1
|
Georis I, Isabelle G, Tate JJ, Vierendeels F, Cooper TG, Dubois E. Premature termination of GAT1 transcription explains paradoxical negative correlation between nitrogen-responsive mRNA, but constitutive low-level protein production. RNA Biol 2016; 12:824-37. [PMID: 26259534 PMCID: PMC4615157 DOI: 10.1080/15476286.2015.1058476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The first step in executing the genetic program of a cell is production of mRNA. In yeast, almost every gene is transcribed as multiple distinct isoforms, differing at their 5′ and/or 3′ termini. However, the implications and functional significance of the transcriptome-wide diversity of mRNA termini remains largely unexplored. In this paper, we show that the GAT1 gene, encoding a transcriptional activator of nitrogen-responsive catabolic genes, produces a variety of mRNAs differing in their 5′ and 3′ termini. Alternative transcription initiation leads to the constitutive, low level production of 2 full length proteins differing in their N-termini, whereas premature transcriptional termination generates a short, highly nitrogen catabolite repression- (NCR-) sensitive transcript that, as far as we can determine, is not translated under the growth conditions we used, but rather likely protects the cell from excess Gat1.
Collapse
Affiliation(s)
| | - Georis Isabelle
- a Yeast Physiology ; Institut de Recherches Microbiologiques J. M. Wiame ; Laboratoire de Microbiologie Université Libre de Bruxelles ; Brussels , Belgium
| | | | | | | | | |
Collapse
|
2
|
Metzler B, Gfeller P, Guinet E. Restricting Glutamine or Glutamine-Dependent Purine and Pyrimidine Syntheses Promotes Human T Cells with High FOXP3 Expression and Regulatory Properties. THE JOURNAL OF IMMUNOLOGY 2016; 196:3618-30. [PMID: 27022197 DOI: 10.4049/jimmunol.1501756] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
T cell subsets differ in their metabolic requirements, and further insight into such differences might be harnessed to selectively promote regulatory T cells (Tregs) for therapies in autoimmunity and transplantation. We found that Gln restriction during human T cell activation favored CD4 T cells with high expression of the Treg transcription factor FOXP3. This resulted from shrinking numbers and reduced proliferation of activated FOXP3(lo/-)CD4 T cells while FOXP3(hi)CD4 T cell numbers increased. This gain was abolished by blocking Gln synthetase, an enzyme that responds to Gln and purine/pyrimidine deficiencies. The shift toward FOXP3(hi)CD4 T cells under Gln restriction was recapitulated with inhibitors of Gln-dependent pyrimidine and purine syntheses that together closely mimicked declining cell numbers and cell cycles, and by small interfering RNA knockdown of the respective rate-limiting Gln-consuming enzymes CAD and PPAT. FOXP3(hi)-enriched CD25(hi)CD4 T cells from these cultures inhibited proliferation, but they also produced effector cytokines, including IL-17A. The latter was largely confined to CTLA-4(hi)-expressing FOXP3(hi)-enriched CD25(hi)CD4 T cells that suppressed proliferation more weakly than did CTLA-4(lo/-)CD25(hi)FOXP3(hi)-enriched T cells. A causal link between high IL-17A production and impaired suppression of proliferation could not be demonstrated, however. Collectively, these results reveal a Gln synthetase-dependent increase and resilience of FOXP3(hi) cells under Gln restriction, and they demonstrate that impaired Gln-dependent nucleotide synthesis promotes FOXP3(hi) cells with regulator properties. It remains to be investigated to what extent the concomitant retention of IL-17A-producing CD4 T cells may limit the therapeutic potential of Tregs enriched through targeting these pathways in vivo.
Collapse
Affiliation(s)
- Barbara Metzler
- Department of Autoimmunity, Transplantation and Inflammation Research, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Patrick Gfeller
- Department of Autoimmunity, Transplantation and Inflammation Research, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Elisabeth Guinet
- Department of Autoimmunity, Transplantation and Inflammation Research, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| |
Collapse
|
3
|
Fayyad-Kazan M, Feller A, Bodo E, Boeckstaens M, Marini AM, Dubois E, Georis I. Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs. Mol Microbiol 2015; 99:360-79. [DOI: 10.1111/mmi.13236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Mohammad Fayyad-Kazan
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - A. Feller
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Microbiologie; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - E. Bodo
- Unité de Biotechnologie; 1070 Brussels Belgium
| | - M. Boeckstaens
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - A. M. Marini
- Laboratoire de Biologie du Transport Membranaire; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - E. Dubois
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
- Laboratoire de Microbiologie; Institut de Biologie et de Médecine Moléculaires; Université Libre de Bruxelles; 6041 Gosselies Belgium
| | - I. Georis
- Institut de Recherches Microbiologiques J.-M. Wiame; 1070 Brussels Belgium
| |
Collapse
|
4
|
Lee IR, Lim JWC, Ormerod KL, Morrow CA, Fraser JA. Characterization of an Nmr homolog that modulates GATA factor-mediated nitrogen metabolite repression in Cryptococcus neoformans. PLoS One 2012; 7:e32585. [PMID: 22470421 PMCID: PMC3314646 DOI: 10.1371/journal.pone.0032585] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/01/2012] [Indexed: 11/18/2022] Open
Abstract
Nitrogen source utilization plays a critical role in fungal development, secondary metabolite production and pathogenesis. In both the Ascomycota and Basidiomycota, GATA transcription factors globally activate the expression of catabolic enzyme-encoding genes required to degrade complex nitrogenous compounds. However, in the presence of preferred nitrogen sources such as ammonium, GATA factor activity is inhibited in some species through interaction with co-repressor Nmr proteins. This regulatory phenomenon, nitrogen metabolite repression, enables preferential utilization of readily assimilated nitrogen sources. In the basidiomycete pathogen Cryptococcus neoformans, the GATA factor Gat1/Are1 has been co-opted into regulating multiple key virulence traits in addition to nitrogen catabolism. Here, we further characterize Gat1/Are1 function and investigate the regulatory role of the predicted Nmr homolog Tar1. While GAT1/ARE1 expression is induced during nitrogen limitation, TAR1 transcription is unaffected by nitrogen availability. Deletion of TAR1 leads to inappropriate derepression of non-preferred nitrogen catabolic pathways in the simultaneous presence of favoured sources. In addition to exhibiting its evolutionary conserved role of inhibiting GATA factor activity under repressing conditions, Tar1 also positively regulates GAT1/ARE1 transcription under non-repressing conditions. The molecular mechanism by which Tar1 modulates nitrogen metabolite repression, however, remains open to speculation. Interaction between Tar1 and Gat1/Are1 was undetectable in a yeast two-hybrid assay, consistent with Tar1 and Gat1/Are1 each lacking the conserved C-terminus regions present in ascomycete Nmr proteins and GATA factors that are known to interact with each other. Importantly, both Tar1 and Gat1/Are1 are suppressors of C. neoformans virulence, reiterating and highlighting the paradigm of nitrogen regulation of pathogenesis.
Collapse
Affiliation(s)
- I. Russel Lee
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Jonathan W. C. Lim
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Kate L. Ormerod
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Carl A. Morrow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
5
|
Hernández H, Aranda C, Riego L, González A. Gln3-Gcn4 hybrid transcriptional activator determines catabolic and biosynthetic gene expression in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 2010; 404:859-64. [PMID: 21184740 DOI: 10.1016/j.bbrc.2010.12.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022]
Abstract
The yeast Saccharomyces cerevisiae is able to sense the availability and quality of nitrogen sources and the intrinsic variation of amino acid disponibility for protein synthesis. When this yeast is provided with secondary nitrogen sources, transcription of genes encoding enzymes involved in their catabolism is elicited through the action of Gln3, which constitutes the main activator of the Nitrogen Catabolite Repression network (NCR). Activation of genes encoding enzymes involved in the amino acid biosynthetic pathways is achieved through the action of the GCN4-encoded transcriptional modulator whose transcriptional activation is induced at the translational level by limitation for any amino acid. Thus the role of each one of these activators had been secluded to either catabolic or biosynthetic pathways. However, some observations have suggested that under peculiar physiological conditions, Gln3 and Gcn4 could act simultaneously in order to contemporaneously increase expression of both sets of genes. This paper addresses the question of whether Gln3 and Gcn4 cooperatively determine expression of their target genes. Results presented herein show that induced expression of catabolic and biosynthetic genes when cells are grown under nitrogen derepressive conditions and amino acid deprivation is dependent on the concurrent action of Gln3 and Gcn4, which form part of a unique transcriptional complex. We propose that the combination of Gln3 and Gcn4 results in the constitution of a hybrid modulator which elicits a novel transcriptional response, not evoked when these modulators act in a non-combinatorial fashion.
Collapse
Affiliation(s)
- Hugo Hernández
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, Mexico
| | | | | | | |
Collapse
|
6
|
Boer VM, Crutchfield CA, Bradley PH, Botstein D, Rabinowitz JD. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations. Mol Biol Cell 2009; 21:198-211. [PMID: 19889834 PMCID: PMC2801714 DOI: 10.1091/mbc.e09-07-0597] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microbes tailor their growth rate to nutrient availability. Here, we measured, using liquid chromatography-mass spectrometry, >100 intracellular metabolites in steady-state cultures of Saccharomyces cerevisiae growing at five different rates and in each of five different limiting nutrients. In contrast to gene transcripts, where approximately 25% correlated with growth rate irrespective of the nature of the limiting nutrient, metabolite concentrations were highly sensitive to the limiting nutrient's identity. Nitrogen (ammonium) and carbon (glucose) limitation were characterized by low intracellular amino acid and high nucleotide levels, whereas phosphorus (phosphate) limitation resulted in the converse. Low adenylate energy charge was found selectively in phosphorus limitation, suggesting the energy charge may actually measure phosphorus availability. Particularly strong concentration responses occurred in metabolites closely linked to the limiting nutrient, e.g., glutamine in nitrogen limitation, ATP in phosphorus limitation, and pyruvate in carbon limitation. A simple but physically realistic model involving the availability of these metabolites was adequate to account for cellular growth rate. The complete data can be accessed at the interactive website http://growthrate.princeton.edu/metabolome.
Collapse
Affiliation(s)
- Viktor M Boer
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
7
|
Ishida C, Aranda C, Valenzuela L, Riego L, Deluna A, Recillas-Targa F, Filetici P, López-Revilla R, González A. The UGA3-GLT1 intergenic region constitutes a promoter whose bidirectional nature is determined by chromatin organization in Saccharomyces cerevisiae. Mol Microbiol 2006; 59:1790-806. [PMID: 16553884 DOI: 10.1111/j.1365-2958.2006.05055.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription of an important number of divergent genes of Saccharomyces cerevisiae is controlled by intergenic regions, which constitute factual bidirectional promoters. However, few of such promoters have been characterized in detail. The analysis of the UGA3-GLT1 intergenic region has provided an interesting model to study the joint action of two global transcriptional activators that had been considered to act independently. Our results show that Gln3p and Gcn4p exert their effect upon cis-acting elements, which are shared in a bidirectional promoter. Accordingly, when yeast is grown on a low-quality nitrogen source, or under amino acid deprivation, the expression of both UGA3 and GLT1 is induced through the action of both these global transcriptional modulators that bind to a region of the bidirectional promoter. In addition, we demonstrate that chromatin organization plays a major role in the bidirectional properties of the UGA3-GLT1 promoter, through the action of an upstream Abf1p-binding consensus sequence and a polydAdT(tract). Mutations in these cis-elements differentially affect transcription of UGA3 and GLT1, and thus alter the overall relative expression. This is the first example of an intergenic region constituting a promoter whose bidirectional character is determined by chromatin organization.
Collapse
Affiliation(s)
- Cecilia Ishida
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ortega JL, Moguel-Esponda S, Potenza C, Conklin CF, Quintana A, Sengupta-Gopalan C. The 3' untranslated region of a soybean cytosolic glutamine synthetase (GS1) affects transcript stability and protein accumulation in transgenic alfalfa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:832-46. [PMID: 16460515 PMCID: PMC3881554 DOI: 10.1111/j.1365-313x.2005.02644.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Higher plants assimilate nitrogen in the form of ammonia through the concerted activity of glutamine synthetase (GS) and glutamate synthase (GOGAT). The GS enzyme is either located in the cytoplasm (GS1) or in the chloroplast (GS2). Glutamine synthetase 1 is regulated in different plants at the transcriptional level and there are some reports of regulation at the level of protein stability. Here we present data that clearly establish that GS1 in plants is also regulated at the level of transcript turnover and at the translational level. Using a Glycine max (soybean) GS1 transgene, with and without its 3' untranslated region (UTR), driven by the constitutive CaMV 35S promoter in Medicago sativa (alfalfa) and Nicotiana tabacum (tobacco), we show that the 3' UTR plays a major role in both transcript turnover and translation repression in both the leaves and the nodules. Our data suggest that the 3' UTR mediated turnover of the transcript is regulated by a nitrogen metabolite or carbon/nitrogen ratios. We also show that the 3' UTR of the gene for the soybean GS1 confers post-transcriptional regulation on a reporter gene. Our dissection of post-transcriptional and translational levels of regulation of GS in plants shows that the situation in plants strongly resembles that in other organisms where GS is regulated at almost all levels. Multistep regulation of GS shows the high priority given by organisms to regulating and ensuring optimal control of nitrogen substrates and preventing overproduction of glutamine and drainage of the glutamate pool.
Collapse
Affiliation(s)
| | | | - Carol Potenza
- Department of Agronomy and Horticulture, New Mexico State University, Las Cruces, NM 88003, USA
| | - Cristina F. Conklin
- Department of Agronomy and Horticulture, New Mexico State University, Las Cruces, NM 88003, USA
| | - Anita Quintana
- Department of Agronomy and Horticulture, New Mexico State University, Las Cruces, NM 88003, USA
| | - Champa Sengupta-Gopalan
- Department of Agronomy and Horticulture, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
9
|
Oliveira EMM, Martins AS, Carvajal E, Bon EPS. The role of the GATA factors Gln3p, Nil1p, Dal80p and the Ure2p on ASP3 regulation in Saccharomyces cerevisiae. Yeast 2003; 20:31-7. [PMID: 12489124 DOI: 10.1002/yea.930] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of Gln3p, Nil1p, Dal80p and Ure2p in the nitrogen regulation of ASP3, which codes for the periplasmic Saccharomyces cerevisiae asparaginase II, was investigated. Analysis of enzyme levels and mRNA(ASP3) in two wild-type strains and gln3, nil1, gln3nil1, gln3ure2, nil1ure2, nil1dal80, ure2, dal80 and ure2dal80 mutant cells allowed the study of the qualitative and quantitative regulatory role of the GATA factors and Ure2p on ASP3 expression. The simultaneous presence of Gln3p and Nil1p is a required condition for full gene transcription. Enzyme activity doubled upon nitrogen starvation of either ammonium-grown (possibly due to Nil2p/Deh1p derepression) or proline-grown (due to Dal80p derepression) cells. The ure2 mutation increased enzyme levels five-fold in fresh ammonium-grown cells and ten-fold in fresh proline-grown cells. The combined effects of the ure2 mutation and nitrogen starvation on ammonium- or proline-grown cells resulted in an overall 10-20-fold enzyme activity increase, respectively, in comparison with the wild-type cells.
Collapse
|
10
|
Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 2001; 21:4347-4368. [PMID: 11390663 DOI: 10.1128/mcb.21.13.4347-4368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
Starvation for amino acids induces Gcn4p, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. In an effort to identify all genes regulated by Gcn4p during amino acid starvation, we performed cDNA microarray analysis. Data from 21 pairs of hybridization experiments using two different strains derived from S288c revealed that more than 1,000 genes were induced, and a similar number were repressed, by a factor of 2 or more in response to histidine starvation imposed by 3-aminotriazole (3AT). Profiling of a gcn4Delta strain and a constitutively induced mutant showed that Gcn4p is required for the full induction by 3AT of at least 539 genes, termed Gcn4p targets. Genes in every amino acid biosynthetic pathway except cysteine and genes encoding amino acid precursors, vitamin biosynthetic enzymes, peroxisomal components, mitochondrial carrier proteins, and autophagy proteins were all identified as Gcn4p targets. Unexpectedly, genes involved in amino acid biosynthesis represent only a quarter of the Gcn4p target genes. Gcn4p also activates genes involved in glycogen homeostasis, and mutant analysis showed that Gcn4p suppresses glycogen levels in amino acid-starved cells. Numerous genes encoding protein kinases and transcription factors were identified as targets, suggesting that Gcn4p is a master regulator of gene expression. Interestingly, expression profiles for 3AT and the alkylating agent methyl methanesulfonate (MMS) overlapped extensively, and MMS induced GCN4 translation. Thus, the broad transcriptional response evoked by Gcn4p is produced by diverse stress conditions. Finally, profiling of a gcn4Delta mutant uncovered an alternative induction pathway operating at many Gcn4p target genes in histidine-starved cells.
Collapse
Affiliation(s)
- K Natarajan
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Kersten MA, Baars JJ, Op den Camp HJ, Van Griensven LJ, van der Drift C. Regulation of glutamine synthetase from the white button mushroom Agaricus bisporus. Arch Biochem Biophys 1999; 364:228-34. [PMID: 10190978 DOI: 10.1006/abbi.1999.1119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of glutamine synthetase (GS) from Agaricus bisporus was studied at the posttranscriptional level using a specific antibody fraction directed against purified GS. The cross-reactivity of the antiserum against various Agaricus species and other fungi was tested and low reactivity with the Ascomycetes was found. GS protein and activity levels were measured in cell-free extracts of mycelium grown on different N sources. In mycelium grown on glutamine or ammonium as N source, the biosynthetic GS activity is higher than the transferase activity. Moreover, the results show a correlation between GS biosynthetic activity, GS protein, and previously reported mRNA levels. Also, after addition of ammonium or glutamine to glutamate-utilizing cultures, transferase activity decreased more rapidly than biosynthetic activity and GS protein level. This suggests a conformational modification which only affects transferase activity.
Collapse
Affiliation(s)
- M A Kersten
- Department of Microbiology and Evolutionary Biology, Faculty of Science, University of Nijmegen, Toernooiveld 1, Nijmegen, NL-6525 ED, The Netherlands.
| | | | | | | | | |
Collapse
|
12
|
Smith V, Chou KN, Lashkari D, Botstein D, Brown PO. Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science 1996; 274:2069-74. [PMID: 8953036 DOI: 10.1126/science.274.5295.2069] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genetic footprinting was used to assess the phenotypic effects of Ty1 transposon insertions in 268 predicted genes of chromosome V of Saccharomyces cerevisiae. When seven selection protocols were used, Ty1 insertions in more than half the genes tested (157 of 268) were found to result in a detectable reduction in fitness. Results could not be obtained for fewer than 3 percent of the genes tested (7 of 268). Previously known mutant phenotypes were confirmed, and, for about 30 percent of the genes, new mutant phenotypes were identified.
Collapse
Affiliation(s)
- V Smith
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA. Medicine, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
13
|
Cunningham TS, Svetlov VV, Rai R, Smart W, Cooper TG. G1n3p is capable of binding to UAS(NTR) elements and activating transcription in Saccharomyces cerevisiae. J Bacteriol 1996; 178:3470-9. [PMID: 8655543 PMCID: PMC178115 DOI: 10.1128/jb.178.12.3470-3479.1996] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
When readily used nitrogen sources are available, the expression of genes encoding proteins needed to transport and metabolize poorly used nitrogen sources is repressed to low levels; this physiological response has been designated nitrogen catabolite repression (NCR). The cis-acting upstream activation sequence (UAS) element UAS(NTR) mediates Gln3p-dependent, NCR-sensitive transcription and consists of two separated dodecanucleotides, each containing the core sequence GATAA. Gln3p, produced in Escherichia coli and hence free of all other yeast proteins, specifically binds to wild-type UAS(NTR) sequences and DNA fragments derived from a variety of NCR-sensitive promoters (GDH2, CAR11 DAL3, PUT1, UGA4, and GLN1). A LexA-Gln3 fusion protein supported transcriptional activation when bound to one or more LexAp binding sites upstream of a minimal CYC1-derived promoter devoid of UAS elements. LexAp-Gln3p activation of transcription was largely independent of the nitrogen source used for growth. These data argue that Gln3p is capable of direct UAS(NTR) binding and participates in transcriptional activation of NCR-sensitive genes.
Collapse
Affiliation(s)
- T S Cunningham
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | | | | | | | |
Collapse
|
14
|
Melcher K, Rose M, Künzler M, Braus GH, Entian KD. Molecular analysis of the yeast SER1 gene encoding 3-phosphoserine aminotransferase: regulation by general control and serine repression. Curr Genet 1995; 27:501-8. [PMID: 7553933 DOI: 10.1007/bf00314439] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although serine and glycine are ubiquitous amino acids the genetic and biochemical regulation of their synthesis has not been studied in detail. The SER1 gene encodes 3-phosphoserine aminotransferase which catalyzes the formation of phosphoserine from 3-phosphohydroxy-pyruvate, which is obtained by oxidation of 3-phosphoglycerate, an intermediate of glycolysis. Saccharomyces cerevisiae cells provided with fermentable carbon sources mainly use this pathway (glycolytic pathway) to synthesize serine and glycine. We report the isolation of the SER1 gene by complementation and the disruption of the chromosomal locus. Sequence analysis revealed an open reading frame encoding a protein with a predicted molecular weight of 43,401 Da. A previously described mammalian progesterone-induced protein shares 47% similarity with SER1 over the entire protein, indicating a common function for both proteins. We demonstrate that SER1 transcription is regulated by the general control of amino-acid biosynthesis mediated by GCN4. Additionally, DNaseI protection experiments proved the binding of GCN4 protein to the SER1 promoter in vitro and three GCN4 recognition elements (GCREs) were identified. Furthermore, there is evidence for an additional regulation by serine end product repression.
Collapse
Affiliation(s)
- K Melcher
- Institute for Microbiology, University of Frankfurt, Germany
| | | | | | | | | |
Collapse
|
15
|
Ter Schure EG, Silljé HHW, Raeven LJRM, Boonstra J, Verkleij AJ, Verrips CT. Nitrogen-regulated transcription and enzyme activities in continuous cultures of Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 5):1101-1108. [PMID: 7773405 DOI: 10.1099/13500872-141-5-1101] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Variations in the transcription of nitrogen-regulated genes and in the activities of nitrogen-regulated enzymes of the yeast Saccharomyces cerevisiae were studied by changing the carbon and nitrogen fluxes. S. cerevisiae was grown in continuous culture at various dilution rates (D) under nitrogen limitation with NH4Cl as sole nitrogen source. With an increase in D from 0.05 to 0.29 h-1, both the glucose and the ammonia flux increased sixfold. The activities of the two ammonia-incorporating enzymes, NADPH-dependent glutamate dehydrogenase (NADPH-GDH) and glutamine synthetase (GS), encoded by GDH1 and GLN1, respectively, increased with increasing D, while the activity of the glutamate-degrading enzyme, NAD-dependent glutamate dehydrogenase (NAD-GDH), decreased. Surprisingly, no changes were observed in the transcription of GDH1 and GLN1; however increased D was accompanied by an increase in GAP1 transcription. At the metabolite level, the increase in the glucose and nitrogen flux did not result in changes in the intracellular 2-oxoglutarate, glutamate or glutamine concentrations. It is shown that growth on ammonia alone is not sufficient to cause repression of GAP1 and GLN1 transcription and that the regulation of GAP1 transcription and both NADPH-GDH and GS activity is not an on/off switch, but is gradually modulated in correlation with the ammonia concentration.
Collapse
Affiliation(s)
- Eelko G Ter Schure
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Herman H W Silljé
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Leon J R M Raeven
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Johannes Boonstra
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Arie J Verkleij
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - C Theo Verrips
- 2Unilever Research Laboratorium Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands
- 1Department of Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
16
|
Daugherty JR, Rai R, el Berry HM, Cooper TG. Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae. J Bacteriol 1993; 175:64-73. [PMID: 8416910 PMCID: PMC196097 DOI: 10.1128/jb.175.1.64-73.1993] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We demonstrate that expression of the UGA1, CAN1, GAP1, PUT1, PUT2, PUT4, and DAL4 genes is sensitive to nitrogen catabolite repression. The expression of all these genes, with the exception of UGA1 and PUT2, also required a functional GLN3 protein. In addition, GLN3 protein was required for expression of the DAL1, DAL2, DAL7, GDH1, and GDH2 genes. The UGA1, CAN1, GAP1, and DAL4 genes markedly increased their expression when the DAL80 locus, encoding a negative regulatory element, was disrupted. Expression of the GDH1, PUT1, PUT2, and PUT4 genes also responded to DAL80 disruption, but much more modestly. Expression of GLN1 and GDH2 exhibited parallel responses to the provision of asparagine and glutamine as nitrogen sources but did not follow the regulatory responses noted above for the nitrogen catabolic genes such as DAL5. Steady-state mRNA levels of both genes did not significantly decrease when glutamine was provided as nitrogen source but were lowered by the provision of asparagine. They also did not respond to disruption of DAL80.
Collapse
Affiliation(s)
- J R Daugherty
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163
| | | | | | | |
Collapse
|
17
|
Minehart PL, Magasanik B. Sequence of the GLN1 gene of Saccharomyces cerevisiae: role of the upstream region in regulation of glutamine synthetase expression. J Bacteriol 1992; 174:1828-36. [PMID: 1347768 PMCID: PMC205784 DOI: 10.1128/jb.174.6.1828-1836.1992] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GLN1 gene, encoding glutamine synthetase in Saccharomyces cerevisiae, was sequenced, and its encoded polypeptide was shown to have significant homology to other eukaryotic glutamine synthetases. S1 analysis has defined the transcriptional start site of the gene. Upstream analysis of the gene using lacZ fusions has verified transcriptional control of the gene and has identified a nitrogen upstream activation sequence which is required for the increased transcription of GLN1 seen when glutamine is replaced by glutamate as the nitrogen source. cis-acting sites required for the increased transcription in response to purine starvation also have been localized.
Collapse
Affiliation(s)
- P L Minehart
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139-4307
| | | |
Collapse
|
18
|
Kolanus J, Michalczyk J, Flint HJ, Barthelmess IB. Restricted activation of general amino acid control under conditions of glutamine limitation in Neurospora crassa. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:443-8. [PMID: 2148607 DOI: 10.1007/bf00264452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In Neurospora crassa limitation for single amino acids normally results in increased formation of enzymes required for amino acid synthesis via 'general amino acid control'. Glutamine limitation, however, led to comparatively low and delayed derepression of enzyme synthesis. Nitrate reductase activity increased steeply under these conditions confirming that de novo protein synthesis could occur. Derepression levels were unaffected by addition of glutamine-derived metabolites. Only small and delayed increases in mRNA levels occurred for the anabolic enzyme genes arg-12, his-3 and trp-1 under conditions of glutamine limitation in contrast to the immediate and far larger increase found on histidine limitation. The trans-acting regulatory gene of general amino acid control in Neurospora, cpc-1, responded with a significant increase in mRNA level to histidine and to glutamine limitation. The restricted response of the amino acid synthesis genes could imply a post-transcriptional block to the positive regulatory function of cpc-1 under condition of glutamine limitation. The results suggest that the expression of general amino acid control is restricted under conditions of inadequate nitrogen supply.
Collapse
Affiliation(s)
- J Kolanus
- Institut für Angewandte Genetik, Universität Hannover, Federal Republic of Germany
| | | | | | | |
Collapse
|
19
|
Barthelmess IB, Kolanus J. The range of amino acids whose limitation activates general amino-acid control in Neurospora crassa. Genet Res (Camb) 1990; 55:7-12. [PMID: 2138581 DOI: 10.1017/s0016672300025131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several amino-acid synthetic enzymes, belonging to arginine, glutamine, leucine, lysine and phenylalanine biosynthesis, respectively, were investigated under conditions of reduced availability of any one of 16 out of the 20 amino acids represented in proteins. The enzymes showed simultaneous derepression under each condition, albeit to different degrees. Derepression was abolished and the remaining basal enzyme levels reduced by mutations at the cpc-1 locus which governs general amino-acid control in Neurospora. Glutamine synthetase was shown to be under cpc-1 and additional controls. The evidence emphasizes the global nature of general amino-acid control.
Collapse
|
20
|
Hinnebusch AG. Transcriptional and translational regulation of gene expression in the general control of amino-acid biosynthesis in Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 38:195-240. [PMID: 2183294 DOI: 10.1016/s0079-6603(08)60712-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- A G Hinnebusch
- Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
21
|
Benjamin PM, Wu JI, Mitchell AP, Magasanik B. Three regulatory systems control expression of glutamine synthetase in Saccharomyces cerevisiae at the level of transcription. MOLECULAR & GENERAL GENETICS : MGG 1989; 217:370-7. [PMID: 2570348 DOI: 10.1007/bf02464906] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The GLN1 gene of Saccharomyces cerevisiae was cloned by complementation of a gln1 auxotroph. A GLN1-lacZ fusion was constructed to assay GLN1 promoter activity. beta-Galactosidase and glutamine synthetase expression in chromosomally integrated GLN1-lacZ fusion strains were co-regulated in response to a shift from glutamine to glutamate as the nitrogen source, purine limitation, and 3-aminotriazole-induced histidine starvation. Regulation of GLN1 expression by each of the three pathways occurred at the transcriptional level. Increased accumulation of GLN1 mRNA was observed within 5 min after a shift from glutamine to glutamate as the nitrogen source. After 5 min, GLN1 mRNA levels were constant. The level of GLN1 transcript was reduced by approximately 75% within 5 min following glutamine addition to the cells growing with glutamate as nitrogen source. This indicates that the GLN1 message is unstable and has a half-life of approximately 3 min. Deletion analysis indicated that the sequences required for GLN1 expression are located within approximately 350 bp upstream from the transcriptional initiation site.
Collapse
Affiliation(s)
- P M Benjamin
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
22
|
Hinnebusch AG. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 1988; 52:248-73. [PMID: 3045517 PMCID: PMC373138 DOI: 10.1128/mr.52.2.248-273.1988] [Citation(s) in RCA: 301] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Hinnebusch AG. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 1988; 52:248-273. [PMID: 3045517 DOI: 10.1128/mmbr.52.2.248-273.1988] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
24
|
Courchesne WE, Magasanik B. Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J Bacteriol 1988; 170:708-13. [PMID: 2892826 PMCID: PMC210712 DOI: 10.1128/jb.170.2.708-713.1988] [Citation(s) in RCA: 142] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutations in the GLN3 gene prevented a normal increase in the NAD-glutamate dehydrogenase and glutamine synthetase levels in glutamate-grown Saccharomyces cerevisiae cells, whereas mutations in the URE2 gene resulted in high levels of these enzymes in glumate- and glutamine-grown cells. A ure2 gln3 double mutant had low levels of glutamate dehydrogenase and glutamine synthetase in cells grown on glutamate and glutamine; thus, gln3 mutations were epistatic to the ure2 mutations. The results suggest that the GLN3 product is capable of promoting increases in enzyme levels in the absence of a functional URE2 product and that the URE2 product antagonizes the GLN3 product. The URE2 and GLN3 genes were also found to regulate the level of arginase activity. This regulation is completely independent of the regulation of arginase by substrate induction. The activities of glutamate dehydrogenase, glutamine synthetase, and arginase were higher in cells grown on glutamate as the nitrogen source than they were in cells grown under a nitrogen-limiting condition. It had previously been shown that the levels of these enzymes can be increased by glutamine deprivation. We propose that the URE2-GLN3 system regulates enzyme synthesis, in response to glutamine and glutamate, to adjust the intracellular concentration of ammonia so as to maintain glutamine at the level required for optimal growth.
Collapse
Affiliation(s)
- W E Courchesne
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
25
|
Hinnebusch AG. The general control of amino acid biosynthetic genes in the yeast Saccharomyces cerevisiae. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1986; 21:277-317. [PMID: 3536302 DOI: 10.3109/10409238609113614] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Enzymes in diverse amino acid biosynthetic pathways in Saccharomyces cerevisiae are subject to a general amino acid control in which starvation for any amino acid leads to increased levels of the mRNAs encoding these enzymes. The short nucleotide sequence TGACTC, found nontandemly repeated upstream from the coregulated structural genes, serves as a cis-acting site for positive regulation of transcription. Multiple trans-acting repressors and activators have been identified. Most of these factors act indirectly by regulating the level of an activator encoded by the GCN4 gene. This regulation occurs at the level of GCN4 translation and is mediated by sequences in the long 5' leader of GCN4 mRNA. The GCN4 protein is the most likely candidate for the transcriptional activator that interacts with the TGACTC sequences at the structural genes.
Collapse
|