1
|
Hyrien O, Guilbaud G, Krude T. The double life of mammalian DNA replication origins. Genes Dev 2025; 39:304-324. [PMID: 39904559 PMCID: PMC11874978 DOI: 10.1101/gad.352227.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Mammalian DNA replication origins have been historically difficult to identify and their determinants are still unresolved. Here, we first review methods developed over the last decades to map replication initiation sites either directly via initiation intermediates or indirectly via determining replication fork directionality profiles. We also discuss the factors that may specify these sites as replication initiation sites. Second, we address the controversy that has emerged from these results over whether origins are narrowly defined and localized to specific sites or are more dispersed and organized into broad zones. Ample evidence in favor of both scenarios currently creates an impression of unresolved confusion in the field. We attempt to formulate a synthesis of both models and to reconcile discrepant findings. It is evident that not only one approach is sufficient in isolation but that the combination of several is instrumental toward understanding initiation sites in mammalian genomes. We argue that an aggregation of several individual and often inefficient initiation sites into larger initiation zones and the existence of efficient unidirectional initiation sites and fork stalling at the borders of initiation zones can reconcile the different observations.
Collapse
Affiliation(s)
- Olivier Hyrien
- Département de Biologie, École Normale Supérieure, Université Paris Science and Letters, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Biologie de l'Ecole Normale Superieure, 75005 Paris, France
| | - Guillaume Guilbaud
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| |
Collapse
|
2
|
Turner JL, Hinojosa-Gonzalez L, Sasaki T, Uchino S, Vouzas A, Soto MS, Chakraborty A, Alexander KE, Fitch CA, Brown AN, Ay F, Gilbert DM. Master transcription factor binding sites constitute the core of early replication control elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.22.563497. [PMID: 39990485 PMCID: PMC11844392 DOI: 10.1101/2023.10.22.563497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Eukaryotic genomes replicate in a defined temporal order called the replication timing (RT) program. RT is developmentally regulated with potential to drive cell fate transitions, but mechanisms controlling RT remain elusive. We previously identified "Early Replication Control Elements" (ERCEs) necessary for early RT, domain-wide transcription, 3D chromatin architecture and compartmentalization in mouse embryonic stem cells (mESCs) but, deletions identifying ERCEs were large and encompassed many putative regulatory elements. Here, we show that ERCEs are compound elements whose RT activity can largely be accounted for by multiple sites of diverse master transcription factor binding (subERCEs), distinguished from other such sites by their long-range interactions. While deletion of subERCEs had large effects on both transcription and RT, deleting transcription start sites eliminated nearly all transcription with moderate effects on RT. Our results suggest a model in which subERCEs respond to diverse master transcription factors by functioning both as transcription enhancers and as elements that organize chromatin domains structurally and support early RT, potentially providing a feed-forward loop to drive robust epigenomic change during cell fate transitions.
Collapse
|
3
|
Vouzas AE, Sasaki T, Rivera-Mulia JC, Turner JL, Brown AN, Alexander KE, Brueckner L, van Steensel B, Gilbert DM. Transcription can be sufficient, but is not necessary, to advance replication timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636516. [PMID: 39975371 PMCID: PMC11838563 DOI: 10.1101/2025.02.04.636516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
DNA replication timing (RT) is correlated with transcription during cell fate changes but there are many exceptions and our understanding of this relationship suffers from a paucity of reductionist approaches. Here, we manipulated length and strength of transcription in hybrid-genome mouse embryonic stem cells (mESCs) at a single locus upstream of the silent, late replicating, Pleiotrophin (Ptn) gene, directly comparing RT to nascent transcription rates at engineered vs. wild-type alleles. First, we inserted four reporter genes that differ only in their promoter. Two promoters transcribed the reporter gene at high rates and advanced RT. The other two transcribed at lower rates and did not advance RT. Since these promoters may prove useful in applications where effects on RT are undesirable, we confirmed the inability of one of them to advance RT at numerous ectopic sites. We next juxtaposed these same four promoters upstream of the Ptn transcription start site where they all transcribed the 96kb Ptn gene and advanced RT to different extents correlated with transcription rates. Indeed, a doxycycline-responsive promoter, which could not advance RT when induced as a small reporter gene, elicited a rapid and reversible RT advance proportional to the rate of transcription, providing direct evidence that transcription itself can advance RT. However, deletion of the Ptn promoter and enhancer, followed by directed differentiation to neural precursors, eliminated induction of transcription throughout the entire Ptn replication domain, without preventing the switch to early replication. Our results provide a solid empirical base with which to re-evaluate many decades of literature, demonstrating that length and strength of transcription is sufficient but not necessary to advance RT. Our results also provide a robust system in which to rapidly effect an RT change, permitting mechanistic studies of the role of transcription in RT and the consequences of RT changes to epigenomic remodeling.
Collapse
Affiliation(s)
- Athanasios E Vouzas
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Juan Carlos Rivera-Mulia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Jesse L Turner
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Amber N Brown
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Karen E Alexander
- College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Laura Brueckner
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Bas van Steensel
- Division of Gene Regulation and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| |
Collapse
|
4
|
Duardo RC, Marinello J, Russo M, Morelli S, Pepe S, Guerra F, Gómez-González B, Aguilera A, Capranico G. Human DNA topoisomerase I poisoning causes R loop-mediated genome instability attenuated by transcription factor IIS. SCIENCE ADVANCES 2024; 10:eadm8196. [PMID: 38787953 PMCID: PMC11122683 DOI: 10.1126/sciadv.adm8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/18/2024] [Indexed: 05/26/2024]
Abstract
DNA topoisomerase I can contribute to cancer genome instability. During catalytic activity, topoisomerase I forms a transient intermediate, topoisomerase I-DNA cleavage complex (Top1cc) to allow strand rotation and duplex relaxation, which can lead to elevated levels of DNA-RNA hybrids and micronuclei. To comprehend the underlying mechanisms, we have integrated genomic data of Top1cc-triggered hybrids and DNA double-strand breaks (DSBs) shortly after Top1cc induction, revealing that Top1ccs increase hybrid levels with different mechanisms. DSBs are at highly transcribed genes in early replicating initiation zones and overlap with hybrids downstream of accumulated RNA polymerase II (RNAPII) at gene 5'-ends. A transcription factor IIS mutant impairing transcription elongation further increased RNAPII accumulation likely due to backtracking. Moreover, Top1ccs can trigger micronuclei when occurring during late G1 or early/mid S, but not during late S. As micronuclei and transcription-replication conflicts are attenuated by transcription factor IIS, our results support a role of RNAPII arrest in Top1cc-induced transcription-replication conflicts leading to DSBs and micronuclei.
Collapse
Affiliation(s)
- Renée C. Duardo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Sara Morelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Simona Pepe
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Federico Guerra
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla–CSIC, Calle Américo Vespucio 24, 41092 Seville, Spain
- Departamento de Genetica, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla–CSIC, Calle Américo Vespucio 24, 41092 Seville, Spain
- Departamento de Genetica, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
5
|
Gilbert DM. Replication licensing during S phase: breaking the law to prevent breaking DNA. Nat Struct Mol Biol 2023; 30:406-408. [PMID: 37041325 DOI: 10.1038/s41594-023-00962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Affiliation(s)
- David M Gilbert
- Laboratory of Chromosome Replication and Epigenome Regulation, San Diego Biomedical Research Institute, San Diego, CA, USA.
| |
Collapse
|
6
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
7
|
Emerson DJ, Zhao PA, Cook AL, Barnett RJ, Klein KN, Saulebekova D, Ge C, Zhou L, Simandi Z, Minsk MK, Titus KR, Wang W, Gong W, Zhang D, Yang L, Venev SV, Gibcus JH, Yang H, Sasaki T, Kanemaki MT, Yue F, Dekker J, Chen CL, Gilbert DM, Phillips-Cremins JE. Cohesin-mediated loop anchors confine the locations of human replication origins. Nature 2022; 606:812-819. [PMID: 35676475 PMCID: PMC9217744 DOI: 10.1038/s41586-022-04803-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/26/2022] [Indexed: 12/18/2022]
Abstract
DNA replication occurs through an intricately regulated series of molecular events and is fundamental for genome stability1,2. At present, it is unknown how the locations of replication origins are determined in the human genome. Here we dissect the role of topologically associating domains (TADs)3-6, subTADs7 and loops8 in the positioning of replication initiation zones (IZs). We stratify TADs and subTADs by the presence of corner-dots indicative of loops and the orientation of CTCF motifs. We find that high-efficiency, early replicating IZs localize to boundaries between adjacent corner-dot TADs anchored by high-density arrays of divergently and convergently oriented CTCF motifs. By contrast, low-efficiency IZs localize to weaker dotless boundaries. Following ablation of cohesin-mediated loop extrusion during G1, high-efficiency IZs become diffuse and delocalized at boundaries with complex CTCF motif orientations. Moreover, G1 knockdown of the cohesin unloading factor WAPL results in gained long-range loops and narrowed localization of IZs at the same boundaries. Finally, targeted deletion or insertion of specific boundaries causes local replication timing shifts consistent with IZ loss or gain, respectively. Our data support a model in which cohesin-mediated loop extrusion and stalling at a subset of genetically encoded TAD and subTAD boundaries is an essential determinant of the locations of replication origins in human S phase.
Collapse
Affiliation(s)
- Daniel J Emerson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peiyao A Zhao
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Ashley L Cook
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Jordan Barnett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyle N Klein
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Dalila Saulebekova
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris, France
| | - Chunmin Ge
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Linda Zhou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zoltan Simandi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miriam K Minsk
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katelyn R Titus
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Weitao Wang
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris, France
| | - Wanfeng Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Di Zhang
- Children's Hospital of Pennsylvania, Philadelphia, PA, USA
| | - Liyan Yang
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sergey V Venev
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Johan H Gibcus
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies (Sokendai), Mishima, Japan
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Job Dekker
- University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris, France
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- New York Stem Cell Foundation Robertson Investigator, New York, NY, USA.
| |
Collapse
|
8
|
Abstract
Immediately following the discovery of the structure of DNA and the semi-conservative replication of the parental DNA sequence into two new DNA strands, it became apparent that DNA replication is organized in a temporal and spatial fashion during the S phase of the cell cycle, correlated with the large-scale organization of chromatin in the nucleus. After many decades of limited progress, technological advances in genomics, genome engineering, and imaging have finally positioned the field to tackle mechanisms underpinning the temporal and spatial regulation of DNA replication and the causal relationships between DNA replication and other features of large-scale chromosome structure and function. In this review, we discuss these major recent discoveries as well as expectations for the coming decade.
Collapse
Affiliation(s)
- Athanasios E Vouzas
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
9
|
Lalonde M, Trauner M, Werner M, Hamperl S. Consequences and Resolution of Transcription-Replication Conflicts. Life (Basel) 2021; 11:life11070637. [PMID: 34209204 PMCID: PMC8303131 DOI: 10.3390/life11070637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Transcription–replication conflicts occur when the two critical cellular machineries responsible for gene expression and genome duplication collide with each other on the same genomic location. Although both prokaryotic and eukaryotic cells have evolved multiple mechanisms to coordinate these processes on individual chromosomes, it is now clear that conflicts can arise due to aberrant transcription regulation and premature proliferation, leading to DNA replication stress and genomic instability. As both are considered hallmarks of aging and human diseases such as cancer, understanding the cellular consequences of conflicts is of paramount importance. In this article, we summarize our current knowledge on where and when collisions occur and how these encounters affect the genome and chromatin landscape of cells. Finally, we conclude with the different cellular pathways and multiple mechanisms that cells have put in place at conflict sites to ensure the resolution of conflicts and accurate genome duplication.
Collapse
|
10
|
Kirstein N, Buschle A, Wu X, Krebs S, Blum H, Kremmer E, Vorberg IM, Hammerschmidt W, Lacroix L, Hyrien O, Audit B, Schepers A. Human ORC/MCM density is low in active genes and correlates with replication time but does not delimit initiation zones. eLife 2021; 10:62161. [PMID: 33683199 PMCID: PMC7993996 DOI: 10.7554/elife.62161] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic DNA replication initiates during S phase from origins that have been licensed in the preceding G1 phase. Here, we compare ChIP-seq profiles of the licensing factors Orc2, Orc3, Mcm3, and Mcm7 with gene expression, replication timing, and fork directionality profiles obtained by RNA-seq, Repli-seq, and OK-seq. Both, the origin recognition complex (ORC) and the minichromosome maintenance complex (MCM) are significantly and homogeneously depleted from transcribed genes, enriched at gene promoters, and more abundant in early- than in late-replicating domains. Surprisingly, after controlling these variables, no difference in ORC/MCM density is detected between initiation zones, termination zones, unidirectionally replicating regions, and randomly replicating regions. Therefore, ORC/MCM density correlates with replication timing but does not solely regulate the probability of replication initiation. Interestingly, H4K20me3, a histone modification proposed to facilitate late origin licensing, was enriched in late-replicating initiation zones and gene deserts of stochastic replication fork direction. We discuss potential mechanisms specifying when and where replication initiates in human cells.
Collapse
Affiliation(s)
- Nina Kirstein
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Munich, Germany
| | - Alexander Buschle
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Xia Wu
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians Universität (LMU) München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians Universität (LMU) München, Munich, Germany
| | - Elisabeth Kremmer
- Institute for Molecular Immunology, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Ina M Vorberg
- German Center for Neurodegenerative Diseases (DZNE e.V.), Bonn, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health and German Center for Infection Research (DZIF), Munich, Germany
| | - Laurent Lacroix
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Olivier Hyrien
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Benjamin Audit
- Univ Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, 69342 Lyon, France
| | - Aloys Schepers
- Research Unit Gene Vectors, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Munich, Germany
| |
Collapse
|
11
|
Marchal C, Sima J, Gilbert DM. Control of DNA replication timing in the 3D genome. Nat Rev Mol Cell Biol 2019; 20:721-737. [PMID: 31477886 PMCID: PMC11567694 DOI: 10.1038/s41580-019-0162-y] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
Abstract
The 3D organization of mammalian chromatin was described more than 30 years ago by visualizing sites of DNA synthesis at different times during the S phase of the cell cycle. These early cytogenetic studies revealed structurally stable chromosome domains organized into subnuclear compartments. Active-gene-rich domains in the nuclear interior replicate early, whereas more condensed chromatin domains that are largely at the nuclear and nucleolar periphery replicate later. During the past decade, this spatiotemporal DNA replication programme has been mapped along the genome and found to correlate with epigenetic marks, transcriptional activity and features of 3D genome architecture such as chromosome compartments and topologically associated domains. But the causal relationship between these features and DNA replication timing and the regulatory mechanisms involved have remained an enigma. The recent identification of cis-acting elements regulating the replication time and 3D architecture of individual replication domains and of long non-coding RNAs that coordinate whole chromosome replication provide insights into such mechanisms.
Collapse
Affiliation(s)
- Claire Marchal
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
12
|
Coleman O, Suda S, Meiller J, Henry M, Riedl M, Barron N, Clynes M, Meleady P. Increased growth rate and productivity following stable depletion of miR-7 in a mAb producing CHO cell line causes an increase in proteins associated with the Akt pathway and ribosome biogenesis. J Proteomics 2019; 195:23-32. [PMID: 30641232 DOI: 10.1016/j.jprot.2019.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/06/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
Cell line engineering using microRNAs represents a desirable route for improving the efficiency of recombinant protein production by CHO cells. In this study we generated stable CHO DP12 cells expressing a miR-7 sponge transcript which sequesters miR-7 from its endogenous targets. Depletion of miR-7 results in a 65% increase in cell growth and >3-fold increase in yield of secreted IgG protein. Quantitative labelfree LC-MS/MS proteomic profiling was carried out to identify the targets of miR-7 and understand the functional drivers of the improved CHO cell phenotypes. Subcellular enrichment and total proteome analysis identified more than 3000 proteins per fraction resulting in over 5000 unique proteins identified per timepoint analysed. Early stage culture analysis identified 117 proteins overexpressed in miR-7 depleted cells. A subset of these proteins are involved in the Akt pathway which could be the underlying route for cell density improvement and may be exploited more specifically in the future. Late stage culture identified 160 proteins overexpressed in miR-7 depleted cells with some of these involved in ribosome biogenesis which may be causing the increased productivity through improved translational efficiency. This is the first in-depth proteomic profiling of the IgG producing CHO DP12 cell line stably depleted of miR-7. SIGNIFICANCE: Chinese hamster ovary (CHO) cells are the mammalian cell expression system of choice for production of recombinant therapeutic proteins. There is much research ongoing to characterise CHO cell factories through the application of systems biology approaches that will enable a fundamental understanding of CHO cell physiology, and as a result, a better knowledge and understanding of recombinant protein production. This study profiles the proteomic effects of microRNA-7 depletion on the IgG producing CHO DP12 cell line. This is one of the very few studies that attempts to identify the functioning proteins driving improved CHO cell phenotypes resulting from microRNA manipulation. Using subcellular enrichment and total proteome analysis we identified over 5000 unique proteins in miR-7 depleted CHO cells. This work has identified a cohort of proteins involved in the Akt pathway and ribosome biogenesis. These proteins may drive improved CHO cell phenotypes and are of great interest for future work.
Collapse
Affiliation(s)
- Orla Coleman
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Srinivas Suda
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Justine Meiller
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Markus Riedl
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Niall Barron
- National Institute for Bioprocessing Research & Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
13
|
Macheret M, Halazonetis TD. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress. Nature 2018; 555:112-116. [PMID: 29466339 PMCID: PMC5837010 DOI: 10.1038/nature25507] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 01/09/2018] [Indexed: 12/23/2022]
Abstract
Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.
Collapse
Affiliation(s)
- Morgane Macheret
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland
| | | |
Collapse
|
14
|
Abstract
Complete duplication of large metazoan chromosomes requires thousands of potential initiation sites, only a small fraction of which are selected in each cell cycle. Assembly of the replication machinery is highly conserved and tightly regulated during the cell cycle, but the sites of initiation are highly flexible, and their temporal order of firing is regulated at the level of large-scale multi-replicon domains. Importantly, the number of replication forks must be quickly adjusted in response to replication stress to prevent genome instability. Here we argue that large genomes are divided into domains for exactly this reason. Once established, domain structure abrogates the need for precise initiation sites and creates a scaffold for the evolution of other chromosome functions.
Collapse
Affiliation(s)
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA; Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
15
|
Petryk N, Kahli M, d'Aubenton-Carafa Y, Jaszczyszyn Y, Shen Y, Silvain M, Thermes C, Chen CL, Hyrien O. Replication landscape of the human genome. Nat Commun 2016; 7:10208. [PMID: 26751768 PMCID: PMC4729899 DOI: 10.1038/ncomms10208] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022] Open
Abstract
Despite intense investigation, human replication origins and termini remain elusive. Existing data have shown strong discrepancies. Here we sequenced highly purified Okazaki fragments from two cell types and, for the first time, quantitated replication fork directionality and delineated initiation and termination zones genome-wide. Replication initiates stochastically, primarily within non-transcribed, broad (up to 150 kb) zones that often abut transcribed genes, and terminates dispersively between them. Replication fork progression is significantly co-oriented with the transcription. Initiation and termination zones are frequently contiguous, sometimes separated by regions of unidirectional replication. Initiation zones are enriched in open chromatin and enhancer marks, even when not flanked by genes, and often border ‘topologically associating domains' (TADs). Initiation zones are enriched in origin recognition complex (ORC)-binding sites and better align to origins previously mapped using bubble-trap than λ-exonuclease. This novel panorama of replication reveals how chromatin and transcription modulate the initiation process to create cell-type-specific replication programs. The physical origin and termination sites of DNA replication in human cells have remained elusive. Here the authors use Okazaki fragment sequencing to reveal global replication patterns and show how chromatin and transcription modulate the process.
Collapse
Affiliation(s)
- Nataliya Petryk
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Malik Kahli
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France
| | - Yves d'Aubenton-Carafa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Yimin Shen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Maud Silvain
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Claude Thermes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Chun-Long Chen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Olivier Hyrien
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France
| |
Collapse
|
16
|
Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:425-48. [PMID: 25621662 DOI: 10.1146/annurev-pathol-012414-040424] [Citation(s) in RCA: 547] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human cancers share properties referred to as hallmarks, among which sustained proliferation, escape from apoptosis, and genomic instability are the most pervasive. The sustained proliferation hallmark can be explained by mutations in oncogenes and tumor suppressors that regulate cell growth, whereas the escape from apoptosis hallmark can be explained by mutations in the TP53, ATM, or MDM2 genes. A model to explain the presence of the three hallmarks listed above, as well as the patterns of genomic instability observed in human cancers, proposes that the genes driving cell proliferation induce DNA replication stress, which, in turn, generates genomic instability and selects for escape from apoptosis. Here, we review the data that support this model, as well as the mechanisms by which oncogenes induce replication stress. Further, we argue that DNA replication stress should be considered as a hallmark of cancer because it likely drives cancer development and is very prevalent.
Collapse
Affiliation(s)
- Morgane Macheret
- Department of Molecular Biology, University of Geneva, 1205 Geneva, Switzerland;
| | | |
Collapse
|
17
|
Hyrien O. Peaks cloaked in the mist: the landscape of mammalian replication origins. J Cell Biol 2015; 208:147-60. [PMID: 25601401 PMCID: PMC4298691 DOI: 10.1083/jcb.201407004] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/16/2014] [Indexed: 12/23/2022] Open
Abstract
Replication of mammalian genomes starts at sites termed replication origins, which historically have been difficult to locate as a result of large genome sizes, limited power of genetic identification schemes, and rareness and fragility of initiation intermediates. However, origins are now mapped by the thousands using microarrays and sequencing techniques. Independent studies show modest concordance, suggesting that mammalian origins can form at any DNA sequence but are suppressed by read-through transcription or that they can overlap the 5' end or even the entire gene. These results require a critical reevaluation of whether origins form at specific DNA elements and/or epigenetic signals or require no such determinants.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique UMR8197 and Institut National de la Santé et de la Recherche Médicale U1024, 75005 Paris, France
| |
Collapse
|
18
|
Abstract
The MYC oncogene is a multifunctional protein that is aberrantly expressed in a significant fraction of tumors from diverse tissue origins. Because of its multifunctional nature, it has been difficult to delineate the exact contributions of MYC's diverse roles to tumorigenesis. Here, we review the normal role of MYC in regulating DNA replication as well as its ability to generate DNA replication stress when overexpressed. Finally, we discuss the possible mechanisms by which replication stress induced by aberrant MYC expression could contribute to genomic instability and cancer.
Collapse
Affiliation(s)
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University, New York, New York 10032 Department of Genetics and Development, Columbia University, New York, New York 10032
| |
Collapse
|
19
|
Mukhopadhyay R, Lajugie J, Fourel N, Selzer A, Schizas M, Bartholdy B, Mar J, Lin CM, Martin MM, Ryan M, Aladjem MI, Bouhassira EE. Allele-specific genome-wide profiling in human primary erythroblasts reveal replication program organization. PLoS Genet 2014; 10:e1004319. [PMID: 24787348 PMCID: PMC4006724 DOI: 10.1371/journal.pgen.1004319] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
We have developed a new approach to characterize allele-specific timing of DNA replication genome-wide in human primary basophilic erythroblasts. We show that the two chromosome homologs replicate at the same time in about 88% of the genome and that large structural variants are preferentially associated with asynchronous replication. We identified about 600 megabase-sized asynchronously replicated domains in two tested individuals. The longest asynchronously replicated domains are enriched in imprinted genes suggesting that structural variants and parental imprinting are two causes of replication asynchrony in the human genome. Biased chromosome X inactivation in one of the two individuals tested was another source of detectable replication asynchrony. Analysis of high-resolution TimEX profiles revealed small variations termed timing ripples, which were undetected in previous, lower resolution analyses. Timing ripples reflect highly reproducible, variations of the timing of replication in the 100 kb-range that exist within the well-characterized megabase-sized replication timing domains. These ripples correspond to clusters of origins of replication that we detected using novel nascent strands DNA profiling methods. Analysis of the distribution of replication origins revealed dramatic differences in initiation of replication frequencies during S phase and a strong association, in both synchronous and asynchronous regions, between origins of replication and three genomic features: G-quadruplexes, CpG Islands and transcription start sites. The frequency of initiation in asynchronous regions was similar in the two homologs. Asynchronous regions were richer in origins of replication than synchronous regions. DNA replication in mammalian cells proceeds according to a distinct order. Genes that are expressed tend to replicate before genes that are not expressed. We report here that we have developed a method to measure the timing of replication of the maternal and paternal chromosomes separately. We found that the paternal and maternal chromosomes replicate at exactly the same time in the large majority of the genome and that the 12% of the genome that replicated asynchronously was enriched in imprinted genes and in structural variants. Previous experiments have shown that chromosomes could be divided into replication timing domains that are a few hundred thousand to a few megabases in size. We show here that these domains can be divided into sub-domains defined by ripples in the timing profile. These ripples corresponded to clusters of origins of replication. Finally, we show that the frequency of initiation in asynchronous regions was similar in the two homologs.
Collapse
Affiliation(s)
- Rituparna Mukhopadhyay
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Julien Lajugie
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nicolas Fourel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ari Selzer
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Michael Schizas
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jessica Mar
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Chii Mei Lin
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Melvenia M. Martin
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Michael Ryan
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mirit I. Aladjem
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Eric E. Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Symeonidou IE, Taraviras S, Lygerou Z. Control over DNA replication in time and space. FEBS Lett 2012; 586:2803-12. [PMID: 22841721 DOI: 10.1016/j.febslet.2012.07.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 12/23/2022]
Abstract
DNA replication is precisely regulated in time and space, thereby safeguarding genomic integrity. In eukaryotes, replication initiates from multiple sites along the genome, termed origins of replication, and propagates bidirectionally. Dynamic origin bound complexes dictate where and when replication should initiate. During late mitosis and G1 phase, putative origins are recognized and become "licensed" through the assembly of pre-replicative complexes (pre-RCs) that include the MCM2-7 helicases. Subsequently, at the G1/S phase transition, a fraction of pre-RCs are activated giving rise to the establishment of replication forks. Origin location is influenced by chromatin and nuclear organization and origin selection exhibits stochastic features. The regulatory mechanisms that govern these cell cycle events rely on the periodic fluctuation of cyclin dependent kinase (CDK) activity through the cell cycle.
Collapse
|
21
|
Errico A, Costanzo V. Mechanisms of replication fork protection: a safeguard for genome stability. Crit Rev Biochem Mol Biol 2012; 47:222-35. [DOI: 10.3109/10409238.2012.655374] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Cao Y, Kimura S, Itoi T, Honda K, Ohtake H, Omasa T. Construction of BAC-based physical map and analysis of chromosome rearrangement in chinese hamster ovary cell lines. Biotechnol Bioeng 2011; 109:1357-67. [DOI: 10.1002/bit.24347] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/25/2011] [Accepted: 10/11/2011] [Indexed: 01/09/2023]
|
23
|
Sasaki T, Li A, Gillespie PJ, Blow JJ, Gilbert DM. Evidence for a mammalian late-G1 phase inhibitor of replication licensing distinct from geminin or Cdk activity. Nucleus 2011; 2:455-64. [PMID: 21983086 DOI: 10.4161/nucl.2.5.17859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pre-replication complexes (pre-RCs) are assembled onto DNA during late mitosis and G1 to license replication origins for use in S phase. In order to prevent re-replication of DNA, licensing must be completely shutdown prior to entry into S phase. While mechanisms preventing re-replication during S phase and mitosis have been elucidated, the means by which cells first prevent licensing during late G1 phase are poorly understood. We have employed a hybrid mammalian / Xenopus egg extract replication system to dissect activities that inhibit replication licensing at different stages of the cell cycle in Chinese Hamster Ovary (CHO) cells. We find that soluble extracts from mitotic cells inhibit licensing through a combination of geminin and Cdk activities, while extracts from S-phase cells inhibit licensing predominantly through geminin alone. Surprisingly however, geminin did not accumulate until after cells enter S phase. Unlike extracts from cells in early G1 phase, extracts from late G1 phase and early S phase cells contained an inhibitor of licensing that could not be accounted for by either geminin or Cdk. Moreover, inhibiting cyclin and geminin protein synthesis or inhibiting Cdk activity early in G1 phase did not prevent the appearance of inhibitory activity. These results suggest that a soluble inhibitor of replication licensing appears prior to entry into S phase that is distinct from either geminin or Cdk activity. Our hybrid system should permit the identification of this and other novel cell cycle regulatory activities.
Collapse
Affiliation(s)
- Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Replication timing profiles are cell type-specific and reflect genome organization changes during differentiation. In this protocol, we describe how to analyze genome-wide replication timing (RT) in mammalian cells. Asynchronously cycling cells are pulse labeled with the nucleotide analog 5-bromo-2-deoxyuridine (BrdU) and sorted into S-phase fractions on the basis of DNA content using flow cytometry. BrdU-labeled DNA from each fraction is immunoprecipitated, amplified, differentially labeled and co-hybridized to a whole-genome comparative genomic hybridization microarray, which is currently more cost effective than high-throughput sequencing and equally capable of resolving features at the biologically relevant level of tens to hundreds of kilobases. We also present a guide to analyzing the resulting data sets based on methods we use routinely. Subjects include normalization, scaling and data quality measures, LOESS (local polynomial) smoothing of RT values, segmentation of data into domains and assignment of timing values to gene promoters. Finally, we cover clustering methods and means to relate changes in the replication program to gene expression and other genetic and epigenetic data sets. Some experience with R or similar programming languages is assumed. All together, the protocol takes ∼3 weeks per batch of samples.
Collapse
|
25
|
Kuipers MA, Stasevich TJ, Sasaki T, Wilson KA, Hazelwood KL, McNally JG, Davidson MW, Gilbert DM. Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload. ACTA ACUST UNITED AC 2011; 192:29-41. [PMID: 21220507 PMCID: PMC3019549 DOI: 10.1083/jcb.201007111] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Components of the minichromosome maintenance complex (Mcm2-7) remain indefinitely bound to chromatin during G1 phase and replication arrest. The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles.
Collapse
Affiliation(s)
- Marjorie A Kuipers
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lubelsky Y, Sasaki T, Kuipers MA, Lucas I, Le Beau MM, Carignon S, Debatisse M, Prinz JA, Dennis JH, Gilbert DM. Pre-replication complex proteins assemble at regions of low nucleosome occupancy within the Chinese hamster dihydrofolate reductase initiation zone. Nucleic Acids Res 2010; 39:3141-55. [PMID: 21148149 PMCID: PMC3082903 DOI: 10.1093/nar/gkq1276] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genome-scale mapping of pre-replication complex proteins has not been reported in mammalian cells. Poor enrichment of these proteins at specific sites may be due to dispersed binding, poor epitope availability or cell cycle stage-specific binding. Here, we have mapped sites of biotin-tagged ORC and MCM protein binding in G1-synchronized populations of Chinese hamster cells harboring amplified copies of the dihydrofolate reductase (DHFR) locus, using avidin-affinity purification of biotinylated chromatin followed by high-density microarray analysis across the DHFR locus. We have identified several sites of significant enrichment for both complexes distributed throughout the previously identified initiation zone. Analysis of the frequency of initiations across stretched DNA fibers from the DHFR locus confirmed a broad zone of de-localized initiation activity surrounding the sites of ORC and MCM enrichment. Mapping positions of mononucleosomal DNA empirically and computing nucleosome-positioning information in silico revealed that ORC and MCM map to regions of low measured and predicted nucleosome occupancy. Our results demonstrate that specific sites of ORC and MCM enrichment can be detected within a mammalian intitiation zone, and suggest that initiation zones may be regions of generally low nucleosome occupancy where flexible nucleosome positioning permits flexible pre-RC assembly sites.
Collapse
Affiliation(s)
- Yoav Lubelsky
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 2010; 11:728-38. [DOI: 10.1038/nrm2976] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Abstract
Mechanisms regulating where and when eukaryotic DNA replication initiates remain a mystery. Recently, genome-scale methods have been brought to bear on this problem. The identification of replication origins and their associated proteins in yeasts is a well-integrated investigative tool, but corresponding data sets from multicellular organisms are scarce. By contrast, standardized protocols for evaluating replication timing have generated informative data sets for most eukaryotic systems. Here, I summarize the genome-scale methods that are most frequently used to analyse replication in eukaryotes, the kinds of questions each method can address and the technical hurdles that must be overcome to gain a complete understanding of the nature of eukaryotic replication origins.
Collapse
|
29
|
Abstract
Studies in our laboratory over the last three decades have shown that the Chinese hamster dihydrofolate reductase (DHFR) origin of replication corresponds to a broad zone of inefficient initiation sites distributed throughout the spacer between the convergently transcribed DHFR and 2BE2121 genes. It is clear from mutational analysis that none of these sites is genetically required for controlling origin activity. However, the integrity of the promoter of the DHFR gene is needed to activate the downstream origin, while the 3' processing signals prevent invasion and inactivation of the downstream origin by transcription forks. Several other origins in metazoans have been shown to correspond to zones of inefficient sites, while a different subset appears to be similar to the fixed replicators that characterize origins in S. cerevisiae and lower organisms. These observations have led us to suggest a model in which the mammalian genome is dotted with a hierarchy of degenerate, redundant, and inefficient replicators at intervals of a kilobase or less, some of which may have evolved to be highly circumscribed and efficient. The activities of initiation sites are proposed to be largely regulated by local transcription and chromatin architecture. Recently, we and others have devised strategies for identifying active origins on a genome-wide scale in order to define their distributions between fixed and dispersive origin types and to detect relationships among origins, genes, and epigenetic markers. The global pictures emerging are suggestive but far from complete and appear to be plagued by some of the same uncertainties that have led to conflicting views of individual origins in the past (particularly DHFR). In this paper, we will trace the history of origin discovery in mammalian genomes, primarily using the well-studied DHFR origin as a model, because it has been analyzed by nearly every available origin mapping technique in several different laboratories, while many origins have been identified by only one. We will address the strengths and shortcomings of the various methods utilized to identify and characterize origins in complex genomes and will point out how we and others were sometimes led astray by false assumptions and biases, as well as insufficient information. The goal is to help guide future experiments that will provide a truly comprehensive and accurate portrait of origins and their regulation. After all, in the words of George Santayana, "Those who do not learn from history are doomed to repeat it."
Collapse
|
30
|
Schwaiger M, Kohler H, Oakeley EJ, Stadler MB, Schübeler D. Heterochromatin protein 1 (HP1) modulates replication timing of the Drosophila genome. Genome Res 2010; 20:771-80. [PMID: 20435908 DOI: 10.1101/gr.101790.109] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The replication of a chromosomal region during S phase can be highly dynamic between cell types that differ in transcriptome and epigenome. Early replication timing has been positively correlated with several histone modifications that occur at active genes, while repressive histone modifications mark late replicating regions. This raises the question if chromatin modulates the initiating events of replication. To gain insights into this question, we have studied the function of heterochromatin protein 1 (HP1), which is a reader of repressive methylation at histone H3 lysine 9, in genome-wide organization of replication. Cells with reduced levels of HP1 show an advanced replication timing of centromeric repeats in agreement with the model that repressive chromatin mediates the very late replication of large clusters of constitutive heterochromatin. Surprisingly, however, regions with high levels of interspersed repeats on the chromosomal arms, in particular on chromosome 4 and in pericentromeric regions of chromosome 2, behave differently. Here, loss of HP1 results in delayed replication. The fact that these regions are bound by HP1 suggests a direct effect. Thus while HP1 mediates very late replication of centromeric DNA, it is also required for early replication of euchromatic regions with high levels of repeats. This observation of opposing functions of HP1 suggests a model where HP1-mediated repeat inactivation or replication complex loading on the chromosome arms is required for proper activation of origins of replication that fire early. At the same time, HP1-mediated repression at constitutive heterochromatin is required to ensure replication of centromeric repeats at the end of S phase.
Collapse
Affiliation(s)
- Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Frisa PS, Jacobberger JW. Cytometry of chromatin bound Mcm6 and PCNA identifies two states in G1 that are separated functionally by the G1 restriction point. BMC Cell Biol 2010; 11:26. [PMID: 20398392 PMCID: PMC2882901 DOI: 10.1186/1471-2121-11-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 04/16/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cytometric measurements of DNA content and chromatin-bound Mcm2 have demonstrated bimodal patterns of expression in G1. These patterns, the replication licensing function of Mcm proteins, and a correlation between Mcm loading and cell cycle commitment for cells re-entering the cell cycle, led us to test the idea that cells expressing a defined high level of chromatin-bound Mcm6 in G1 are committed--i.e., past the G1 restriction point. We developed a cell-based assay for tightly-bound PCNA (PCNA*) and Mcm6 (Mcm6*), DNA content, and a mitotic marker to clearly define G1, S, G2, and M phases of the cell cycle. hTERT-BJ1, hTERT-RPE-1, and Molt4 cells were extracted with Triton X-100 followed by methanol fixation, stained with antibodies and DAPI, then measured by cytometry. RESULTS Bivariate analysis of cytometric data demonstrated complex patterns with distinct clustering for all combinations of the 4 variables. In G1, cells clustered in two groups characterized by low and high Mcm6* expression. Serum starvation and release experiments showed that residence in the high group was in late G1, just prior to S phase. Kinetic experiments, employing serum withdrawal, and stathmokinetic analysis with aphidicolin, mimosine or nocodazole demonstrated that cells with high levels of Mcm6* cycled with the committed phases of the cell cycle (S, G2, and M). CONCLUSIONS A multivariate assay for Mcm6*, PCNA*, DNA content, and a mitotic marker provides analysis capable of estimating the fraction of pre and post-restriction point G1 cells and supports the idea that there are at least two states in G1 defined by levels of chromatin bound Mcm proteins.
Collapse
Affiliation(s)
- Phyllis S Frisa
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
32
|
|
33
|
Omasa T, Cao Y, Park JY, Takagi Y, Kimura S, Yano H, Honda K, Asakawa S, Shimizu N, Ohtake H. Bacterial artificial chromosome library for genome-wide analysis of Chinese hamster ovary cells. Biotechnol Bioeng 2009; 104:986-94. [DOI: 10.1002/bit.22463] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Park JY, Takagi Y, Yamatani M, Honda K, Asakawa S, Shimizu N, Omasa T, Ohtake H. Identification and analysis of specific chromosomal region adjacent to exogenous Dhfr-amplified region in Chinese hamster ovary cell genome. J Biosci Bioeng 2009; 109:504-11. [PMID: 20347775 DOI: 10.1016/j.jbiosc.2009.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 10/19/2009] [Accepted: 10/24/2009] [Indexed: 12/13/2022]
Abstract
Chinese hamster ovary (CHO) cells are widely used for the stable production of recombinant proteins. Gene amplification techniques are frequently used to improve of protein production, and the dihydrofolate reductase (DHFR) gene amplification system is most widely used in the CHO cell line. We previously constructed a CHO genomic bacterial artificial chromosome (BAC) library from a mouse Dhfr-amplified CHO DR1000L-4N cell line and one BAC clone (Cg0031N14) containing the CHO genomic DNA sequence adjacent to Dhfr was selected. To identify the specific chromosomal region adjacent to the exogenous Dhfr-amplified region in the CHO cell genome, we performed further screening of BAC clones to obtain other Dhfr-amplified regions in the CHO genome. From the screening by high-density replica filter hybridization using a digoxigenin-labeled pSV2-dhfr/hGM-CSF probe, we obtained 8 new BAC clones containing a Dhfr-amplified region. To define the structures of the 8 BAC clones, Southern blot analysis, BAC end sequencing and fluorescence in situ hybridization (FISH) were performed. These results revealed that all the selected BAC clones contained a large palindrome structure with a small inverted repeat in the junction region. This suggests that the obtained amplicon structure in the Dhfr-amplified region in the CHO genome plays an important role in exogenous gene amplification.
Collapse
Affiliation(s)
- Joon Young Park
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gilbert DM. [Establishment of spatial and temporal program for mammalian chromosome replication]. TANPAKUSHITSU KAKUSAN KOSO. PROTEIN, NUCLEIC ACID, ENZYME 2009; 54:320-326. [PMID: 21089470 PMCID: PMC3057877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It has been 55 years since the elucidation of the structure of DNA, suggesting an elegantly simple means for its self-replication. Who would have dreamed in 1953 that it would take longer for us to understand DNA replication than it would for us to uncover the basic rules of animal development? Without question, the mechanisms regulating where and when DNA replication initiates in the cells of our own body is the greatest remaining fundamental mystery in molecular biology. Cis-acting sequences that function as replication origins in mammalian cells have not been identified and the mechanisms that regulate where and when origins will fire during S-phase remain elusive. Indeed, the problem has been so difficult that most researchers move on to more lucrative fields. In this essay, I will summarize my laboratory's humble attempts to make some progress in this area. In doing so, I hope that I can inspire a few young scientists to breath fresh energy into this challenging field.
Collapse
Affiliation(s)
- David M Gilbert
- Department of Biological Science, Florida State University, USA.
| |
Collapse
|
36
|
Abstract
Eukaryotic DNA replication is regulated to ensure all chromosomes replicate once and only once per cell cycle. Replication begins at many origins scattered along each chromosome. Except for budding yeast, origins are not defined DNA sequences and probably are inherited by epigenetic mechanisms. Initiation at origins occurs throughout the S phase according to a temporal program that is important in regulating gene expression during development. Most replication proteins are conserved in evolution in eukaryotes and archaea, but not in bacteria. However, the mechanism of initiation is conserved and consists of origin recognition, assembly of prereplication (pre-RC) initiative complexes, helicase activation, and replisome loading. Cell cycle regulation by protein phosphorylation ensures that pre-RC assembly can only occur in G1 phase, whereas helicase activation and loading can only occur in S phase. Checkpoint regulation maintains high fidelity by stabilizing replication forks and preventing cell cycle progression during replication stress or damage.
Collapse
Affiliation(s)
- R A Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | |
Collapse
|
37
|
Lu J, Gilbert DM. Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. ACTA ACUST UNITED AC 2007; 179:411-21. [PMID: 17984319 PMCID: PMC2064789 DOI: 10.1083/jcb.200706176] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pericentric heterochromatin transcription has been implicated in Schizosaccharomyces pombe heterochromatin assembly and maintenance. However, in mammalian systems, evidence for such transcription is inconsistent. We identify two populations of RNA polymerase II–dependent mouse γ satellite repeat sequence–derived transcripts from pericentric heterochromatin that accumulate at different times during the cell cycle. A small RNA species was synthesized exclusively during mitosis and rapidly eliminated during mitotic exit. A more abundant population of large, heterogeneous transcripts was induced late in G1 phase and their synthesis decreased during mid S phase, which is coincident with pericentric heterochromatin replication. In cells that lack the Suv39h1,2 methyltransferases responsible for H3K9 trimethylation, transcription occurs from more sites but is still cell cycle regulated. Transcription is not detected in quiescent cells and induction during G1 phase is sensitive to serum deprivation or the cyclin-dependent kinase inhibitor roscovatine. We demonstrate that mammalian pericentric heterochromatin transcription is linked to cellular proliferation. Our data also provide an explanation for inconsistencies in the detection of such transcripts in different systems.
Collapse
Affiliation(s)
- Junjie Lu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
38
|
Aladjem MI. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet 2007; 8:588-600. [PMID: 17621316 DOI: 10.1038/nrg2143] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replication in eukaryotes initiates from discrete genomic regions according to a strict, often tissue-specific temporal programme. However, the locations of initiation events within initiation regions vary, show sequence disparity and are affected by interactions with distal elements. Increasing evidence suggests that specification of replication sites and the timing of replication are dynamic processes that are regulated by tissue-specific and developmental cues, and are responsive to epigenetic modifications. Dynamic specification of replication patterns might serve to prevent or resolve possible spatial and/or temporal conflicts between replication, transcription and chromatin assembly, and facilitate subtle or extensive changes of gene expression during differentiation and development.
Collapse
Affiliation(s)
- Mirit I Aladjem
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Building 37, Room 5056, 37 Convent Drive, Bethesda, Maryland 20892-4255, USA.
| |
Collapse
|
39
|
Gilbert DM. Replication origin plasticity, Taylor-made: inhibition vs recruitment of origins under conditions of replication stress. Chromosoma 2007; 116:341-7. [PMID: 17404750 DOI: 10.1007/s00412-007-0105-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 01/10/2023]
Abstract
Among his many contributions to the field of chromosome structure and dynamics, J. Herbert Taylor showed that eukaryotic cells have many more potential replication origins than they use, which they can recruit when replication forks are slowed to complete S-phase in a timely fashion. Thirty years later, his findings raise an important but largely overlooked paradox. Although new data have confirmed his results, a larger body of data has revealed that slowing replication forks activates an S-phase checkpoint cascade that inhibits initiation from unfired origins until the stress is relieved. In this paper, in celebration of Taylor's work published in Chromosoma 30 years ago, I draw attention to this paradox and offer some plausible models to explain how replication stress can both inhibit and recruit new origins. I hope that this essay will stimulate further experimentation into the basis of Taylor's original findings.
Collapse
Affiliation(s)
- David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4300, USA.
| |
Collapse
|
40
|
Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae. BMC Genomics 2006; 7:276. [PMID: 17067396 PMCID: PMC1657020 DOI: 10.1186/1471-2164-7-276] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 10/26/2006] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Eukaryotic replication origins exhibit different initiation efficiencies and activation times within S-phase. Although local chromatin structure and function influences origin activity, the exact mechanisms remain poorly understood. A key to understanding the exact features of chromatin that impinge on replication origin function is to define the precise locations of the DNA sequences that control origin function. In S. cerevisiae, Autonomously Replicating Sequences (ARSs) contain a consensus sequence (ACS) that binds the Origin Recognition Complex (ORC) and is essential for origin function. However, an ACS is not sufficient for origin function and the majority of ACS matches do not function as ORC binding sites, complicating the specific identification of these sites. RESULTS To identify essential origin sequences genome-wide, we utilized a tiled oligonucleotide array (NimbleGen) to map the ORC and Mcm2p binding sites at high resolution. These binding sites define a set of potential Autonomously Replicating Sequences (ARSs), which we term nimARSs. The nimARS set comprises 529 ORC and/or Mcm2p binding sites, which includes 95% of known ARSs, and experimental verification demonstrates that 94% are functional. The resolution of the analysis facilitated identification of potential ACSs (nimACSs) within 370 nimARSs. Cross-validation shows that the nimACS predictions include 58% of known ACSs, and experimental verification indicates that 82% are essential for ARS activity. CONCLUSION These findings provide the most comprehensive, accurate, and detailed mapping of ORC binding sites to date, adding to the emerging picture of the chromatin organization of the budding yeast genome.
Collapse
|
41
|
Gray SJ, Liu G, Altman AL, Small LE, Fanning E. Discrete functional elements required for initiation activity of the Chinese hamster dihydrofolate reductase origin beta at ectopic chromosomal sites. Exp Cell Res 2006; 313:109-20. [PMID: 17078947 PMCID: PMC1810229 DOI: 10.1016/j.yexcr.2006.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 01/06/2023]
Abstract
The Chinese hamster dihydrofolate reductase (DHFR) DNA replication initiation region, the 5.8 kb ori-beta, can function as a DNA replicator at random ectopic chromosomal sites in hamster cells. We report a detailed genetic analysis of the DiNucleotide Repeat (DNR) element, one of several sequence elements necessary for ectopic ori-beta activity. Deletions within ori-beta identified a 132 bp core region within the DNR element, consisting mainly of dinucleotide repeats, and a downstream region that are required for ori-beta initiation activity at non-specific ectopic sites in hamster cells. Replacement of the DNR element with Xenopus or mouse transcriptional elements from rDNA genes restored full levels of initiation activity, but replacement with a nucleosome positioning element or a viral intron sequence did not. The requirement for the DNR element and three other ori-beta sequence elements was conserved when ori-beta activity was tested at either random sites or at a single specific ectopic chromosomal site in human cells. These results confirm the importance of specific cis-acting elements in directing the initiation of DNA replication in mammalian cells, and provide new evidence that transcriptional elements can functionally substitute for one of these elements in ori-beta.
Collapse
Affiliation(s)
- Steven J. Gray
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Guoqi Liu
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Amy L. Altman
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Lawrence E. Small
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Ellen Fanning
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
- * To whom correspondence should be addressed: Department of Biological Sciences, Vanderbilt University, VU Station B 351634 Nashville, TN 37235-1634 Tel: (615) 343-5677 Fax: (615) 343-6707
| |
Collapse
|
42
|
Minami H, Takahashi J, Suto A, Saitoh Y, Tsutsumi KI. Binding of AlF-C, an Orc1-binding transcriptional regulator, enhances replicator activity of the rat aldolase B origin. Mol Cell Biol 2006; 26:8770-80. [PMID: 16982680 PMCID: PMC1636824 DOI: 10.1128/mcb.00949-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A region encompassing the rat aldolase B gene (aldB) promoter acts as a chromosomal origin of DNA replication (origin) in rat aldolase B-nonexpressing hepatoma cells. To examine replicator function of the aldB origin, we constructed recombinant mouse cell lines in which the rat aldB origin and the mutant derivatives were inserted into the same position at the mouse chromosome 8 by cre-mediated recombination. Nascent strand abundance assays revealed that the rat origin acts as a replicator at the ectopic mouse locus. Mutation of site C in the rat origin, which binds an Orc1-binding protein AlF-C in vitro, resulted in a significant reduction of the replicator activity in the mouse cells. Chromatin immunoprecipitation (ChIP) assays indicated that the reduction of replicator activity was paralleled with the reduced binding of AlF-C and Orc1, suggesting that sequence-specific binding of AlF-C to the ectopic rat origin leads to enhanced replicator activity in cooperation with Orc1. Involvement of AlF-C in replication in vivo was further examined for the aldB origin at its original rat locus and for a different rat origin identified in the present study, which contained an AlF-C-binding site. ChIP assays revealed that both replication origins bind AlF-C and Orc1. We think that the results presented here may represent one mode of origin recognition in mammalian cells.
Collapse
Affiliation(s)
- Hiroyuki Minami
- Cryobiosystem Research Center, Iwate University, Ueda, Morioka, Iwate 020-8550, Japan
| | | | | | | | | |
Collapse
|
43
|
Norio P. DNA replication: the unbearable lightness of origins. EMBO Rep 2006; 7:779-81. [PMID: 16880822 PMCID: PMC1525147 DOI: 10.1038/sj.embor.7400766] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 06/29/2006] [Indexed: 11/08/2022] Open
Affiliation(s)
- Paolo Norio
- Department of Cell Biology, CH416, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|