1
|
Subramania S, Gagné LM, Campagne S, Fort V, O'Sullivan J, Mocaer K, Feldmüller M, Masson JY, Allain FHT, Hussein SM, Huot MÉ. SAM68 interaction with U1A modulates U1 snRNP recruitment and regulates mTor pre-mRNA splicing. Nucleic Acids Res 2019; 47:4181-4197. [PMID: 30767021 PMCID: PMC6486544 DOI: 10.1093/nar/gkz099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Src associated in mitosis (SAM68) plays major roles in regulating RNA processing events, such as alternative splicing and mRNA translation, implicated in several developmental processes. It was previously shown that SAM68 regulates the alternative splicing of the mechanistic target of rapamycin (mTor), but the mechanism regulating this process remains elusive. Here, we report that SAM68 interacts with U1 small nuclear ribonucleoprotein (U1 snRNP) to promote splicing at the 5′ splice site in intron 5 of mTor. We also show that this direct interaction is mediated through U1A, a core-component of U1snRNP. SAM68 was found to bind the RRM1 domain of U1A through its C-terminal tyrosine rich region (YY domain). Deletion of the U1A-SAM68 interaction domain or mutation in SAM68-binding sites in intron 5 of mTor abrogates U1A recruitment and 5′ splice site recognition by the U1 snRNP, leading to premature intron 5 termination and polyadenylation. Taken together, our results provide the first mechanistic study by which SAM68 modulates alternative splicing decision, by affecting U1 snRNP recruitment at 5′ splice sites.
Collapse
Affiliation(s)
- Suryasree Subramania
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Laurence M Gagné
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Sébastien Campagne
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Victoire Fort
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Julia O'Sullivan
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Karel Mocaer
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada
| | - Miki Feldmüller
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Jean-Yves Masson
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Frédéric H T Allain
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Samer M Hussein
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Marc-Étienne Huot
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| |
Collapse
|
2
|
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA-protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA-RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions.
Collapse
Affiliation(s)
- Yeon Lee
- Center for RNA Systems Biology; Division of Biochemistry, Biophysics, and Structural Biology; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204;
| | | |
Collapse
|
3
|
Roca X, Sachidanandam R, Krainer AR. Intrinsic differences between authentic and cryptic 5' splice sites. Nucleic Acids Res 2003; 31:6321-33. [PMID: 14576320 PMCID: PMC275472 DOI: 10.1093/nar/gkg830] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 08/25/2003] [Accepted: 09/11/2003] [Indexed: 11/14/2022] Open
Abstract
Cryptic splice sites are used only when use of a natural splice site is disrupted by mutation. To determine the features that distinguish authentic from cryptic 5' splice sites (5'ss), we systematically analyzed a set of 76 cryptic 5'ss derived from 46 human genes. These cryptic 5'ss have a similar frequency distribution in exons and introns, and are usually located close to the authentic 5'ss. Statistical analysis of the strengths of the 5'ss using the Shapiro and Senapathy matrix revealed that authentic 5'ss have significantly higher score values than cryptic 5'ss, which in turn have higher values than the mutant ones. beta-Globin provides an interesting exception to this rule, so we chose it for detailed experimental analysis in vitro. We found that the sequences of the beta-globin authentic and cryptic 5'ss, but not their surrounding context, determine the correct 5'ss choice, although their respective scores do not reflect this functional difference. Our analysis provides a statistical basis to explain the competitive advantage of authentic over cryptic 5'ss in most cases, and should facilitate the development of tools to reliably predict the effect of disease-associated 5'ss-disrupting mutations at the mRNA level.
Collapse
Affiliation(s)
- Xavier Roca
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
4
|
Eperon IC, Makarova OV, Mayeda A, Munroe SH, Cáceres JF, Hayward DG, Krainer AR. Selection of alternative 5' splice sites: role of U1 snRNP and models for the antagonistic effects of SF2/ASF and hnRNP A1. Mol Cell Biol 2000; 20:8303-18. [PMID: 11046128 PMCID: PMC102138 DOI: 10.1128/mcb.20.22.8303-8318.2000] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first component known to recognize and discriminate among potential 5' splice sites (5'SSs) in pre-mRNA is the U1 snRNP. However, the relative levels of U1 snRNP binding to alternative 5'SSs do not necessarily determine the splicing outcome. Strikingly, SF2/ASF, one of the essential SR protein-splicing factors, causes a dose-dependent shift in splicing to a downstream (intron-proximal) site, and yet it increases U1 snRNP binding at upstream and downstream sites simultaneously. We show here that hnRNP A1, which shifts splicing towards an upstream 5'SS, causes reduced U1 snRNP binding at both sites. Nonetheless, the importance of U1 snRNP binding is shown by proportionality between the level of U1 snRNP binding to the downstream site and its use in splicing. With purified components, hnRNP A1 reduces U1 snRNP binding to 5'SSs by binding cooperatively and indiscriminately to the pre-mRNA. Mutations in hnRNP A1 and SF2/ASF show that the opposite effects of the proteins on 5'SS choice are correlated with their effects on U1 snRNP binding. Cross-linking experiments show that SF2/ASF and hnRNP A1 compete to bind pre-mRNA, and we conclude that this competition is the basis of their functional antagonism; SF2/ASF enhances U1 snRNP binding at all 5'SSs, the rise in simultaneous occupancy causing a shift in splicing towards the downstream site, whereas hnRNP A1 interferes with U1 snRNP binding such that 5'SS occupancy is lower and the affinities of U1 snRNP for the individual sites determine the site of splicing.
Collapse
Affiliation(s)
- I C Eperon
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
5
|
O'Mullane L, Eperon IC. The pre-mRNA 5' cap determines whether U6 small nuclear RNA succeeds U1 small nuclear ribonucleoprotein particle at 5' splice sites. Mol Cell Biol 1998; 18:7510-20. [PMID: 9819436 PMCID: PMC109331 DOI: 10.1128/mcb.18.12.7510] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Efficient splicing of the 5'-most intron of pre-mRNA requires a 5' m7G(5')ppp(5')N cap, which has been implicated in U1 snRNP binding to 5' splice sites. We demonstrate that the cap alters the kinetic profile of U1 snRNP binding, but its major effect is on U6 snRNA binding. With two alternative wild-type splice sites in an adenovirus pre-mRNA, the cap selectively alters U1 snRNA binding at the site to which cap-independent U1 snRNP binding is stronger and that is used predominantly in splicing; with two consensus sites, the cap acts on both, even though one is substantially preferred for splicing. However, the most striking quantitative effect of the 5' cap is neither on U1 snRNP binding nor on the assembly of large complexes but on the replacement of U1 snRNP by U6 snRNA at the 5' splice site. Inhibition of splicing by a cap analogue is correlated with the loss of U6 interactions at the 5' splice site and not with any loss of U1 snRNP binding.
Collapse
Affiliation(s)
- L O'Mullane
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | |
Collapse
|
6
|
Hall KB, Konarska MM. The 5' splice site consensus RNA oligonucleotide induces assembly of U2/U4/U5/U6 small nuclear ribonucleoprotein complexes. Proc Natl Acad Sci U S A 1992; 89:10969-73. [PMID: 1332064 PMCID: PMC50464 DOI: 10.1073/pnas.89.22.10969] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A short RNA oligonucleotide comprising the 5' splice site consensus sequence (5'SS RNA oligo) efficiently inhibits splicing of mRNA precursors in HeLa cell nuclear extracts. Addition of 5'SS RNA oligo inhibits early, but not late, steps in the splicing reaction, affecting the process of spliceosome assembly. In the presence of 5'SS RNA oligo a majority of U4/U5/U6 triple small nuclear ribonucleoprotein (snRNP) complex present in HeLa nuclear extracts associates with U2 snRNP to form a multi-snRNP complex, which could account for the observed inhibition of splicing by the oligo. This same set of snRNPs has been shown to assemble on pre-mRNAs during in vitro splicing to form splicing complex B. Removal of the 5' end of U1 snRNA, which is complementary to the 5' splice site, does not prevent association of snRNPs into U2/U4/U5/U6 complex in the presence of 5'SS RNA oligo. This suggests that interactions other than U1 snRNA.5'SS RNA oligo base pairing are used in recognition of the oligo sequence. 5'SS RNA oligo-induced assembly of the multi-snRNP complex may thus serve as a model to study the mechanism of 5' splice site recognition during splicing.
Collapse
Affiliation(s)
- K B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|
7
|
Ma J, Chapman GV, Chen SL, Melick G, Penny R, Breit SN. Antibody penetration of viable human cells. I. Increased penetration of human lymphocytes by anti-RNP IgG. Clin Exp Immunol 1991; 84:83-91. [PMID: 1901780 PMCID: PMC1535365 DOI: 10.1111/j.1365-2249.1991.tb08128.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antibody penetration of viable cells and interaction with intracellular antigens may have major consequences for immunopathological processes in connective tissue diseases. We have reported previously that antibody can penetrate viable human lymphocytes. To assess further the role of antinuclear antibodies in this process, peripheral blood lymphocytes (PBMC) were incubated with FITC-conjugated IgG fractions from sera containing anti-RNP (anti-RNP IgG), Ro(SS-A), La(SS-B) and dsDNA antibodies and control sera for 24 h. Using crystal violet to quench cell surface staining, intracellular fluorescence of viable lymphocytes was quantified on the flow cytometer. It was noted that anti-RNP IgG entered 46.4 +/- 7.2% of lymphocytes which was significantly higher than anti-Ro(SS-A) (29.9 +/- 4.1%, P less than 0.05), La(SS-B) (22.0 +/- 7.5%, P less than 0.01) IgG and control IgG (28.8 +/- 2.1%, P less than 0.05) and not statistically different from anti-dsDNA IgG (32.6 +/- 14.3%). Inhibition experiments showed that the increased number of cells penetrated by anti-RNP IgG was a specific process. Time-course studies showed that anti-RNP IgG entry into cells was different from pooled control IgG. With anti-RNP IgG, positive-staining lymphocytes gradually increased in number from 12 to 24 h incubation, whilst with pooled control IgG, the peak was reached within 5 min. Dual staining experiments suggested that whereas both anti-RNP IgG and pooled control IgG entered B and NK cells, anti-RNP IgG also entered T cells. Using IgG F(ab')2 and Fc fragments from either anti-RNP IgG or pooled control IgG to compete with their FITC-conjugated counterparts indicated that the entry of anti-RNP IgG into-viable cells appeared to involve both F(ab')2 and Fc fragments, and pooled control IgG depended exclusively on the Fc portion of IgG. Further investigation by incubating anti-RNP IgG with 35S-methionine-labelled monocyte-depleted PBMC (MD-PBMC) suggested that anti-RNP IgG might react with the corresponding antigens either on the cell surface or within the cytoplasm.
Collapse
Affiliation(s)
- J Ma
- Centre for Immunology, St. Vincent's Hospital, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Differential block of U small nuclear ribonucleoprotein particle interactions during in vitro splicing of adenovirus E1A transcripts containing abnormally short introns. Mol Cell Biol 1991. [PMID: 1825346 DOI: 10.1128/mcb.11.3.1258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the consequences of decreasing the donor site-branch site distance on splicing factor-splice site interactions by analyzing alternative splicing of adenovirus E1A pre-mRNAs in vitro. We show that the proximal 13S donor site has a cis-inhibiting effect on the 9S and 12S mRNA reactions when it is brought too close to the common branch site, suggesting that the factor interactions in the common 3' part of the intron are impaired by the U1 small nuclear ribonucleoprotein particle (snRNP) binding to the displaced 13S donor site. Further analysis of the interactions was carried out by studying complex assembly and the accessibility to micrococcal nuclease digestion of 5'-truncated E1A substrates containing only splice sites for the 13S mRNA reaction. A deletion which brings the donor site- branch site distance to 49 nucleotides, which is just below the minimal functional distance, results in a complete block of the U4-U5-U6 snRNP binding, whereas a deletion 15 nucleotides larger results in a severe inhibition of the formation of the U2 snRNP-containing complexes. Sequence accessibility analyses performed by using the last mini-intron-containing transcript demonstrate that the interactions of U2 snRNP with the branch site are strongly impaired whereas the initial bindings of U1 snRNP to the donor site and of specific factors to the 3' splice site are not significantly modified. Our results strongly suggest that the interaction of U1 snRNP with the donor site of a mini-intron is stable enough in vitro to affect the succession of events leading to U2 snRNP binding with the branch site.
Collapse
|
9
|
Himmelspach M, Gattoni R, Gerst C, Chebli K, Stévenin J. Differential block of U small nuclear ribonucleoprotein particle interactions during in vitro splicing of adenovirus E1A transcripts containing abnormally short introns. Mol Cell Biol 1991; 11:1258-69. [PMID: 1825346 PMCID: PMC369397 DOI: 10.1128/mcb.11.3.1258-1269.1991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have studied the consequences of decreasing the donor site-branch site distance on splicing factor-splice site interactions by analyzing alternative splicing of adenovirus E1A pre-mRNAs in vitro. We show that the proximal 13S donor site has a cis-inhibiting effect on the 9S and 12S mRNA reactions when it is brought too close to the common branch site, suggesting that the factor interactions in the common 3' part of the intron are impaired by the U1 small nuclear ribonucleoprotein particle (snRNP) binding to the displaced 13S donor site. Further analysis of the interactions was carried out by studying complex assembly and the accessibility to micrococcal nuclease digestion of 5'-truncated E1A substrates containing only splice sites for the 13S mRNA reaction. A deletion which brings the donor site- branch site distance to 49 nucleotides, which is just below the minimal functional distance, results in a complete block of the U4-U5-U6 snRNP binding, whereas a deletion 15 nucleotides larger results in a severe inhibition of the formation of the U2 snRNP-containing complexes. Sequence accessibility analyses performed by using the last mini-intron-containing transcript demonstrate that the interactions of U2 snRNP with the branch site are strongly impaired whereas the initial bindings of U1 snRNP to the donor site and of specific factors to the 3' splice site are not significantly modified. Our results strongly suggest that the interaction of U1 snRNP with the donor site of a mini-intron is stable enough in vitro to affect the succession of events leading to U2 snRNP binding with the branch site.
Collapse
Affiliation(s)
- M Himmelspach
- Unité 184 de Biologie Moléculaire et de Génie Génétique, Institut National de la Santé et de la Recherche Medicale, Faculté de Médecine, Strasbourg, France
| | | | | | | | | |
Collapse
|
10
|
Nelson KK, Green MR. Mechanism for cryptic splice site activation during pre-mRNA splicing. Proc Natl Acad Sci U S A 1990; 87:6253-7. [PMID: 2143583 PMCID: PMC54511 DOI: 10.1073/pnas.87.16.6253] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The 5' splice site of a pre-mRNA is recognized by U1 small nuclear ribonucleoprotein particles (snRNP) through base pairing with the 5' end of U1 small nuclear RNA (snRNA). Single-base substitutions within a 9-nucleotide 5'-splice-site sequence can abolish or attenuate use of that site and, in higher eukaryotes, can also activate nearby "cryptic" 5' splice sites. Here we show that the effects of single-base substitutions within a 5' splice site can be completely or partially suppressed by cis mutations that improve the overall complementarity of the site to U1 snRNA. We further show that in the presence of the normal 5' splice site, a cryptic 5' splice site can be activated by increasing its complementarity to U1 snRNA. U1 snRNP binding experiments confirm that cryptic 5' splice sites are activated when their affinity for U1 snRNP approaches that of the authentic 5' splice site. Based upon these results, we propose a spliceosome competition model for 5'-splice-site selection and cryptic 5'-splice-site activation. We discuss our results with regard to the factors involved in 5'-splice-site recognition.
Collapse
Affiliation(s)
- K K Nelson
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
11
|
Noble JC, Ge H, Chaudhuri M, Manley JL. Factor interactions with the simian virus 40 early pre-mRNA influence branch site selection and alternative splicing. Mol Cell Biol 1989; 9:2007-17. [PMID: 2546057 PMCID: PMC362993 DOI: 10.1128/mcb.9.5.2007-2017.1989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To study the interaction of splicing factors with the simian virus 40 early-region pre-RNA, which can be alternatively spliced to produce large T and small t mRNAs, we used an in vitro RNase protection assay that defines the 5' boundaries of factor-RNA interactions. Protection products reflecting factor interactions with the large T and small t 5' splice sites and with the multiple lariat branch site region were characterized. All protection products were detected very early in the splicing reaction, before the appearance of spliced RNAs. However, protection of the large T 5' splice site was detected well before small t 5' splice site and branch site protection products, which appeared simultaneously. Oligonucleotide-targeted degradation of small nuclear RNAs (snRNAs) revealed that protection of the branch site region, which occurred at multiple sites, required intact U2 snRNA and was enhanced by U1 snRNA, while protection of the large T and small t 5' splice sites required both U1 and U2 snRNAs. Analysis of several pre-RNAs containing mutations in the branch site region suggests that factor interactions involving the multiple copies of the branch site consensus determine the selection of branch points, which is an important factor in the selection of alternative splicing pathways.
Collapse
Affiliation(s)
- J C Noble
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | | | |
Collapse
|
12
|
Zapp ML, Berget SM. Evidence for nuclear factors involved in recognition of 5' splice sites. Nucleic Acids Res 1989; 17:2655-74. [PMID: 2524033 PMCID: PMC317649 DOI: 10.1093/nar/17.7.2655] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To investigate soluble factors involved in pre-messenger RNA splicing we have fractionated nuclear extract by simple centrifugation to produce a supernatant pellet pair. Factors larger than 15S including U2, U4, U5, and U6 snRNPs fractionate with the pellet; U1 snRNPs distribute equally in pellet and supernatant. Each fraction is individually incompetent for splicing and spliceosome assembly; mixing restores wild type activity and assembly. The pellet fraction directs an aberrant assembly pathway in which proper 3', but improper 5' splice site recognition occurs. Complexes formed with the pellet fraction are distinguishable from wild-type complexes using native gel electrophoresis. Pellet complexes contain U1 snRNP antigens and their formation requires ATP, U1 snRNPs, U2 snRNPs, and sequences at the 3' end of the intron - properties shared with the initial steps of normal assembly and directed by sequences at the 3' end of the intron. In contrast, pellet complex assembly shows no dependence on the presence of a 5' splice junction within precursor RNA. Furthermore, binding of factors to the 5' splice junction is deficient in pellet assemblies. Thus, the pellet lacks a factor required for proper recognition of 5' splice sites. This factor can be supplied by the supernatant. Complementation occurs when supernatant U1 RNA is destroyed, suggesting that the supernatant factor recognizing 5' splice sites is not U1 snRNPs.
Collapse
Affiliation(s)
- M L Zapp
- Verna and Marrs McClean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
13
|
Short donor site sequences inserted within the intron of beta-globin pre-mRNA serve for splicing in vitro. Mol Cell Biol 1988. [PMID: 3185558 DOI: 10.1128/mcb.8.10.4484] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed SP6-human beta-globin derivative plasmids that included possible donor site (5' splice site) sequences at a specified position within the first intron. The runoff transcripts from these templates truncated in the second exon were examined for splicing in a nuclear extract from HeLa cells. In addition to the products from the authentic donor site, a corresponding set of novel products from the inserted, alternative donor site was generated. Thus, a short sequence inserted within an intron can be an active donor site signal in the presence of an authentic donor site. The active donor site sequences included a 9-nucleotide consensus sequence, 14- or 16-nucleotide sequences at the human beta-globin first or second donor, and those at simian virus 40 large T antigen or small t antigen donor. These included 3 to 8 nucleotides of an exon and 6 to 8 nucleotides of an intron. The activity of the inserted donor site relative to that of the authentic donor site depended on the donor sequence inserted. The relative activity also strongly depended on the concentrations of both KCl (40 to 100 mM) and MgCl2 (1.6 to 6.4 mM). At the higher KCl concentrations tested, all the inserted, or proximate, donor sites were more efficiently used. Under several conditions, some inserted donor sites were more active than was the authentic donor site. Our system provides an in vitro assay for donor site activity of a sequence to be tested.
Collapse
|
14
|
Mayeda A, Ohshima Y. Short donor site sequences inserted within the intron of beta-globin pre-mRNA serve for splicing in vitro. Mol Cell Biol 1988; 8:4484-91. [PMID: 3185558 PMCID: PMC365523 DOI: 10.1128/mcb.8.10.4484-4491.1988] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We constructed SP6-human beta-globin derivative plasmids that included possible donor site (5' splice site) sequences at a specified position within the first intron. The runoff transcripts from these templates truncated in the second exon were examined for splicing in a nuclear extract from HeLa cells. In addition to the products from the authentic donor site, a corresponding set of novel products from the inserted, alternative donor site was generated. Thus, a short sequence inserted within an intron can be an active donor site signal in the presence of an authentic donor site. The active donor site sequences included a 9-nucleotide consensus sequence, 14- or 16-nucleotide sequences at the human beta-globin first or second donor, and those at simian virus 40 large T antigen or small t antigen donor. These included 3 to 8 nucleotides of an exon and 6 to 8 nucleotides of an intron. The activity of the inserted donor site relative to that of the authentic donor site depended on the donor sequence inserted. The relative activity also strongly depended on the concentrations of both KCl (40 to 100 mM) and MgCl2 (1.6 to 6.4 mM). At the higher KCl concentrations tested, all the inserted, or proximate, donor sites were more efficiently used. Under several conditions, some inserted donor sites were more active than was the authentic donor site. Our system provides an in vitro assay for donor site activity of a sequence to be tested.
Collapse
Affiliation(s)
- A Mayeda
- Graduate School of Medical Sciences, University of Tsukuba, Ibaraki, Japan
| | | |
Collapse
|