1
|
Capella Roca B, Lao N, Barron N, Doolan P, Clynes M. An arginase-based system for selection of transfected CHO cells without the use of toxic chemicals. J Biol Chem 2019; 294:18756-18768. [PMID: 31666335 DOI: 10.1074/jbc.ra119.011162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/29/2019] [Indexed: 11/06/2022] Open
Abstract
Polyamines have essential roles in cell proliferation, DNA replication, transcription, and translation processes, with intracellular depletion of putrescine, spermidine, and spermine resulting in cellular growth arrest and eventual death. Serum-free media for CHO-K1 cells require putrescine supplementation, because these cells lack the first enzyme of the polyamine production pathway, arginase. On the basis of this phenotype, we developed an arginase-based selection system. We transfected CHO-K1 cells with a bicistronic vector co-expressing GFP and arginase and selected cells in media devoid of l-ornithine and putrescine, resulting in mixed populations stably expressing GFP. Moreover, single clones in these selective media stably expressed GFP for a total of 42 generations. Using this polyamine starvation method, we next generated recombinant CHO-K1 cells co-expressing arginase and human erythropoietin (hEPO), which also displayed stable expression and healthy growth. The hEPO-expressing clones grew in commercial media, such as BalanCD and CHO-S serum-free media (SFM)-II, as well as in a defined serum-free, putrescine-containing medium for at least 9 passages (27 generations), with a minimal decrease in hEPO titer by the end of the culture. We observed a lack of arginase activity also in several CHO cell strains (CHO-DP12, CHO-S, and DUXB11) and other mammalian cell lines, including BHK21, suggesting broader utility of this selection system. In conclusion, we have established an easy-to-apply alternative selection system that effectively generates mammalian cell clones expressing biopharmaceutically relevant or other recombinant proteins without the need for any toxic selective agents. We propose that this system is applicable to mammalian cell lines that lack arginase activity.
Collapse
Affiliation(s)
- Berta Capella Roca
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland; SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland.
| | - Nga Lao
- National Institute for Bioprocessing Research & Training, A94 X099 Dublin, Ireland
| | - Niall Barron
- National Institute for Bioprocessing Research & Training, A94 X099 Dublin, Ireland; School of Chemical & Bioprocessing Engineering, University College Dublin, Belfield, Dublin 4, D04V1W8, Ireland
| | - Padraig Doolan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland; SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
2
|
Brabender J, Lord RV, Danenberg KD, Metzger R, Schneider PM, Uetake H, Kawakami K, Park JM, Salonga D, Peters JH, DeMeester TR, Hölscher AH, Danenberg PV. Upregulation of ornithine decarboxylase mRNA expression in Barrett's esophagus and Barrett's-associated adenocarcinoma. J Gastrointest Surg 2001; 5:174-81; discussion 182. [PMID: 11331481 DOI: 10.1016/s1091-255x(01)80031-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Barrett's multistage process is characterized histopathologically by progression from Barrett's intestinal metaplasia to Barrett's esophagus with dysplasia and ultimately adenocarcinoma. Understanding the cellular and molecular events in this multistage process may contribute to improved diagnosis and treatment. Ornithine decarboxylase (ODC) is the first enzyme in the biosynthesis of polyamines. Elevated ODC activity has been found to be associated with progression during Barrett's esophagus, but the regulation of ODC gene expression in the development of Barrett's-associated adenocarcinoma has not been reported. The aim of this study was to assess the prevalence and timing of ODC mRNA expression in the Barrett's metaplasia-dysplasia-adenocarcinoma sequence. ODC mRNA expression levels, relative to the stably expressed internal reference gene beta-actin, were measured using a quantitative reverse transcription-polymerase chain reaction (RT-PCR) method (ABI 7700 Sequence Detector System) in 104 specimens from 19 patients with Barrett's esophagus without carcinoma and 22 patients with Barrett's-associated adenocarcinoma. The median ODC mRNA expression levels were significantly increased in Barrett's esophagus tissues compared to matched normal tissues in patients without adenocarcinoma of the esophagus (P = 0.002; Wilcoxon test). A significant progressive increase in ODC mRNA expression was detectable through the stages of the metaplasia-dysplasia-carcinoma sequence in patients with Barrett's-associated adenocarcinoma (r = 0.719; P < or = 0.001; Spearman's rho test). These findings show that upregulation of ODC mRNA expression is an early event in the development and progression of Barrett's-associated adenocarcinoma of the esophagus, and they suggest that high ODC mRNA expression levels may be a clinically useful biomarker for the detection of occult adenocarcinoma
Collapse
Affiliation(s)
- J Brabender
- Department of Biochemistry and Molecular Biology/Norris Comprehensive Cancer Research Center, University of Southern California Keck School of Medicine, Los Angeles, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
von Besser H, Niemann G, Domdey B, Walter RD. Molecular cloning and characterization of ornithine decarboxylase cDNA of the nematode Panagrellus redivivus. Biochem J 1995; 308 ( Pt 2):635-40. [PMID: 7772052 PMCID: PMC1136973 DOI: 10.1042/bj3080635] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In a PCR with degenerate primers encoding highly conserved amino acids within ornithine decarboxylases (ODCs) of several organisms, a fragment of the ODC gene of the free-living nematode Panagrellus redivivus was isolated. Northern blot analysis revealed a single 1.7 kb transcript in a mixed-stage population of animals. From this RNA source, a cDNA library was constructed and screened with the PCR fragment. Several cDNA clones were isolated, one of which encodes the complete 435-amino-acid ODC enzyme with a calculated molecular mass of 47.1 kDa. The P. redivivus ODC possesses 126 of the 136 highly conserved amino acids in the enzymes from fungi, invertebrates and vertebrates. Functional amino acids are conserved, suggesting that the two active sites of the P. redivivus ODC are formed at the interface of a homodimer, as described for mammalian ODCs.
Collapse
Affiliation(s)
- H von Besser
- Bernhard Nochi Institute for Tropical Medicine, Department of Biochemistry, Hamburg, Germany
| | | | | | | |
Collapse
|
4
|
Byers TL, Wiest L, Wechter RS, Pegg AE. Effects of chronic 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxy- adenosine (AbeAdo) treatment on polyamine and eIF-5A metabolism in AbeAdo-sensitive and -resistant L1210 murine leukaemia cells. Biochem J 1993; 290 ( Pt 1):115-21. [PMID: 8439281 PMCID: PMC1132389 DOI: 10.1042/bj2900115] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have previously reported that prolonged chronic exposure to the S-adenosyl-L-methionine decarboxylase (AdoMetDC) inhibitor, 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxy-adenosine (MDL 73811, AbeAdo), leads to cytostasis of L1210 cells [Byers, Ganem and Pegg (1992) Biochem. J. 287, 717-724]. Further studies to investigate the mechanism by which these effects are brought about were carried out by comparing an L1210-derived cell line (R20) that is resistant to AbeAdo with the parent cells. The R20 cells were derived by two rounds of AbeAdo-induced cytostasis followed by rescue with exogenous polyamines. Cytostasis was induced in L1210 cells treated for 12 days with 10 microM AbeAdo; however, exposure to up to 40 microM AbeAdo did not induce cytostasis in R20 cells. Putrescine levels were elevated and spermine levels were depleted in both treated L1210 and treated R20 cells. Spermidine was depleted in treated L1210 cells but was only partly reduced in treated R20 cells. AdoMetDC activity was below the limit of detection in treated L1210 cells but, although greatly reduced, could be measured in the treated R20 cells. The resistance of the R20 cells to the effects of AbeAdo on cell growth and spermidine depletion correlated with reduced AbeAdo accumulation by R20 cells. In the absence of spermidine synthesis, unhypusinated eukaryotic translation initiation factor 5A (eIF-5A) accumulated in AbeAdo-treated L1210 cells. There was no detectable accumulation of unhypusinated eIF-5A in R20 cells. Unhypusinated eIF-5A accumulated during AbeAdo treatment was depleted in L1210 cells rescued by exogenous spermidine. These findings are consistent with the hypothesis that AbeAdo-induced cytostasis is due to the loss of hypusinated eIF-5A. However, spermine was able to rescue AbeAdo-treated L1210 cells without significantly reducing the unhypusinated eIF-5A accumulated during AbeAdo treatment, suggesting that only a small amount of the unmodified protein must be hypusinated to restore cell growth.
Collapse
Affiliation(s)
- T L Byers
- Department of Cellular and Molecular Physiology, M. S. Hershey Medical Center, Hershey, PA 17033
| | | | | | | |
Collapse
|
5
|
Silber JR, Galick H, Wu JM, Siperstein MD. The effect of mevalonic acid deprivation on enzymes of DNA replication in cells emerging from quiescence. Biochem J 1992; 288 ( Pt 3):883-9. [PMID: 1281982 PMCID: PMC1131969 DOI: 10.1042/bj2880883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have investigated the biochemical basis of the mevalonate dependence of DNA replication. Stimulating quiescent rat hepatoma cells to proliferate in the presence of compactin, an inhibitor of mevalonate synthesis, prevented DNA replication in as many as 80% of these cells. The percentage of cells that failed to replicate DNA increased with the increased duration of quiescence. Aphidicolin-sensitive DNA polymerase and ornithine decarboxylase activities were selectively decreased in compactin-treated cells, whereas RNA and protein synthesis, the level of dihydrofolate reductase and aphidicolin-resistant DNA polymerase activity were unaffected. Adding putrescine, the product of ornithine decarboxylase and the precursor of other polyamines, did not restore DNA replication. Our results demonstrate that the decreased activities of at least two DNA-replication enzymes are among the proximal causes of the failure of mevalonate-deprived cells to synthesize DNA. More importantly, our data indicate that a mevalonate-dependent factor(s) is progressively depleted during quiescence, and that inability to resynthesize this factor(s) may be the ultimate cause of the failure of resting cells to replicate DNA when stimulated to proliferate in the absence of mevalonate.
Collapse
Affiliation(s)
- J R Silber
- Department of Medicine, University of California, San Francisco
| | | | | | | |
Collapse
|
6
|
Byers TL, Ganem B, Pegg AE. Cytostasis induced in L1210 murine leukaemia cells by the S-adenosyl-L-methionine decarboxylase inhibitor 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine may be due to hypusine depletion. Biochem J 1992; 287 ( Pt 3):717-24. [PMID: 1445235 PMCID: PMC1133067 DOI: 10.1042/bj2870717] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of inhibition of the capacity to form spermidine and spermine on cell growth were investigated using murine leukaemia L1210 cells and 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine (MDL 73811, AbeAdo), an enzyme-activated irreversible inhibitor of S-adenosyl-L-methionine decarboxylase. Putrescine levels were increased 80-fold, and spermidine and spermine levels were greatly reduced after a 3-day exposure to a maximally inhibitory dose of 10 microM-AbeAdo. Addition of AbeAdo to the culture medium inhibited the growth of L1210 cells measured 3 days later in a dose-dependent manner, but, even at a dose of 10 microM, which was maximally effective, exposure to AbeAdo was not immediately cytostatic. However, the growth rate of L1210 cells chronically exposed to 10 microM-AbeAdo declined steadily until day 12, when the cells stopped growing. L1210 cells exposed to AbeAdo for 12 days could not be rescued from cytostasis by removal of the drug from the culture, but could be rescued by exposure to exogenous spermidine or spermine, indicating that the growth-inhibitory effects of AbeAdo were a result of spermidine and/or spermine depletion. It is suggested that elevated intracellular putrescine in AbeAdo-treated cells sustained limited growth in the absence of physiological levels of spermidine and spermine until certain critical and specific physiological role(s) fulfilled by spermidine (and/or spermine) became deficient resulting in cytostasis. N-(3-Aminopropyl)-1,4-diamino-cis-but-2-ene, a spermidine analogue that is a substrate for deoxyhypusine synthase, was able to mimic the effects of spermidine in reversing AbeAdo-induced cytostasis. Spermidine analogues such as 5,5-dimethylspermidine, which are not substrates for deoxyhypusine synthase, were not active in this way. These results provide evidence that the formation of hypusine in the protein-synthesis initiation factor eIF-5A may be a critical role of spermidine essential for cell growth.
Collapse
Affiliation(s)
- T L Byers
- Department of Cellular and Molecular Physiology, M.S. Hershey Medical Center, Hershey, PA 17033
| | | | | |
Collapse
|
7
|
Davis RH, Morris DR, Coffino P. Sequestered end products and enzyme regulation: the case of ornithine decarboxylase. Microbiol Rev 1992; 56:280-90. [PMID: 1620066 PMCID: PMC372868 DOI: 10.1128/mr.56.2.280-290.1992] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The polyamines (putrescine, spermidine, and spermine) are synthesized by almost all organisms and are universally required for normal growth. Ornithine decarboxylase (ODC), an initial enzyme of polyamine synthesis, is one of the most highly regulated enzymes of eucaryotic organisms. Unusual mechanisms have evolved to control ODC, including rapid, polyamine-mediated turnover of the enzyme and control of the synthetic rate of the protein without change of its mRNA level. The high amplitude of regulation and the rapid variation in the level of the protein led biochemists to infer that polyamines had special cellular roles and that cells maintained polyamine concentrations within narrow limits. This view was sustained in part because of our continuing uncertainty about the actual biochemical roles of polyamines. In this article, we challenge the view that ODC regulation is related to precise adjustment of polyamine levels. In no organism does ODC display allosteric feedback inhibition, and in three types of organism, bacteria, fungi, and mammals, the size of polyamine pools may vary radically without having a profound effect on growth. We suggest that the apparent stability of polyamine pools in unstressed cells is due to their being largely bound to cellular polyanions. We further speculate that allosteric feedback inhibition, if it existed, would be inappropriately responsive to changes in the small, freely diffusible polyamine pool. Instead, mechanisms that control the amount of the ODC protein have appeared in most organisms, and even these are triggered inappropriately by variation of the binding of polyamines to ionic binding sites. In fact, feedback inhibition of ODC might be maladaptive during hypoosmotic stress or at the onset of growth, when organisms appear to require rapid increases in the size of their cellular polyamine pools.
Collapse
Affiliation(s)
- R H Davis
- Department of Molecular Biology & Biochemistry, University of California, Irvine 92717
| | | | | |
Collapse
|
8
|
Deprivation of a single amino acid induces protein synthesis-dependent increases in c-jun, c-myc, and ornithine decarboxylase mRNAs in Chinese hamster ovary cells. Mol Cell Biol 1990. [PMID: 2122233 DOI: 10.1128/mcb.10.11.5814] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes of higher eucaryotic cells are considered to show only a limited response to nutritional stress. Here we show, however, that omission of a single essential amino acid from the medium caused a marked rise in the mRNA levels of c-myc, c-jun, junB and c-fos oncogenes and ornithine decarboxylase (ODC) in CHO cells. There was no general accumulation of mRNAs in amino acid-starved cells, since the gamma-actin, beta-tubulin, protein kinase C, RNA polymerase II, and glyceraldehyde-3-phosphate dehydrogenase mRNAs and the total poly(A)+ mRNA were not increased. The levels of c-myc, ODC, and c-jun mRNAs were elevated more by amino acid starvation than by inhibition of protein synthesis with cycloheximide, which is known to increase the levels of these mRNAs. Importantly, however, cycloheximide present during amino acid starvation reduced the rise in the levels of the mRNAs down to the level obtained with cycloheximide alone. This implies that protein synthesis is required for the accumulation of c-myc, ODC, and c-jun mRNAs in amino acid-deprived cells. The junB and c-fos mRNAs, instead, were increased to the same extent or less by amino acid starvation than by cycloheximide treatment. The accumulation of the c-myc mRNA in amino acid-starved cells was due to both stabilization of the mRNA and increase of its transcription. The rise in the c-jun mRNA level seemed to be caused merely by stabilization of the mRNA. Further, despite the inhibition of general protein synthesis, amino acid starvation led to an increase in the synthesis of c-myc polypeptide. The results suggest that mammalian cells have a specific mechanism for registering shortages of amino acids in order to make adjustments compatible with cellular growth.
Collapse
|
9
|
Pohjanpelto P, Hölttä E. Deprivation of a single amino acid induces protein synthesis-dependent increases in c-jun, c-myc, and ornithine decarboxylase mRNAs in Chinese hamster ovary cells. Mol Cell Biol 1990; 10:5814-21. [PMID: 2122233 PMCID: PMC361362 DOI: 10.1128/mcb.10.11.5814-5821.1990] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genes of higher eucaryotic cells are considered to show only a limited response to nutritional stress. Here we show, however, that omission of a single essential amino acid from the medium caused a marked rise in the mRNA levels of c-myc, c-jun, junB and c-fos oncogenes and ornithine decarboxylase (ODC) in CHO cells. There was no general accumulation of mRNAs in amino acid-starved cells, since the gamma-actin, beta-tubulin, protein kinase C, RNA polymerase II, and glyceraldehyde-3-phosphate dehydrogenase mRNAs and the total poly(A)+ mRNA were not increased. The levels of c-myc, ODC, and c-jun mRNAs were elevated more by amino acid starvation than by inhibition of protein synthesis with cycloheximide, which is known to increase the levels of these mRNAs. Importantly, however, cycloheximide present during amino acid starvation reduced the rise in the levels of the mRNAs down to the level obtained with cycloheximide alone. This implies that protein synthesis is required for the accumulation of c-myc, ODC, and c-jun mRNAs in amino acid-deprived cells. The junB and c-fos mRNAs, instead, were increased to the same extent or less by amino acid starvation than by cycloheximide treatment. The accumulation of the c-myc mRNA in amino acid-starved cells was due to both stabilization of the mRNA and increase of its transcription. The rise in the c-jun mRNA level seemed to be caused merely by stabilization of the mRNA. Further, despite the inhibition of general protein synthesis, amino acid starvation led to an increase in the synthesis of c-myc polypeptide. The results suggest that mammalian cells have a specific mechanism for registering shortages of amino acids in order to make adjustments compatible with cellular growth.
Collapse
Affiliation(s)
- P Pohjanpelto
- Department of Virology, University of Helsinki, Finland
| | | |
Collapse
|
10
|
Rosen CF, Gajic D, Jia Q, Drucker DJ. Ultraviolet B radiation induction of ornithine decarboxylase gene expression in mouse epidermis. Biochem J 1990; 270:565-8. [PMID: 2241891 PMCID: PMC1131769 DOI: 10.1042/bj2700565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cellular effects of u.v. radiation have been studied by using a hairless-mouse model in vivo. U.v. B radiation (u.v.B) induced the activity of the enzyme ornithine decarboxylase (ODC) in mouse epidermis. Maximal induction was noted after radiation with 90 mJ/cm2, and increased ODC activity was first detected 2 h after u.v.B exposure. U.v.B. also induced the expression of the ODC gene in a time- and dose-dependent manner, but did not induce the levels of actin mRNA transcripts. Cycloheximide treatment did not alter basal levels of ODC mRNA transcripts and had no effect on the u.v.B induction of ODC-gene expression. The results of these experiments demonstrate that u.v.B radiation induces both the expression of the ODC gene and the activity of the enzyme, and provides a useful 'in vivo' paradigm for the analysis of the molecular effects of u.v.B radiation.
Collapse
Affiliation(s)
- C F Rosen
- Department of Medicine, Women's College Hospital, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
11
|
Nagarajan S, Ganem B, Pegg AE. Studies of non-metabolizable polyamines that support growth of SV-3T3 cells depleted of natural polyamines by exposure to alpha-difluoromethylornithine. Biochem J 1988; 254:373-8. [PMID: 3140800 PMCID: PMC1135087 DOI: 10.1042/bj2540373] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A number of synthetic polyamine derivatives that included five achiral gem-dimethylspermidines and two analogous tetramethylated spermines were tested for their abilities to serve as substrates for enzymes metabolizing polyamines and for their capacities to substitute for the natural polyamines in cell growth. It was found that none of the compounds were effective substrates for spermine synthase, and only one, namely 8,8-dimethylspermidine, was a substrate for spermidine/spermine N1-acetyltransferase. However, all of the spermidine derivatives and 1,1,12,12-tetramethylspermine were able to support the growth of SV-3T3 cells in which endogenous polyamine synthesis was prevented by the addition of alpha-difluoromethylornithine. These results suggest that either spermidine or spermine can support cell growth without the need for metabolic interconversion. In contrast with the result with 1,1,12,12-tetramethylspermine, 3,3,10,10-tetramethylspermine did not restore growth of polyamine-depleted SV-3T3 cells. Comparison of the properties of these derivatives may prove valuable in understanding the physiological role of polyamines.
Collapse
Affiliation(s)
- S Nagarajan
- Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, NY 14853
| | | | | |
Collapse
|
12
|
|