1
|
Sandhu A, Badal D, Sheokand R, Tyagi S, Singh V. Specific collagens maintain the cuticle permeability barrier in Caenorhabditis elegans. Genetics 2021; 217:iyaa047. [PMID: 33789349 PMCID: PMC8045729 DOI: 10.1093/genetics/iyaa047] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 12/05/2020] [Indexed: 01/01/2023] Open
Abstract
Collagen-enriched cuticle forms the outermost layer of skin in nematode Caenorhabditis elegans. The nematode's genome encodes 177 collagens, but little is known about their role in maintaining the structure or barrier function of the cuticle. In this study, we found six permeability determining (PD) collagens. Loss of any of these PD collagens-DPY-2, DPY-3, DPY-7, DPY-8, DPY-9, and DPY-10-led to enhanced susceptibility of nematodes to paraquat (PQ) and antihelminthic drugs- levamisole and ivermectin. Upon exposure to PQ, PD collagen mutants accumulated more PQ and incurred more damage and death despite the robust activation of antioxidant machinery. We find that BLMP-1, a zinc finger transcription factor, maintains the barrier function of the cuticle by regulating the expression of PD collagens. We show that the permeability barrier maintained by PD collagens acts in parallel to FOXO transcription factor DAF-16 to enhance survival of insulin-like receptor mutant, daf-2. In all, this study shows that PD collagens regulate cuticle permeability by maintaining the structure of C. elegans cuticle and thus provide protection against exogenous toxins.
Collapse
Affiliation(s)
- Anjali Sandhu
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Divakar Badal
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Riya Sheokand
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Shalini Tyagi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Varsha Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Lead contact
| |
Collapse
|
2
|
Urso SJ, Lamitina T. The C. elegans Hypertonic Stress Response: Big Insights from Shrinking Worms. Cell Physiol Biochem 2021; 55:89-105. [PMID: 33626269 DOI: 10.33594/000000332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/23/2022] Open
Abstract
Cell volume is one of the most aggressively defended physiological set points in biology. Changes in intracellular ion and water concentrations, which are induced by changes in metabolism or environmental exposures, disrupt protein folding, enzymatic activity, and macromolecular assemblies. To counter these challenges, cells and organisms have evolved multifaceted, evolutionarily conserved molecular mechanisms to restore cell volume and repair stress induced damage. However, many unanswered questions remain regarding the nature of cell volume 'sensing' as well as the molecular signaling pathways involved in activating physiological response mechanisms. Unbiased genetic screening in the model organism C. elegans is providing new and unexpected insights into these questions, particularly questions relating to the hypertonic stress response (HTSR) pathway. One surprising characteristic of the HTSR pathway in C. elegans is that it is under strong negative regulation by proteins involved in protein homeostasis and the extracellular matrix (ECM). The role of the ECM in particular highlights the importance of studying the HTSR in the context of a live organism where native ECM-tissue associations are preserved. A second novel and recently discovered characteristic is that the HTSR is regulated at the post-transcriptional level. The goal of this review is to describe these discoveries, to provide context for their implications, and to raise outstanding questions to guide future research.
Collapse
Affiliation(s)
- Sarel J Urso
- University of Pittsburgh, Graduate Program in Cell Biology and Physiology, Pittsburgh, PA, USA.,University of Pittsburgh, Departments of Pediatrics and Cell Biology, Pittsburgh, PA, USA
| | - Todd Lamitina
- University of Pittsburgh, Graduate Program in Cell Biology and Physiology, Pittsburgh, PA, USA, .,University of Pittsburgh, Departments of Pediatrics and Cell Biology, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Tabara H, Motohashi T, Kohara Y. A multi-well version of in situ hybridization on whole mount embryos of Caenorhabditis elegans. Nucleic Acids Res 1996; 24:2119-24. [PMID: 8668544 PMCID: PMC145910 DOI: 10.1093/nar/24.11.2119] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We report an efficient procedure for in situ hybridization with a multi-well format on Caenorhabditis elegans embryos for large scale screening of gene expression patterns in this organism. Each hybridization well contains embryos at various stages throughout embryogenesis. The validity of the method was confirmed through results with control genes whose expression patterns have been reported; glp-1 in very early embryos, myo-2 in pharyngeal muscle and unc-54 in body wall muscle. Several collagen genes and a pepsinogen gene were also examined to establish a set of lineage-specific markers. As a pilot project, we examined approximately 100 unique cDNA species classified by our cDNA project, finding that approximately 10% of the cDNA groups were expressed in specific cells and at specific stages.
Collapse
Affiliation(s)
- H Tabara
- Department of Genetics, The Graduate University of Advanced Studies, Japan
| | | | | |
Collapse
|
4
|
In vitro mutagenesis of Caenorhabditis elegans cuticle collagens identifies a potential subtilisin-like protease cleavage site and demonstrates that carboxyl domain disulfide bonding is required for normal function but not assembly. Mol Cell Biol 1994. [PMID: 8139571 DOI: 10.1128/mcb.14.4.2722] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The importance of conserved amino acids in the amino and carboxyl non-Gly-X-Y domains of Caenorhabditis elegans cuticle collagens was examined by analyzing site-directed mutations of the sqt-1 and rol-6 collagen genes in transgenic animals. Altered collagen genes on transgenic arrays were shown to produce appropriate phenotypes by injecting in vivo cloned mutant alleles. Equivalent alterations in sqt-1 and rol-6 generally produced the same phenotypes, indicating that conserved amino acids in these two collagens have similar functions. Serine substitutions for either of two conserved carboxyl domain cysteines produced LRol phenotypes. Substitution for both cysteines in sqt-1 also resulted in an LRol phenotype, demonstrating that disulfide bonding is important for normal function but not required for assembly. Arg-1 or Arg-4 to Cys mutations in homology block A (HBA; consensus, 1-RXRRQ-5; in the amino non-Gly-X-Y domain) caused RRol phenotypes, while the same alteration at Arg-3 had no effect, indicating that Arg-3 is functionally different from Arg-1 and Arg-4. Substitutions of Arg-4 with Ser, Leu, or Glu also produced the RRol phenotype, while Lys substitutions for Arg-1 or Arg-4 did not generate any abnormal phenotypes. His substitutions for Arg-1 or Arg-4 caused somewhat less severe RRol phenotypes. Therefore, strong positively charged residues, Arg or Lys, are required at positions 1 and 4 for normal function. The conserved pattern of arginines in HBA matches the cleavage sites of the subtilisin-like endoproteinases. HBA may be a cleavage site for a subtilisin-like protease, and cleavage may be important for cuticle collagen processing.
Collapse
|
5
|
Yang J, Kramer JM. In vitro mutagenesis of Caenorhabditis elegans cuticle collagens identifies a potential subtilisin-like protease cleavage site and demonstrates that carboxyl domain disulfide bonding is required for normal function but not assembly. Mol Cell Biol 1994; 14:2722-30. [PMID: 8139571 PMCID: PMC358638 DOI: 10.1128/mcb.14.4.2722-2730.1994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The importance of conserved amino acids in the amino and carboxyl non-Gly-X-Y domains of Caenorhabditis elegans cuticle collagens was examined by analyzing site-directed mutations of the sqt-1 and rol-6 collagen genes in transgenic animals. Altered collagen genes on transgenic arrays were shown to produce appropriate phenotypes by injecting in vivo cloned mutant alleles. Equivalent alterations in sqt-1 and rol-6 generally produced the same phenotypes, indicating that conserved amino acids in these two collagens have similar functions. Serine substitutions for either of two conserved carboxyl domain cysteines produced LRol phenotypes. Substitution for both cysteines in sqt-1 also resulted in an LRol phenotype, demonstrating that disulfide bonding is important for normal function but not required for assembly. Arg-1 or Arg-4 to Cys mutations in homology block A (HBA; consensus, 1-RXRRQ-5; in the amino non-Gly-X-Y domain) caused RRol phenotypes, while the same alteration at Arg-3 had no effect, indicating that Arg-3 is functionally different from Arg-1 and Arg-4. Substitutions of Arg-4 with Ser, Leu, or Glu also produced the RRol phenotype, while Lys substitutions for Arg-1 or Arg-4 did not generate any abnormal phenotypes. His substitutions for Arg-1 or Arg-4 caused somewhat less severe RRol phenotypes. Therefore, strong positively charged residues, Arg or Lys, are required at positions 1 and 4 for normal function. The conserved pattern of arginines in HBA matches the cleavage sites of the subtilisin-like endoproteinases. HBA may be a cleavage site for a subtilisin-like protease, and cleavage may be important for cuticle collagen processing.
Collapse
Affiliation(s)
- J Yang
- Department of Cell, Molecular and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | | |
Collapse
|
6
|
Barbazuk WB, Johnsen RC, Baillie DL. The generation and genetic analysis of suppressors of lethal mutations in the Caenorhabditis elegans rol-3(V) gene. Genetics 1994; 136:129-43. [PMID: 8138151 PMCID: PMC1205765 DOI: 10.1093/genetics/136.1.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Caenorhabditis elegans rol-3(e754) mutation is a member of a general class of mutations affecting gross morphology, presumably through disruption of the nematode cuticle. Adult worms homozygous for rol-3(e754) exhibit rotation about their long axis associated with a left-hand twisted cuticle, musculature, gut and ventral nerve cord. Our laboratory previously isolated 12 recessive lethal alleles of rol-3. All these lethal alleles cause an arrest in development at either early or mid-larval stages, suggesting that the rol-3 gene product performs an essential developmental function. Furthermore, through the use of the heterochronic mutants lin-14 and lin-29, we have established that the expression of rol-3(e754)'s adult specific visible function is not dependent on the presence of an adult cuticle. In an attempt to understand rol-3's developmental role we sought to identify other genes whose products interact with that of rol-3. Toward this end, we generated eight EMS induced and two gamma irradiation-induced recessive suppressors of the temperature sensitive (ts) mid-larval lethal phenotype of rol-3(s1040ts). These suppressors define two complementation groups srl-1 II and srl-2 III; and, while they suppress the rol-3(s1040) lethality, they do not suppress the adult specific visible rolling phenotype. Furthermore, there is a complex genetic interaction between srl-2 and srl-1 such that srl-2(s2506) fails to complement all srl alleles tested. These results suggest that srl-1 and srl-2 may share a common function and, thus, possibly constitute members of the same gene family. Mutations in both srl-1 and srl-2 produce no obvious hermaphrodite phenotypes in the absence of rol-3(s1040ts); however, males homozygous for either srl-1 or srl-2 display aberrant tail morphology. We present evidence suggesting that the members of srl-2 are not allele specific with respect to their suppression of rol-3 lethality, and that rol-3 may act in some way to influence proper posterior morphogenesis. Finally, based on our genetic analysis of rol-3 and the srl mutations, we present a model whereby the wild-type products of the srl loci act in a concerted manner to negatively regulate the rol-3 gene.
Collapse
Affiliation(s)
- W B Barbazuk
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
7
|
Levy AD, Yang J, Kramer JM. Molecular and genetic analyses of the Caenorhabditis elegans dpy-2 and dpy-10 collagen genes: a variety of molecular alterations affect organismal morphology. Mol Biol Cell 1993; 4:803-17. [PMID: 8241567 PMCID: PMC300994 DOI: 10.1091/mbc.4.8.803] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have identified and cloned the Caenorhabditis elegans dpy-2 and dpy-10 genes and determined that they encode collagens. Genetic data suggested that these genes are important in morphogenesis and possibly other developmental events. These data include the morphologic phenotypes exhibited by mutants, unusual genetic interactions with the sqt-1 collagen gene, and suppression of mutations in the glp-1 and mup-1 genes. The proximity of the dpy-2 and dpy-10 genes (3.5 kilobase) and the structural similarity of their encoded proteins (41% amino acid identity) indicate that dpy-2 and dpy-10 are the result of a gene duplication event. The genes do not, however, appear to be functionally redundant, because a dpy-10 null mutant is not rescued by the dpy-2 gene. In addition, full complementation between dpy-2 and dpy-10 can be demonstrated with all recessive alleles tested in trans. Sequence analysis of several mutant alleles of each gene was performed to determine the nature of the molecular defects that can cause the morphologic phenotypes. Glycine substitutions within the Gly-X-Y portion of the collagens can result in dumpy (Dpy), dumpy, left roller (DLRol), or temperature-sensitive DLRol phenotypes. dpy-10(cn64), a dominant temperature-sensitive DLRol allele, creates an Arg-to-Cys substitution in the amino non-Gly-X-Y portion of the protein. Three dpy-10 alleles contain Tc1 insertions in the coding region of the gene. dpy-10(cg36) (DRLol) creates a nonsense codon near the end of the Gly-X-Y region. The nature of this mutation, combined with genetic data, indicates that DLRol is the null phenotype of dpy-10. The Dpy phenotype results from reduced function of the dpy-10 collagen gene. Our results indicate that a variety of molecular defects in these collagens can result in severe morphologic changes in C. elegans.
Collapse
Affiliation(s)
- A D Levy
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | | | | |
Collapse
|
8
|
Aho S, Turakainen H, Onnela ML, Boedtker H. Characterization of an intronless collagen gene family in the marine sponge Microciona prolifera. Proc Natl Acad Sci U S A 1993; 90:7288-92. [PMID: 8346246 PMCID: PMC47122 DOI: 10.1073/pnas.90.15.7288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Two independent clones from the genomic DNA of a marine sponge Microciona prolifera were isolated by hybridization to the Caenorhabditis elegans Col-1 gene and one clone was obtained from genomic DNA by PCR. They contain open reading frames (MpCol1, MpCol2, MpCol3, MpCol4) capable of coding for a family of collagens different from those previously found in sponges. Southern blotting of genomic DNA suggested the presence of several other homologous genes. cDNA clones covering most of the triple-helical coding domain and the 3' untranslated region of MpCol1 were isolated by specific primers and reverse PCR. Two cDNA clones end in the middle of an AATAAA sequence 170 bp downstream from the translation stop codon of MpCol1. The putative NH2-terminal noncollagenous peptide is composed of only seven amino acid residues. The 1074-bp triple-helical coding region is not interrupted by intervening sequences. It codes for a polypeptide of 120 Gly-Xaa-Yaa triplets with only one short interruption near the COOH terminus. A putative N-glycosylation sequence (Asn-Gly-Ser), three Arg-Gly-Asp triplets known as cell recognition peptides, frequent Lys residues in the Yaa position (which are templates for hydroxylation), several Lys-Gly-Asn/Xaa-Arg peptides known as the lysyl oxidase recognition site, and long stretches without imino acids could be found within the triple-helical domain. The short COOH-terminal noncollagenous domain closely resembles that of nematode cuticular collagens and vertebrate nonfibrillar collagens. Our results strongly support the idea that the diversity of collagen genes and gene families found in higher organisms already existed in sponge.
Collapse
Affiliation(s)
- S Aho
- Research Laboratories, Alko Ltd., Helsinki, Finland
| | | | | | | |
Collapse
|
9
|
The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol 1990. [PMID: 1970117 DOI: 10.1128/mcb.10.5.2081] [Citation(s) in RCA: 192] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rol-6 gene is one of the more than 40 loci in Caenorhabditis elegans that primarily affect organismal morphology. Certain mutations in the rol-6 gene produce animals that have the right roller phenotype, i.e., they are twisted into a right-handed helix. The rol-6 gene interacts with another gene that affects morphology, sqt-1; a left roller allele of sqt-1 acts as a dominant suppressor of a right roller allele of rol-6. The sqt-1 gene has previously been shown to encode a collagen. We isolated and sequenced the rol-6 gene and found that it also encodes a collagen. The rol-6 gene was identified by physical mapping of overlapping chromosomal deficiencies that cover the gene and by identification of an allele-specific restriction site alteration. The amino acid sequence of the collagen encoded by rol-6 is more similar to that of the sqt-1 collagen than to any of the other ten C. elegans cuticle collagen sequences compared. The locations of cysteine residues flanking the Gly-X-Y repeat regions of rol-6 and sqt-1 are identical, but differ from those in the other collagens. The sequence similarities between rol-6 and sqt-1 indicate that they represent a new collagen subfamily in C. elegans. These findings suggest that these two collagens physically interact, possibly explaining the genetic interaction seen between the rol-6 and sqt-1 genes.
Collapse
|
10
|
Kramer JM, French RP, Park EC, Johnson JJ. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol 1990; 10:2081-9. [PMID: 1970117 PMCID: PMC360555 DOI: 10.1128/mcb.10.5.2081-2089.1990] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The rol-6 gene is one of the more than 40 loci in Caenorhabditis elegans that primarily affect organismal morphology. Certain mutations in the rol-6 gene produce animals that have the right roller phenotype, i.e., they are twisted into a right-handed helix. The rol-6 gene interacts with another gene that affects morphology, sqt-1; a left roller allele of sqt-1 acts as a dominant suppressor of a right roller allele of rol-6. The sqt-1 gene has previously been shown to encode a collagen. We isolated and sequenced the rol-6 gene and found that it also encodes a collagen. The rol-6 gene was identified by physical mapping of overlapping chromosomal deficiencies that cover the gene and by identification of an allele-specific restriction site alteration. The amino acid sequence of the collagen encoded by rol-6 is more similar to that of the sqt-1 collagen than to any of the other ten C. elegans cuticle collagen sequences compared. The locations of cysteine residues flanking the Gly-X-Y repeat regions of rol-6 and sqt-1 are identical, but differ from those in the other collagens. The sequence similarities between rol-6 and sqt-1 indicate that they represent a new collagen subfamily in C. elegans. These findings suggest that these two collagens physically interact, possibly explaining the genetic interaction seen between the rol-6 and sqt-1 genes.
Collapse
Affiliation(s)
- J M Kramer
- Department of Biological Sciences, University of Illinois, Chicago 60680
| | | | | | | |
Collapse
|
11
|
Politz SM, Philipp M, Estevez M, O'Brien PJ, Chin KJ. Genes that can be mutated to unmask hidden antigenic determinants in the cuticle of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 1990; 87:2901-5. [PMID: 1691498 PMCID: PMC53801 DOI: 10.1073/pnas.87.8.2901] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rabbit antisera directed against a mixture of proteins solubilized from the wild-type adult Caenorhabditis elegans cuticle were used to isolate mutants, induced by ethyl methanesulfonate treatment, that exhibit alterations in surface antigenicity by immunofluorescence. Genetic mapping and complementation data for four such mutations define two genes, srf-2(I) and srf-3(IV). The mutant phenotypes observed by immunofluorescence appear to result from unmasking of antigenic determinants that are normally hidden in the wild-type cuticle. In support of this hypothesis, surface radioiodination experiments indicate that components labeled on the wild-type surface are missing or less readily labeled on the surface of srf-2 and srf-3 mutants.
Collapse
Affiliation(s)
- S M Politz
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, MA 01609
| | | | | | | | | |
Collapse
|
12
|
Molecular cloning and sequencing of ama-1, the gene encoding the largest subunit of Caenorhabditis elegans RNA polymerase II. Mol Cell Biol 1989. [PMID: 2586513 DOI: 10.1128/mcb.9.10.4119] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two genomic sequences that share homology with Rp11215, the gene encoding the largest subunit of RNA polymerase II in Drosophila melanogaster, have been isolated from the nematode Caenorhabditis elegans. One of these sequences was physically mapped on chromosome IV within a region deleted by the deficiency mDf4, 25 kilobases (kb) from the left deficiency breakpoint. This position corresponds to ama-1 (resistance to alpha-amanitin), a gene shown previously to encode a subunit of RNA polymerase II. Northern (RNA) blotting and DNA sequencing revealed that ama-1 spans 10 kb, is punctuated by 11 introns, and encodes a 5.9-kb mRNA. A cDNA clone was isolated and partially sequenced to confirm the 3' end and several splice junctions. Analysis of the inferred 1,859-residue ama-1 product showed considerable identity with the largest subunit of RNAP II from other organisms, including the presence of a zinc finger motif near the amino terminus, and a carboxyl-terminal domain of 42 tandemly reiterated heptamers with the consensus Tyr Ser Pro Thr Ser Pro Ser. The latter domain was found to be encoded by four exons. In addition, the sequence oriented ama-1 transcription with respect to the genetic map. The second C. elegans sequence detected with the Drosophila probe, named rpc-1, was found to encode a 4.8-kb transcript and hybridized strongly to the gene encoding the largest subunit of RNA polymerase III from yeast, implicating rpc-1 as encoding the analogous peptide in the nematode. By contrast with ama-1, rpc-1 was not deleted by mDf4 or larger deficiencies examined, indicating that these genes are no closer than 150 kb. Genes flanking ama-1, including two collagen genes, also have been identified.
Collapse
|
13
|
Bird DM, Riddle DL. Molecular cloning and sequencing of ama-1, the gene encoding the largest subunit of Caenorhabditis elegans RNA polymerase II. Mol Cell Biol 1989; 9:4119-30. [PMID: 2586513 PMCID: PMC362490 DOI: 10.1128/mcb.9.10.4119-4130.1989] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two genomic sequences that share homology with Rp11215, the gene encoding the largest subunit of RNA polymerase II in Drosophila melanogaster, have been isolated from the nematode Caenorhabditis elegans. One of these sequences was physically mapped on chromosome IV within a region deleted by the deficiency mDf4, 25 kilobases (kb) from the left deficiency breakpoint. This position corresponds to ama-1 (resistance to alpha-amanitin), a gene shown previously to encode a subunit of RNA polymerase II. Northern (RNA) blotting and DNA sequencing revealed that ama-1 spans 10 kb, is punctuated by 11 introns, and encodes a 5.9-kb mRNA. A cDNA clone was isolated and partially sequenced to confirm the 3' end and several splice junctions. Analysis of the inferred 1,859-residue ama-1 product showed considerable identity with the largest subunit of RNAP II from other organisms, including the presence of a zinc finger motif near the amino terminus, and a carboxyl-terminal domain of 42 tandemly reiterated heptamers with the consensus Tyr Ser Pro Thr Ser Pro Ser. The latter domain was found to be encoded by four exons. In addition, the sequence oriented ama-1 transcription with respect to the genetic map. The second C. elegans sequence detected with the Drosophila probe, named rpc-1, was found to encode a 4.8-kb transcript and hybridized strongly to the gene encoding the largest subunit of RNA polymerase III from yeast, implicating rpc-1 as encoding the analogous peptide in the nematode. By contrast with ama-1, rpc-1 was not deleted by mDf4 or larger deficiencies examined, indicating that these genes are no closer than 150 kb. Genes flanking ama-1, including two collagen genes, also have been identified.
Collapse
Affiliation(s)
- D M Bird
- Division of Biological Sciences, University of Missouri, Columbia 65211
| | | |
Collapse
|
14
|
Fields C. Domain organization and intron positions in Caenorhabditis elegans collagen genes: the 54-bp module hypothesis revisited. J Mol Evol 1988; 28:55-63. [PMID: 3148742 DOI: 10.1007/bf02143497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The amino acid (aa) sequences of the polypeptides encoded by five collagen genes of the nematode Caenorhabditis elegans, col-6, col-7 (partial), col-8, col-14, and col-19, were determined. These collagen polypeptides, as well as those encoded by the previously sequenced C. elegans collagen genes col-1 and col-2, share a common organization into five domains: an amino-terminal leader, a short (30-33 aa) (Gly-X-Y)n domain, a non(Gly-X-Y) spacer, a long (127-132 aa) (Gly-X-Y)n domain, and a short carboxyl-terminal domain. The domain organizations and intron positions of these polypeptides were compared with those of the polypeptides encoded by Drosophila and Strongylocentrotus type IV, and vertebrate types I, II, III, IV, and IX collagen genes; the C. elegans collagen polypeptides are most similar to the vertebrate type IX collagens. It is suggested that the collagen gene family comprises two divergent subfamilies, one of which includes the vertebrate interstitial collagen genes, and the other of which includes the invertebrate collagen genes and the vertebrate type IV and type IX collagen genes. Only the vertebrate interstitial collagen genes display clear evidence of evolution via the tandem duplication of a 54-bp exon.
Collapse
Affiliation(s)
- C Fields
- Computing Research Laboratory, New Mexico State University, Las Cruces 88003-0001
| |
Collapse
|
15
|
Link CD, Graf-Whitsel J, Wood WB. Isolation and characterization of a nematode transposable element from Panagrellus redivivus. Proc Natl Acad Sci U S A 1987; 84:5325-9. [PMID: 3037542 PMCID: PMC298848 DOI: 10.1073/pnas.84.15.5325] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have isolated a transposable element, designated PAT-1, from the free-living nematode Panagrellus redivivus. P. redivivus strain C15 was found to have a high spontaneous mutation frequency compared to the standard Caenorhabditis elegans laboratory strain N2. To characterize the genetic lesions occurring in spontaneous C15 mutants, we molecularly cloned the homolog of the C. elegans unc-22 gene from wild-type P. redivivus and two strains carrying spontaneous mutations in this gene. One of these mutations resulted from the insertion of a 4.8-kilobase segment of repetitive DNA. This repetitive element (PAT-1) varies in copy number (10-50 copies) and location in different P. redivivus strains and is absent from C. elegans. The element could be useful as a transformation vector for C. elegans. Our approach is a general one that could be used to isolate additional nematode transposons from other species.
Collapse
|
16
|
Stage-specific patterns of collagen gene expression during development of Caenorhabditis elegans. Mol Cell Biol 1985. [PMID: 2983191 DOI: 10.1128/mcb.5.2.363] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Collagens are the major protein components of the Caenorhabditis elegans cuticle and are encoded by a large family of 40 to 150 closely related but nonidentical genes. We have determined temporal patterns of mRNA accumulation for a large number of collagen genes by screening recombinant phages and plasmids containing cloned collagen genes under high stringency conditions with 32P-labeled cDNA preparations specific for eggs or three postembryonic molts. We find that collagen mRNA levels are regulated both temporally and quantitatively during C. elegans development. Most genes studied exhibit one of four patterns of mRNA accumulation which correlate with changes in cuticle morphology and collagen protein composition during development. Our results suggest that, in general, there is a progressive activation of new collagen genes during normal development.
Collapse
|
17
|
Stage-specific patterns of collagen gene expression during development of Caenorhabditis elegans. Mol Cell Biol 1985; 5:363-72. [PMID: 2983191 PMCID: PMC366719 DOI: 10.1128/mcb.5.2.363-372.1985] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Collagens are the major protein components of the Caenorhabditis elegans cuticle and are encoded by a large family of 40 to 150 closely related but nonidentical genes. We have determined temporal patterns of mRNA accumulation for a large number of collagen genes by screening recombinant phages and plasmids containing cloned collagen genes under high stringency conditions with 32P-labeled cDNA preparations specific for eggs or three postembryonic molts. We find that collagen mRNA levels are regulated both temporally and quantitatively during C. elegans development. Most genes studied exhibit one of four patterns of mRNA accumulation which correlate with changes in cuticle morphology and collagen protein composition during development. Our results suggest that, in general, there is a progressive activation of new collagen genes during normal development.
Collapse
|