostasis. Cells 2024; 13:1255. [PMID: 39120286 PMCID: PMC11311687 DOI: 10.3390/cells13151255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Cholesterol is required to maintain the functional integrity of cellular membrane systems and signalling pathways, but its supply must be closely and dynamically regulated because excess cholesterol is toxic. Sterol regulatory element-binding protein 2 (SREBP2) and the ER-resident protein HMG-CoA reductase (HMGCR) are key regulators of cholesterol biosynthesis. Here, we assessed the mechanistic aspects of their regulation in hepatic cells. Unexpectedly, we found that the transcriptionally active fragment of SREBP2 (N-SREBP2) was produced constitutively. Moreover, in the absence of an exogenous cholesterol supply, nuclear N-SREBP2 became resistant to proteasome-mediated degradation. This resistance was paired with increased occupancy at the HMGCR promoter and HMGCR expression. Inhibiting nuclear N-SREBP2 degradation did not increase HMGCR RNA levels; this increase required cholesterol depletion. Our findings, combined with previous physiological and biophysical investigations, suggest a new model of SREBP2-mediated regulation of cholesterol biosynthesis in the organ that handles large and rapid fluctuations in the dietary supply of this key lipid. Specifically, in the nucleus, cholesterol and the ubiquitin-proteasome system provide a short-loop system that modulates the rate of cholesterol biosynthesis via regulation of nuclear N-SREBP2 turnover and HMGCR expression. Our findings have important implications for maintaining cellular cholesterol homeostasis and lowering blood cholesterol via the SREBP2-HMGCR axis.
Collapse
Affiliation(s)
- Tozen Ozkan-Nikitaras
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Dominika J. Grzesik
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Lisa E. L. Romano
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - J. P. Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Peter J. King
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| | - Carol C. Shoulders
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (T.O.-N.); (D.J.G.); (L.E.L.R.); (J.P.C.); (P.J.K.)
| |
Collapse
|
3
|
McPhee MJ, Salsman J, Foster J, Thompson J, Mathavarajah S, Dellaire G, Ridgway ND. Running 'LAPS' Around nLD: Nuclear Lipid Droplet Form and Function. Front Cell Dev Biol 2022; 10:837406. [PMID: 35178392 PMCID: PMC8846306 DOI: 10.3389/fcell.2022.837406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
The nucleus harbours numerous protein subdomains and condensates that regulate chromatin organization, gene expression and genomic stress. A novel nuclear subdomain that is formed following exposure of cells to excess fatty acids is the nuclear lipid droplet (nLD), which is composed of a neutral lipid core surrounded by a phospholipid monolayer and associated regulatory and lipid biosynthetic enzymes. While structurally resembling cytoplasmic LDs, nLDs are formed by distinct but poorly understood mechanisms that involve the emergence of lipid droplets from the lumen of the nucleoplasmic reticulum and de novo lipid synthesis. Luminal lipid droplets that emerge into the nucleoplasm do so at regions of the inner nuclear membrane that become enriched in promyelocytic leukemia (PML) protein. The resulting nLDs that retain PML on their surface are termed lipid-associated PML structures (LAPS), and are distinct from canonical PML nuclear bodies (NB) as they lack key proteins and modifications associated with these NBs. PML is a key regulator of nuclear signaling events and PML NBs are sites of gene regulation and post-translational modification of transcription factors. Therefore, the subfraction of nLDs that form LAPS could regulate lipid stress responses through their recruitment and retention of the PML protein. Both nLDs and LAPS have lipid biosynthetic enzymes on their surface suggesting they are active sites for nuclear phospholipid and triacylglycerol synthesis as well as global lipid regulation. In this review we have summarized the current understanding of nLD and LAPS biogenesis in different cell types, their structure and composition relative to other PML-associated cellular structures, and their role in coordinating a nuclear response to cellular overload of fatty acids.
Collapse
Affiliation(s)
- Michael J McPhee
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Jason Foster
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jordan Thompson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | | - Graham Dellaire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Neale D Ridgway
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
de Sousa LO, Oliveira LN, Naves RB, Pereira ALA, Santiago Freitas E Silva K, de Almeida Soares CM, de Sousa Lima P. The dual role of SrbA from Paracoccidioides lutzii: a hypoxic regulator. Braz J Microbiol 2021; 52:1135-1149. [PMID: 34148216 PMCID: PMC8382145 DOI: 10.1007/s42770-021-00527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022] Open
Abstract
The fungus Paracoccidioides lutzii is one of the species of the Paracoccidioides genus, responsible for a neglected human mycosis, endemic in Latin America, the paracoccidioidomycosis (PCM). In order to survive in the host, the fungus overcomes a hostile environment under low levels of oxygen (hypoxia) during the infectious process. The hypoxia adaptation mechanisms are variable among human pathogenic fungi and worthy to be investigated in Paracoccidoides spp. Previous proteomic results identified that P. lutzii responds to hypoxia and it has a functional homolog of the SrbA transcription factor, a well-described hypoxic regulator. However, the direct regulation of genes by SrbA and the biological processes it governs while performing protein interactions have not been revealed yet. The goal of this study was to demonstrate the potential of SrbA targets genes in P. lutzii. In addition, to show the SrbA three-dimensional aspects as well as a protein interaction map and important regions of interaction with predicted targets. The results show that SrbA-regulated genes were involved with several biological categories, such as metabolism, energy, basal processes for cell maintenance, fungal morphogenesis, defense, virulence, and signal transduction. Moreover, in order to investigate the SrbA's role as a protein, we performed a 3D simulation and also a protein-protein network linked to this hypoxic regulator. These in silico analyses revealed relevant aspects regarding the biology of this pathogen facing hypoxia and highlight the potential of SrbA as an antifungal target in the future.
Collapse
Affiliation(s)
- Lorena Ordones de Sousa
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Raphaela Barbosa Naves
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - André Luiz Araújo Pereira
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - Kleber Santiago Freitas E Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Patrícia de Sousa Lima
- Unidade Universitária de Itapuranga, Câmpus Cora Coralina, Instituto Acadêmico de Ciências da Saúde e Biológicas, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil.
| |
Collapse
|
5
|
Sołtysik K, Ohsaki Y, Tatematsu T, Cheng J, Maeda A, Morita SY, Fujimoto T. Nuclear lipid droplets form in the inner nuclear membrane in a seipin-independent manner. J Cell Biol 2021; 220:211592. [PMID: 33315072 PMCID: PMC7737703 DOI: 10.1083/jcb.202005026] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/25/2020] [Accepted: 11/11/2020] [Indexed: 01/09/2023] Open
Abstract
Nuclear lipid droplets (LDs) in hepatocytes are derived from precursors of very-low-density lipoprotein in the ER lumen, but it is not known how cells lacking the lipoprotein secretory function form nuclear LDs. Here, we show that the inner nuclear membrane (INM) of U2OS cells harbors triglyceride synthesis enzymes, including ACSL3, AGPAT2, GPAT3/GPAT4, and DGAT1/DGAT2, and generates nuclear LDs in situ. mTOR inhibition increases nuclear LDs by inducing the nuclear translocation of lipin-1 phosphatidic acid (PA) phosphatase. Seipin, a protein essential for normal cytoplasmic LD formation in the ER, is absent in the INM. Knockdown of seipin increases nuclear LDs and PA in the nucleus, whereas seipin overexpression decreases these. Seipin knockdown also up-regulates lipin-1β expression, and lipin-1 knockdown decreases the effect of seipin knockdown on nuclear LDs without affecting PA redistribution. These results indicate that seipin is not directly involved in nuclear LD formation but instead restrains it by affecting lipin-1 expression and intracellular PA distribution.
Collapse
Affiliation(s)
- Kamil Sołtysik
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Ohsaki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsuyako Tatematsu
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asami Maeda
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, Japan
| | - Toyoshi Fujimoto
- Laboratory of Molecular Cell Biology, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Birolini G, Verlengia G, Talpo F, Maniezzi C, Zentilin L, Giacca M, Conforti P, Cordiglieri C, Caccia C, Leoni V, Taroni F, Biella G, Simonato M, Cattaneo E, Valenza M. SREBP2 gene therapy targeting striatal astrocytes ameliorates Huntington's disease phenotypes. Brain 2021; 144:3175-3190. [PMID: 33974044 DOI: 10.1093/brain/awab186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/18/2021] [Accepted: 04/23/2021] [Indexed: 11/14/2022] Open
Abstract
Brain cholesterol is produced mainly by astrocytes and is important for neuronal function. Its biosynthesis is severely reduced in mouse models of Huntington's disease. One possible mechanism is a diminished nuclear translocation of the transcription factor sterol regulatory element binding protein 2 (SREBP2) and, consequently, reduced activation of SREBP-controlled genes in the cholesterol biosynthesis pathway. Here we evaluated the efficacy of a gene therapy based on the unilateral intra-striatal injection of a recombinant adeno-associated virus 2/5 (AAV2/5) targeting astrocytes specifically and carrying the transcriptionally active N-terminal fragment of human SREBP2. Robust hSREBP2 expression in striatal glial cells in R6/2 Huntington's disease mice activated the transcription of cholesterol biosynthesis pathway genes, restored synaptic transmission, reversed Drd2 transcript levels decline, cleared mutant Huntingtin aggregates and attenuated behavioral deficits. We conclude that glial SREBP2 participates in Huntington's disease brain pathogenesis in vivo and that AAV-based delivery of SREBP2 to astrocytes counteracts key features of the disease.
Collapse
Affiliation(s)
- Giulia Birolini
- Department of Biosciences, University of Milan, 20133, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi″, 20122, Milan, Italy
| | - Gianluca Verlengia
- Division of Neuroscience, IRCCS San Raffaele Hospital, 20132, Milan, Italy.,Department of BioMedical Sciences, Section of Pharmacology, University of Ferrara, 44121, Ferrara, Italy
| | - Francesca Talpo
- Department of Biology and Biotechnologies, University of Pavia, 27100, Pavia, Italy
| | - Claudia Maniezzi
- Department of Biology and Biotechnologies, University of Pavia, 27100, Pavia, Italy
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, ICGEB, 34149, Trieste, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, ICGEB, 34149, Trieste, Italy.,School of Cardiovascular Medicine and Sciences, King's College London, SE5 9NU, UK
| | - Paola Conforti
- Department of Biosciences, University of Milan, 20133, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi″, 20122, Milan, Italy
| | - Chiara Cordiglieri
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi″, 20122, Milan, Italy
| | - Claudio Caccia
- Unit of Medical Genetics and Neurogenetics. Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, 20131 Milan, Italy
| | - Valerio Leoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy.,Laboratory of Clinical Pathology, Hospital of Desio, ASST Monza, 20900, Monza, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics. Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, 20131 Milan, Italy
| | - Gerardo Biella
- Department of Biology and Biotechnologies, University of Pavia, 27100, Pavia, Italy
| | - Michele Simonato
- Division of Neuroscience, IRCCS San Raffaele Hospital, 20132, Milan, Italy.,Department of BioMedical Sciences, Section of Pharmacology, University of Ferrara, 44121, Ferrara, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, 20133, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi″, 20122, Milan, Italy
| | - Marta Valenza
- Department of Biosciences, University of Milan, 20133, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi″, 20122, Milan, Italy
| |
Collapse
|
7
|
ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLoS Pathog 2014; 10:e1004487. [PMID: 25375670 PMCID: PMC4223079 DOI: 10.1371/journal.ppat.1004487] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022] Open
Abstract
The Aspergillus fumigatus sterol regulatory element binding protein (SREBP) SrbA belongs to the basic Helix-Loop-Helix (bHLH) family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA). How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) was used to identify genes under direct SrbA transcriptional regulation in hypoxia. These results confirmed the direct regulation of ergosterol biosynthesis and iron uptake by SrbA in hypoxia and revealed new roles for SrbA in nitrate assimilation and heme biosynthesis. Moreover, functional characterization of an SrbA target gene with sequence similarity to SrbA identified a new transcriptional regulator of the fungal hypoxia response and virulence, SrbB. SrbB co-regulates genes involved in heme biosynthesis and demethylation of C4-sterols with SrbA in hypoxic conditions. However, SrbB also has regulatory functions independent of SrbA including regulation of carbohydrate metabolism. Loss of SrbB markedly attenuates A. fumigatus virulence, and loss of both SREBPs further reduces in vivo fungal growth. These data suggest that both A. fumigatus SREBPs are critical for hypoxia adaptation and virulence and reveal new insights into SREBPs' complex role in infection site adaptation and fungal virulence. Despite improvements in diagnostics and antifungal drug treatments, mortality rates from invasive mold infections remain high. Defining the fungal adaptation and growth mechanisms at the infection site microenvironment is one research focus that is expected to improve treatment of established invasive fungal infections. The Aspergillus fumigatus transcription factor SrbA is a major regulator of the fungal response to hypoxia found at sites of invasive fungal growth in vivo. In this study, new insights into how SrbA mediates hypoxia adaptation and virulence were revealed through identification of direct transcriptional targets of SrbA under hypoxic conditions. A major novel finding from these studies is the identification of a critical role in fungal hypoxia adaptation and virulence of an SrbA target gene, srbB, which is also in the SREBP family. SrbB plays a major role in regulation of heme biosynthesis and carbohydrate metabolism early in the response to hypoxia. The discovery of SrbA-dependent regulation of srbB gene expression, and the target genes they regulate opens new avenues to understand how SREBPs and their target genes mediate adaptation to the in vivo infection site microenvironment and responses to current antifungal therapies.
Collapse
|