1
|
Yoder KE, Rabe AJ, Fishel R, Larue RC. Strategies for Targeting Retroviral Integration for Safer Gene Therapy: Advances and Challenges. Front Mol Biosci 2021; 8:662331. [PMID: 34055882 PMCID: PMC8149907 DOI: 10.3389/fmolb.2021.662331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Retroviruses are obligate intracellular parasites that must integrate a copy of the viral genome into the host DNA. The integration reaction is performed by the viral enzyme integrase in complex with the two ends of the viral cDNA genome and yields an integrated provirus. Retroviral vector particles are attractive gene therapy delivery tools due to their stable integration. However, some retroviral integration events may dysregulate host oncogenes leading to cancer in gene therapy patients. Multiple strategies to target retroviral integration, particularly to genetic safe harbors, have been tested with limited success. Attempts to target integration may be limited by the multimerization of integrase or the presence of host co-factors for integration. Several retroviral integration complexes have evolved a mechanism of tethering to chromatin via a host protein. Integration host co-factors bind chromatin, anchoring the complex and allowing integration. The tethering factor allows for both close proximity to the target DNA and specificity of targeting. Each retrovirus appears to have distinct preferences for DNA sequence and chromatin features at the integration site. Tethering factors determine the preference for chromatin features, but do not affect the subtle sequence preference at the integration site. The sequence preference is likely intrinsic to the integrase protein. New developments may uncouple the requirement for a tethering factor and increase the ability to redirect retroviral integration.
Collapse
Affiliation(s)
- Kristine E Yoder
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Anthony J Rabe
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Richard Fishel
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ross C Larue
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
2
|
Counsell JR, Karda R, Diaz JA, Carey L, Wiktorowicz T, Buckley SMK, Ameri S, Ng J, Baruteau J, Almeida F, de Silva R, Simone R, Lugarà E, Lignani G, Lindemann D, Rethwilm A, Rahim AA, Waddington SN, Howe SJ. Foamy Virus Vectors Transduce Visceral Organs and Hippocampal Structures following In Vivo Delivery to Neonatal Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:626-634. [PMID: 30081233 PMCID: PMC6082918 DOI: 10.1016/j.omtn.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 12/16/2022]
Abstract
Viral vectors are rapidly being developed for a range of applications in research and gene therapy. Prototype foamy virus (PFV) vectors have been described for gene therapy, although their use has mainly been restricted to ex vivo stem cell modification. Here we report direct in vivo transgene delivery with PFV vectors carrying reporter gene constructs. In our investigations, systemic PFV vector delivery to neonatal mice gave transgene expression in the heart, xiphisternum, liver, pancreas, and gut, whereas intracranial administration produced brain expression until animals were euthanized 49 days post-transduction. Immunostaining and confocal microscopy analysis of injected brains showed that transgene expression was highly localized to hippocampal architecture despite vector delivery being administered to the lateral ventricle. This was compared with intracranial biodistribution of lentiviral vectors and adeno-associated virus vectors, which gave a broad, non-specific spread through the neonatal mouse brain without regional localization, even when administered at lower copy numbers. Our work demonstrates that PFV can be used for neonatal gene delivery with an intracranial expression profile that localizes to hippocampal neurons, potentially because of the mitotic status of the targeted cells, which could be of use for research applications and gene therapy of neurological disorders.
Collapse
Affiliation(s)
- John R Counsell
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK; Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, London WC1N 1EH, UK
| | - Rajvinder Karda
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Juan Antinao Diaz
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Louise Carey
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Tatiana Wiktorowicz
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Suzanne M K Buckley
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Shima Ameri
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Joanne Ng
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Julien Baruteau
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| | - Filipa Almeida
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Roberto Simone
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Eleonora Lugarà
- Department of Clinical and Experimental Epilepsy, Queen Square House, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, Queen Square House, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Dirk Lindemann
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany; Institute of Virology, Technische Universität Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK; Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Steven J Howe
- Gene Transfer Technology Group, EGA Institute for Women's Health, University College London, London WC1E 6HX, UK
| |
Collapse
|
3
|
Vink CA, Counsell JR, Perocheau DP, Karda R, Buckley SMK, Brugman MH, Galla M, Schambach A, McKay TR, Waddington SN, Howe SJ. Eliminating HIV-1 Packaging Sequences from Lentiviral Vector Proviruses Enhances Safety and Expedites Gene Transfer for Gene Therapy. Mol Ther 2017; 25:1790-1804. [PMID: 28550974 PMCID: PMC5542766 DOI: 10.1016/j.ymthe.2017.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/30/2022] Open
Abstract
Lentiviral vector genomic RNA requires sequences that partially overlap wild-type HIV-1 gag and env genes for packaging into vector particles. These HIV-1 packaging sequences constitute 19.6% of the wild-type HIV-1 genome and contain functional cis elements that potentially compromise clinical safety. Here, we describe the development of a novel lentiviral vector (LTR1) with a unique genomic structure designed to prevent transfer of HIV-1 packaging sequences to patient cells, thus reducing the total HIV-1 content to just 4.8% of the wild-type genome. This has been achieved by reconfiguring the vector to mediate reverse-transcription with a single strand transfer, instead of the usual two, and in which HIV-1 packaging sequences are not copied. We show that LTR1 vectors offer improved safety in their resistance to remobilization in HIV-1 particles and reduced frequency of splicing into human genes. Following intravenous luciferase vector administration to neonatal mice, LTR1 sustained a higher level of liver transgene expression than an equivalent dose of a standard lentivirus. LTR1 vectors produce reverse-transcription products earlier and start to express transgenes significantly quicker than standard lentiviruses after transduction. Finally, we show that LTR1 is an effective lentiviral gene therapy vector as demonstrated by correction of a mouse hemophilia B model.
Collapse
Affiliation(s)
- Conrad A Vink
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - John R Counsell
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK.
| | - Dany P Perocheau
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Rajvinder Karda
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Suzanne M K Buckley
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Martijn H Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Tristan R McKay
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester M15 6BH, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK; MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg 2000, South Africa
| | - Steven J Howe
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
4
|
Abstract
OBJECTIVE Gene therapy is a rapidly evolving novel treatment for human disease. This review discusses the latest development in gene transfer technology and its potential use in the female reproductive tract. METHODS A comprehensive search using the MEDLINE database was performed to review current, innovative trends in gene transfer technology. In addition, articles on reproductive tract gene transfer were reviewed. CONCLUSION(S) Recent developments, such as the Human Genome Project, have generated great interest in the genetic basis of human health and disease. Gene therapy is a rapidly evolving field that uses gene transfer to treat disease. Ongoing research in the field focuses on improving vector technology to enable efficient in vivo gene transfer. Although multiple techniques for gene transfer have been described, no single technique can be used in all instances. The human female reproductive tract is easily accessible and can be readily transfected. In vivo gene transfer has resulted in successful alteration of implantation rates and has demonstrated potential for use in treatment of ovarian cancer.
Collapse
Affiliation(s)
- Gaurang S Daftary
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
5
|
Van Tendeloo VF, Van Broeckhoven C, Berneman ZN. Gene therapy: principles and applications to hematopoietic cells. Leukemia 2001; 15:523-44. [PMID: 11368355 DOI: 10.1038/sj.leu.2402085] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ever since the development of technology allowing the transfer of new genes into eukaryotic cells, the hematopoietic system has been an obvious and desirable target for gene therapy. The last 10 years have witnessed an explosion of interest in this approach to treat human disease, both inherited and acquired, with the initiation of multiple clinical protocols. All gene therapy strategies have two essential technical requirements. These are: (1) the efficient introduction of the relevant genetic material into the target cell and (2) the expression of the transgene at therapeutic levels. Conceptual and technical hurdles involved with these requirements are still the objects of active research. To date, the most widely used and best understood vectors for gene transfer in hematopoietic cells are derived from retroviruses, although they suffer from several limitations. However, as gene transfer mechanisms become more efficient and long-term gene expression is enhanced, the variety of diseases that can be tackled by gene therapy will continue to expand. However, until the problem of delivery and subsequent expression is adequately resolved, gene therapy will not realize its full potential. The first part of this review gives an overview of the gene delivery technology available at present to transfer genetic sequences in human somatic cells. The relevance of the hematopoietic system to the development of gene therapy strategies as well as hematopoietic cell-based gene therapy is discussed in the second part.
Collapse
Affiliation(s)
- V F Van Tendeloo
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp University Hospital, Belgium
| | | | | |
Collapse
|
6
|
Edelmann HM, Kühne C, Petritsch C, Ballou LM. Cell cycle regulation of p70 S6 kinase and p42/p44 mitogen-activated protein kinases in Swiss mouse 3T3 fibroblasts. J Biol Chem 1996; 271:963-71. [PMID: 8557712 DOI: 10.1074/jbc.271.2.963] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We show here using synchronized Swiss mouse 3T3 fibroblasts that p70 S6 kinase (p70S6k) and mitogen-activated protein kinases (p42mapk/p44mapk) are not only activated at the G0/G1 boundary, but also in cells progressing from M into G1. p70S6k activity increases 20-fold in G1 cells released from G0. Throughout G1, S, and G2 it decreases constantly, so that during M phase low kinase activity is measured. The kinase is reactivated 10-fold when cells released from a nocodazole-induced metaphase block enter G1 of the next cell cycle. p42mapk/p44mapk in G0 cells are activated transiently early in G1 and are reactivated late in mitosis after nocodazole release. p70S6k activity is dependent on permanent signaling from growth factors at all stages of the cell cycle. Immunofluorescence studies showed that p70S6k and its isoform p85S6k become concentrated in localized spots in the nucleus at certain stages in the cell cycle. Cell cycle-dependent changes in p70S6k activity are associated with alterations in the phosphorylation state of the protein. However, examination of the regulation of a p70S6k mutant in which the four carboxyl-terminal phosphorylation sites are changed to acidic amino acids suggests that a mechanism independent of these phosphorylation sites controls the activity of the enzyme during the cell cycle.
Collapse
Affiliation(s)
- H M Edelmann
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | | |
Collapse
|
7
|
Linstedt AD, Kelly RB. Synaptophysin is sorted from endocytotic markers in neuroendocrine PC12 cells but not transfected fibroblasts. Neuron 1991; 7:309-17. [PMID: 1908253 DOI: 10.1016/0896-6273(91)90269-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The targeting of synaptophysin, a major synaptic vesicle protein, in transfected nonneuronal cells has important implications for synaptic vesicle biogenesis, but has proved controversial. We have analyzed four transfected cell types by differential centrifugation and velocity gradient sedimentation to determine whether synaptophysin is targeted to endosomes or to synaptic vesicle-like structures. Synaptophysin was recovered only in vesicles that sedimented more rapidly than synaptic vesicles. The synaptophysin-containing vesicles were labeled if a surface-labeled cell was warmed to 37 degrees C, comigrated with transferrin receptor-containing vesicles on velocity and density gradients, and could be completely immunoadsorbed by anti-LDL receptor tail antibodies. These data demonstrate that synaptophysin was targeted to the early endocytotic pathway in the transfected cells and are inconsistent with the suggestion that synaptophysin expression induces a novel population of vesicles. Targeting of synaptophysin to early endosomes implicates their role in synaptic vesicle biogenesis.
Collapse
Affiliation(s)
- A D Linstedt
- Division of Neuroscience, University of California, San Francisco 94143-0534
| | | |
Collapse
|
8
|
Lin CS, Goldthwait DA, Samols D. Induction of transcription from the long terminal repeat of Moloney murine sarcoma provirus by UV-irradiation, x-irradiation, and phorbol ester. Proc Natl Acad Sci U S A 1990; 87:36-40. [PMID: 2153296 PMCID: PMC53194 DOI: 10.1073/pnas.87.1.36] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The long terminal repeat (LTR) of Moloney murine sarcoma virus (Mo-MuSV) was used as a model system to study the stress response of mammalian cells to physical carcinogens. The chloramphenicol acetyltransferase (CAT) gene was inserted between two Mo-MuSV LTRs, and the LTR-CAT-LTR construct was used for virus production and was integrated into the genome of NIH 3T3 cells in the proviral form. This construct was used to assure that the integrated CAT gene was driven by the promoter of the LTR. Expression of the CAT gene was stimulated 4-fold by UV irradiation, and the peak of activity was observed at 18 hr. In contrast, stimulation of the CAT expression after x-irradiation was 2-fold and occurred at 6 hr. Phorbol myristate acetate also stimulated CAT activity 4-fold with a peak at 6 hr. Down-regulation of protein kinase C blocked totally the response to x-irradiation but only partially the response to UV. The protein kinase inhibitor H7 blocked the response to treatment by UV, x-ray, and phorbol ester.
Collapse
MESH Headings
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine
- Animals
- Blotting, Northern
- Cell Line
- Cells, Cultured
- Cycloheximide/pharmacology
- Gene Expression Regulation, Viral/drug effects
- Gene Expression Regulation, Viral/radiation effects
- Genes, Viral/drug effects
- Genes, Viral/radiation effects
- Isoquinolines/pharmacology
- Mice
- Mice, Inbred Strains
- Moloney murine sarcoma virus/drug effects
- Moloney murine sarcoma virus/genetics
- Moloney murine sarcoma virus/radiation effects
- Nucleic Acid Hybridization
- Piperazines/pharmacology
- Protein Kinase C/metabolism
- Proviruses/drug effects
- Proviruses/genetics
- Proviruses/radiation effects
- RNA, Viral/genetics
- Repetitive Sequences, Nucleic Acid
- Sarcoma Viruses, Murine/genetics
- Tetradecanoylphorbol Acetate/pharmacology
- Ultraviolet Rays
- X-Rays
Collapse
Affiliation(s)
- C S Lin
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | | | | |
Collapse
|
9
|
Trevor K, Linney E, Oshima RG. Suppression of endo B cytokeratin by its antisense RNA inhibits the normal coexpression of endo A cytokeratin. Proc Natl Acad Sci U S A 1987; 84:1040-4. [PMID: 2434948 PMCID: PMC304357 DOI: 10.1073/pnas.84.4.1040] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antisense endo B cytokeratin RNA encoded by a retrovirus vector was expressed in a derivative of the F9 embryonal carcinoma cell line. Two G418-resistant clones were selected that expressed a colinear transcript containing both neomycin and antisense endo B cytokeratin sequences. Expression of a 5-fold excess of antisense endo B RNA over endogenous, retinoic acid-induced endo B RNA resulted in suppression of endo B cytokeratin protein expression. In addition, the normal induction of endo A protein, the type II cytokeratin that polymerizes with endo B, was suppressed at the RNA and protein levels. Revertant clones, which synthesize little if any neo or antisense endo B RNA, regain the ability to express the affected gene products in response to retinoic acid. These results indicate that the suppression of endo B cytokeratin protein synthesis influences the stable levels of endo A mRNA.
Collapse
|
10
|
Variable stability of a selectable provirus after retroviral vector gene transfer into human cells. Mol Cell Biol 1987. [PMID: 3023873 DOI: 10.1128/mcb.6.4.1141] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human lymphoblasts deficient in the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) were infected with an amphotropic helper-free retroviral vector expressing human HPRT cDNA. The stability and expression of the HPRT provirus in five cell lines with different proviral integration sites were examined by determining HPRT mutation and reversion frequencies and by blot hybridization studies. Mutation to the HPRT-negative phenotype occurred at frequencies of approximately 4 X 10(-5) to 3 X 10(-6) per generation. Most mutations in each of the five cell lines were associated with partial or complete deletions or rearrangements of the provirus. Several mutants retained a grossly intact HPRT provirus, and in one such mutant HPRT shutdown resulted from a revertible epigenetic mechanism that was not associated with global changes in proviral methylation. Therefore, mutation and shutdown of the HPRT provirus in human lymphoblasts result from mechanisms similar to those reported for several other avian and mammalian replication-competent retroviruses.
Collapse
|
11
|
Biologically active mutants with deletions in the v-mos oncogene assayed with retroviral vectors. Mol Cell Biol 1986. [PMID: 3018503 DOI: 10.1128/mcb.5.11.3131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have constructed retroviral expression vectors by manipulation of the Moloney murine leukemia virus genome such that an exogenous DNA sequence may be inserted and subsequently expressed when introduced into mammalian cells. A series of N-terminal deletions of the v-mos oncogene was constructed and assayed for biological activity with these retroviral expression vectors. The results of the deletion analysis demonstrate that the region of p37mos coding region upstream of the third methionine codon is dispensable with respect to transformation. However, deletion mutants of v-mos which allow initiation of translation at the fourth methionine codon have lost the biological activity of the parental v-mos gene. Furthermore, experiments were also carried out to define the C-terminal limit of the active region of p37mos by the construction of premature termination mutants by the insertion of a termination oligonucleotide. Insertion of the oligonucleotide just 69 base pairs upstream from the wild-type termination site abolished the focus-forming ability of v-mos. Thus, we have shown the N-terminal limit of the active region of p37mos to be between the third and fourth methionines, while the C-terminal limit is within the last 23 amino acids of the protein.
Collapse
|
12
|
Jolly DJ, Willis RC, Friedmann T. Variable stability of a selectable provirus after retroviral vector gene transfer into human cells. Mol Cell Biol 1986; 6:1141-7. [PMID: 3023873 PMCID: PMC367625 DOI: 10.1128/mcb.6.4.1141-1147.1986] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human lymphoblasts deficient in the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) were infected with an amphotropic helper-free retroviral vector expressing human HPRT cDNA. The stability and expression of the HPRT provirus in five cell lines with different proviral integration sites were examined by determining HPRT mutation and reversion frequencies and by blot hybridization studies. Mutation to the HPRT-negative phenotype occurred at frequencies of approximately 4 X 10(-5) to 3 X 10(-6) per generation. Most mutations in each of the five cell lines were associated with partial or complete deletions or rearrangements of the provirus. Several mutants retained a grossly intact HPRT provirus, and in one such mutant HPRT shutdown resulted from a revertible epigenetic mechanism that was not associated with global changes in proviral methylation. Therefore, mutation and shutdown of the HPRT provirus in human lymphoblasts result from mechanisms similar to those reported for several other avian and mammalian replication-competent retroviruses.
Collapse
|
13
|
Jensen NA, Jørgensen P, Kjeldgaard NO, Pedersen FS. Mammalian expression-and-transmission vector derived from Akv murine leukemia virus. Gene 1986; 41:59-65. [PMID: 3009276 DOI: 10.1016/0378-1119(86)90267-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A mammalian transmission-expression vector has been constructed based on the plasmid pBR322 and using the transcriptional signals from the Akv murine leukemia virus (AkvMuLV) to control the expression of the neo gene. The transmission vector pL psi PLneo, when transfected into the psi 2 cell line, confers G-418 resistance on recipient cell clones which produce viral particles encapsidating the transcripts of the vector. Cultures of such clones produce viral particles of titers up to 10(5) cfu/ml. The pL psi PLneo vector has two unique restriction sites which can be used for the insertion of new DNA material.
Collapse
|
14
|
Gruber HE, Finley KD, Hershberg RM, Katzman SS, Laikind PK, Seegmiller JE, Friedmann T, Yee JK, Jolly DJ. Retroviral vector-mediated gene transfer into human hematopoietic progenitor cells. Science 1985; 230:1057-61. [PMID: 3864246 DOI: 10.1126/science.3864246] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The transfer of the human gene for hypoxanthine phosphoribosyltransferase (HPRT) into human bone marrow cells was accomplished by use of a retroviral vector. The cells were infected in vitro with a replication-incompetent murine retroviral vector that carried and expressed a mutant HPRT complementary DNA. The infected cells were superinfected with a helper virus and maintained in long-term culture. The production of progeny HPRT virus by the bone marrow cells was demonstrated with a colony formation assay on cultured HPRT-deficient, ouabain-resistant murine fibroblasts. Hematopoietic progenitor cells able to form colonies of granulocytes or macrophages (or both) in semisolid medium in the presence of colony stimulating factor were present in the nonadherent cell population. Colony forming units cloned in agar and subsequently cultured in liquid medium produced progeny HPRT virus, indicating infection of this class of hematopoietic progenitor cell.
Collapse
|
15
|
Bold RJ, Donoghue DJ. Biologically active mutants with deletions in the v-mos oncogene assayed with retroviral vectors. Mol Cell Biol 1985; 5:3131-8. [PMID: 3018503 PMCID: PMC369128 DOI: 10.1128/mcb.5.11.3131-3138.1985] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have constructed retroviral expression vectors by manipulation of the Moloney murine leukemia virus genome such that an exogenous DNA sequence may be inserted and subsequently expressed when introduced into mammalian cells. A series of N-terminal deletions of the v-mos oncogene was constructed and assayed for biological activity with these retroviral expression vectors. The results of the deletion analysis demonstrate that the region of p37mos coding region upstream of the third methionine codon is dispensable with respect to transformation. However, deletion mutants of v-mos which allow initiation of translation at the fourth methionine codon have lost the biological activity of the parental v-mos gene. Furthermore, experiments were also carried out to define the C-terminal limit of the active region of p37mos by the construction of premature termination mutants by the insertion of a termination oligonucleotide. Insertion of the oligonucleotide just 69 base pairs upstream from the wild-type termination site abolished the focus-forming ability of v-mos. Thus, we have shown the N-terminal limit of the active region of p37mos to be between the third and fourth methionines, while the C-terminal limit is within the last 23 amino acids of the protein.
Collapse
|
16
|
H-2Ld antigen encoded by a recombinant retrovirus genome is expressed on the surface of infected cells. Mol Cell Biol 1985. [PMID: 2993861 DOI: 10.1128/mcb.5.6.1379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recombinant murine retrovirus was constructed which contains, within its genome, a truncated version of the gene encoding the murine H-2Ld major histocompatibility antigen. The H-2Ld gene, which was inserted 3' of the env splice acceptor site in the recombinant retrovirus MSV-neo, lacked the 5' promoter and TATA sequences and the 3' transcription termination and polyadenylate addition sites of the normal H-2Ld gene. Transfection of the MSV-neo/H-2Ld plasmid (pLTV-11) into Y-2 cells resulted in the production of the transmissible recombinant retrovirus LTV-11. Cells infected with LTV-11 virus were resistant to the eucaryotic antibiotic G418 and expressed H-2Ld on the cell surface. These infected cells contained a viral RNA species which possessed both the H-2Ld and the neomycin resistance gene sequences but did not contain significant levels of the smaller H-2Ld-specific mRNA. The H-2Ld antigen expressed on the surface of infected cells functioned as a target for cytolytic T cells specific for the H-2Ld antigen.
Collapse
|
17
|
Generation of helper-free amphotropic retroviruses that transduce a dominant-acting, methotrexate-resistant dihydrofolate reductase gene. Mol Cell Biol 1985. [PMID: 2985952 DOI: 10.1128/mcb.5.3.431] [Citation(s) in RCA: 172] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed several retroviruses which transduced a mutant dihydrofolate reductase gene that was resistant to methotrexate inhibition and functioned as a dominant selectable marker. The titer of dihydrofolate reductase-transducing virus produced by virus-producing cells could be increased to very high levels by selection of the cells in increasing concentrations of methotrexate. Helper virus-free dihydrofolate reductase-transducing virus was also generated by using a broad-host-range amphotropic retroviral packaging system. Cell lines producing helper-free dihydrofolate reductase-transducing virus with a titer of 4 X 10(6) per ml were generated. These retroviral vectors should have general utility for high-efficiency transduction of genes in cultured cells and in animals.
Collapse
|
18
|
H-2Ld antigen encoded by a recombinant retrovirus genome is expressed on the surface of infected cells. Mol Cell Biol 1985; 5:1379-84. [PMID: 2993861 PMCID: PMC366867 DOI: 10.1128/mcb.5.6.1379-1384.1985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A recombinant murine retrovirus was constructed which contains, within its genome, a truncated version of the gene encoding the murine H-2Ld major histocompatibility antigen. The H-2Ld gene, which was inserted 3' of the env splice acceptor site in the recombinant retrovirus MSV-neo, lacked the 5' promoter and TATA sequences and the 3' transcription termination and polyadenylate addition sites of the normal H-2Ld gene. Transfection of the MSV-neo/H-2Ld plasmid (pLTV-11) into Y-2 cells resulted in the production of the transmissible recombinant retrovirus LTV-11. Cells infected with LTV-11 virus were resistant to the eucaryotic antibiotic G418 and expressed H-2Ld on the cell surface. These infected cells contained a viral RNA species which possessed both the H-2Ld and the neomycin resistance gene sequences but did not contain significant levels of the smaller H-2Ld-specific mRNA. The H-2Ld antigen expressed on the surface of infected cells functioned as a target for cytolytic T cells specific for the H-2Ld antigen.
Collapse
|
19
|
Characterization of a retrovirus shuttle vector capable of either proviral integration or extrachromosomal replication in mouse cells. Mol Cell Biol 1985. [PMID: 2983188 DOI: 10.1128/mcb.5.2.305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A retrovirus shuttle vector is described that contains the dominant selectable neo gene which confers resistance to kanamycin in bacteria and to the drug G418 in animal cells. The bacterial supF gene and the origins of DNA replication from polyomavirus and the ColE1 replicon also have been included in this vector. Infection of normal rodent cells results in single-copy proviral integration, whereas infection of mouse (MOP) cells expressing polyoma large T antigen results in extrachromosomal replication of the DNA form of the virus. The copy number of the extrachromosomal circles in MOP cells varies from 0 to 100 copies per cell. G418-resistant MOP cells lose their drug-resistant phenotype after passage under nonselective conditions, suggesting that maintenance of the extrachromosomal circles is unstable. The extrachromosomal form of the virus can be recovered as plasmids in Escherichia coli. Two-thirds of the circles analyzed were found to be structurally intact. The others have undergone rearrangements including deletions and insertions. The bacterial supF gene was found to be intact in the majority of recovered plasmids. The data presented here suggest that these retroviruses should be useful as gene transfer vectors for animal cells in culture or in vivo.
Collapse
|
20
|
Generation of helper-free amphotropic retroviruses that transduce a dominant-acting, methotrexate-resistant dihydrofolate reductase gene. Mol Cell Biol 1985; 5:431-7. [PMID: 2985952 PMCID: PMC366734 DOI: 10.1128/mcb.5.3.431-437.1985] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We constructed several retroviruses which transduced a mutant dihydrofolate reductase gene that was resistant to methotrexate inhibition and functioned as a dominant selectable marker. The titer of dihydrofolate reductase-transducing virus produced by virus-producing cells could be increased to very high levels by selection of the cells in increasing concentrations of methotrexate. Helper virus-free dihydrofolate reductase-transducing virus was also generated by using a broad-host-range amphotropic retroviral packaging system. Cell lines producing helper-free dihydrofolate reductase-transducing virus with a titer of 4 X 10(6) per ml were generated. These retroviral vectors should have general utility for high-efficiency transduction of genes in cultured cells and in animals.
Collapse
|
21
|
Characterization of a retrovirus shuttle vector capable of either proviral integration or extrachromosomal replication in mouse cells. Mol Cell Biol 1985; 5:305-12. [PMID: 2983188 PMCID: PMC366713 DOI: 10.1128/mcb.5.2.305-312.1985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A retrovirus shuttle vector is described that contains the dominant selectable neo gene which confers resistance to kanamycin in bacteria and to the drug G418 in animal cells. The bacterial supF gene and the origins of DNA replication from polyomavirus and the ColE1 replicon also have been included in this vector. Infection of normal rodent cells results in single-copy proviral integration, whereas infection of mouse (MOP) cells expressing polyoma large T antigen results in extrachromosomal replication of the DNA form of the virus. The copy number of the extrachromosomal circles in MOP cells varies from 0 to 100 copies per cell. G418-resistant MOP cells lose their drug-resistant phenotype after passage under nonselective conditions, suggesting that maintenance of the extrachromosomal circles is unstable. The extrachromosomal form of the virus can be recovered as plasmids in Escherichia coli. Two-thirds of the circles analyzed were found to be structurally intact. The others have undergone rearrangements including deletions and insertions. The bacterial supF gene was found to be intact in the majority of recovered plasmids. The data presented here suggest that these retroviruses should be useful as gene transfer vectors for animal cells in culture or in vivo.
Collapse
|
22
|
Rubenstein JL, Nicolas JF, Jacob F. Construction of a retrovirus capable of transducing and expressing genes in multipotential embryonic cells. Proc Natl Acad Sci U S A 1984; 81:7137-40. [PMID: 6095270 PMCID: PMC392092 DOI: 10.1073/pnas.81.22.7137] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Retroviral gene expression is inhibited in embryonal carcinoma (EC) cells. We have constructed a recombinant retroviral vector that is capable of expressing the neomycin-resistance (neo) gene in EC cells. The critical modification that permits expression of the neo gene is the insertion of a composite simian virus 40 early gene-herpes simplex virus type 1 thymidine kinase gene (SVtk) promoter 3' to the viral first intron and 5' to the neo gene. When the SVtk promoter is deleted, the recombinant retrovirus is either unable or extremely inefficient at expressing the neo gene in EC cells.
Collapse
|
23
|
Miller AD, Ong ES, Rosenfeld MG, Verma IM, Evans RM. Infectious and selectable retrovirus containing an inducible rat growth hormone minigene. Science 1984; 225:993-8. [PMID: 6089340 DOI: 10.1126/science.6089340] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A growth hormone minigene carrying its natural promoter (237 nucleotides of chromosomal DNA) was stably propagated in a murine retrovirus containing hypoxanthine-guanine phosphoribosyltransferase as a selectable marker. Glucocorticoid and thyroid hormone inducibility was transferred with the growth hormone gene. Recombinant virus with titers of 10(6) per milliliter was recovered. This demonstration that retroviruses can be used to transfer a nonselectable gene under its own regulatory control enlarges the scope of retroviral vectors as potent tools for gene transfer.
Collapse
|
24
|
Miller AD, Eckner RJ, Jolly DJ, Friedmann T, Verma IM. Expression of a retrovirus encoding human HPRT in mice. Science 1984; 225:630-2. [PMID: 6377498 DOI: 10.1126/science.6377498] [Citation(s) in RCA: 156] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transmissible retroviruses encoding human hypoxanthine phosphoribosyltransferase (HPRT) were used to infect mouse bone marrow cells in vitro, and the infected cells were transplanted into mice. Both active human HPRT-protein and chronic HPRT-virus production were detected in hematopoietic tissue of the mice, showing transfer of the gene. These results indicate the possible use of retroviruses for somatic cell therapy.
Collapse
|
25
|
Expression from an internal AUG codon of herpes simplex thymidine kinase gene inserted in a retrovirus vector. Mol Cell Biol 1984. [PMID: 6325894 DOI: 10.1128/mcb.4.4.743] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified structural features that affect the expression of an exogenous gene inserted into a retrovirus vector constructed by using spleen necrosis virus, an avian retrovirus. The thymidine kinase gene from herpes simplex virus type 1 containing deletions in the promoter and terminal sequences of the mRNA was inserted into spleen necrosis virus. We found that synthesis of thymidine kinase by the recovered virus was apparently initiated from internal AUG residues. At least in some cases, however, the level of expression depended on the number of AUGs and the nucleotide sequence around the AUGs that preceded the initiator codon of the thymidine kinase gene.
Collapse
|
26
|
Expression of complete chicken thymidine kinase gene inserted in a retrovirus vector. Mol Cell Biol 1984. [PMID: 6325895 DOI: 10.1128/mcb.4.4.749] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chicken thymidine kinase (tk) gene was inserted into spleen necrosis virus. Thymidine kinase activity was expressed even when the promoter and terminator sequences for tk RNA synthesis were retained. When the promoter was present in the same orientation as the promoter in the long terminal repeat of the virus, deletions occurred both in the virus and in the tk gene, and the thymidine kinase-transforming activity of the recovered virus was low. Splicing of apparent intervening sequences in the tk gene was also observed. When the orientation of the tk promoter was opposite to the promoter in the long terminal repeat, virus synthesis was diminished, whereas thymidine kinase activity was expressed at an elevated level compared with virus in which the promoter was in the same orientation. However, when the apparent tk promoter was deleted from virus with the tk gene in the opposite orientation, a high level of virus synthesis was observed, probably as a result of absence of interference of RNA synthesis from converging promoters. The intervening sequences in the virus in which the promoters were in opposite orientation were not spliced.
Collapse
|
27
|
Bandyopadhyay PK, Temin HM. Expression from an internal AUG codon of herpes simplex thymidine kinase gene inserted in a retrovirus vector. Mol Cell Biol 1984; 4:743-8. [PMID: 6325894 PMCID: PMC368792 DOI: 10.1128/mcb.4.4.743-748.1984] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We identified structural features that affect the expression of an exogenous gene inserted into a retrovirus vector constructed by using spleen necrosis virus, an avian retrovirus. The thymidine kinase gene from herpes simplex virus type 1 containing deletions in the promoter and terminal sequences of the mRNA was inserted into spleen necrosis virus. We found that synthesis of thymidine kinase by the recovered virus was apparently initiated from internal AUG residues. At least in some cases, however, the level of expression depended on the number of AUGs and the nucleotide sequence around the AUGs that preceded the initiator codon of the thymidine kinase gene.
Collapse
|
28
|
Bandyopadhyay PK, Temin HM. Expression of complete chicken thymidine kinase gene inserted in a retrovirus vector. Mol Cell Biol 1984; 4:749-54. [PMID: 6325895 PMCID: PMC368793 DOI: 10.1128/mcb.4.4.749-754.1984] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The chicken thymidine kinase (tk) gene was inserted into spleen necrosis virus. Thymidine kinase activity was expressed even when the promoter and terminator sequences for tk RNA synthesis were retained. When the promoter was present in the same orientation as the promoter in the long terminal repeat of the virus, deletions occurred both in the virus and in the tk gene, and the thymidine kinase-transforming activity of the recovered virus was low. Splicing of apparent intervening sequences in the tk gene was also observed. When the orientation of the tk promoter was opposite to the promoter in the long terminal repeat, virus synthesis was diminished, whereas thymidine kinase activity was expressed at an elevated level compared with virus in which the promoter was in the same orientation. However, when the apparent tk promoter was deleted from virus with the tk gene in the opposite orientation, a high level of virus synthesis was observed, probably as a result of absence of interference of RNA synthesis from converging promoters. The intervening sequences in the virus in which the promoters were in opposite orientation were not spliced.
Collapse
|
29
|
Retrovirus transduction: generation of infectious retroviruses expressing dominant and selectable genes is associated with in vivo recombination and deletion events. Mol Cell Biol 1984. [PMID: 6318087 DOI: 10.1128/mcb.3.12.2180] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the generation of infectious retroviruses containing foreign genes by an in vivo recombination-deletion mechanism. Cotransfection into mouse cells of chimeric plasmids carrying a murine retrovirus 5' long terminal repeat and either the thymidine kinase (tk) gene of herpesvirus or the dominant selectable bacterial gene for neomycin resistance (neo), along with a clone of Moloney murine leukemia virus, results in the generation of infectious thymidine kinase or neomycin-resistant viruses. Expression of the selectable marker in these viruses can be regulated by the homologous transcriptional promoter of the gene, by the promoter contained within the Friend spleen focus-forming virus long terminal repeat, or by the simian virus 40 early region promoter. In all cases, the rescued viruses appeared to arise by recombination in vivo with Moloney murine leukemia virus sequences, resulting in the acquisition of the Moloney 3' long terminal repeat and variable amounts of the 3' adjacent Moloney genome. In two of the thymidine kinase constructs where tk was inserted 200 base pairs downstream from the long terminal repeat, the rescued viruses acquired a large part of the murine leukemia virus genome, including the region involved in packaging genomic RNA into virions. The generation of infectious neomycin-resistant virus is associated with deletions of simian virus 40 splicing and polyadenylation sequences. These results demonstrate that nonhomologous recombination and deletion events can take place in animal cells, resulting in the acquisition or removal of cis-acting sequences required for, or inhibitory to, retrovirus infectivity.
Collapse
|
30
|
Joyner AL, Bernstein A. Retrovirus transduction: generation of infectious retroviruses expressing dominant and selectable genes is associated with in vivo recombination and deletion events. Mol Cell Biol 1983; 3:2180-90. [PMID: 6318087 PMCID: PMC370089 DOI: 10.1128/mcb.3.12.2180-2190.1983] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We describe the generation of infectious retroviruses containing foreign genes by an in vivo recombination-deletion mechanism. Cotransfection into mouse cells of chimeric plasmids carrying a murine retrovirus 5' long terminal repeat and either the thymidine kinase (tk) gene of herpesvirus or the dominant selectable bacterial gene for neomycin resistance (neo), along with a clone of Moloney murine leukemia virus, results in the generation of infectious thymidine kinase or neomycin-resistant viruses. Expression of the selectable marker in these viruses can be regulated by the homologous transcriptional promoter of the gene, by the promoter contained within the Friend spleen focus-forming virus long terminal repeat, or by the simian virus 40 early region promoter. In all cases, the rescued viruses appeared to arise by recombination in vivo with Moloney murine leukemia virus sequences, resulting in the acquisition of the Moloney 3' long terminal repeat and variable amounts of the 3' adjacent Moloney genome. In two of the thymidine kinase constructs where tk was inserted 200 base pairs downstream from the long terminal repeat, the rescued viruses acquired a large part of the murine leukemia virus genome, including the region involved in packaging genomic RNA into virions. The generation of infectious neomycin-resistant virus is associated with deletions of simian virus 40 splicing and polyadenylation sequences. These results demonstrate that nonhomologous recombination and deletion events can take place in animal cells, resulting in the acquisition or removal of cis-acting sequences required for, or inhibitory to, retrovirus infectivity.
Collapse
|