1
|
Buttinelli M, Panetta G, Bucci A, Frascaria D, Morea V, Miele AE. Protein Engineering of Multi-Modular Transcription Factor Alcohol Dehydrogenase Repressor 1 (Adr1p), a Tool for Dissecting In Vitro Transcription Activation. Biomolecules 2019; 9:biom9090497. [PMID: 31533362 PMCID: PMC6769490 DOI: 10.3390/biom9090497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
Studying transcription machinery assembly in vitro is challenging because of long intrinsically disordered regions present within the multi-modular transcription factors. One example is alcohol dehydrogenase repressor 1 (Adr1p) from fermenting yeast, responsible for the metabolic switch from glucose to ethanol. The role of each individual transcription activation domain (TAD) has been previously studied, but their interplay and their roles in enhancing the stability of the protein is not known. In this work, we designed five unique miniAdr1 constructs containing either TADs I-II-III or TAD I and III, connected by linkers of different sizes and compositions. We demonstrated that miniAdr1-BL, containing only PAR-TAD I+III with a basic linker (BL), binds the cognate DNA sequence, located in the promoter of the ADH2 (alcohol dehydrogenase 2) gene, and is necessary to stabilize the heterologous expression. In fact, we found that the sequence of the linker between TAD I and III affected the solubility of free miniAdr1 proteins, as well as the stability of their complexes with DNA. miniAdr1-BL is the stable unit able to recognize ADH2 in vitro, and hence it is a promising tool for future studies on nucleosomal DNA binding and transcription machinery assembly in vitro.
Collapse
Affiliation(s)
- Memmo Buttinelli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.B.); (A.B.); (D.F.)
| | - Gianna Panetta
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ambra Bucci
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.B.); (A.B.); (D.F.)
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Daniele Frascaria
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.B.); (A.B.); (D.F.)
| | - Veronica Morea
- National Research Council of Italy (CNR), Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Adriana Erica Miele
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS–UCBL-Université de Lyon, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
- Correspondence: ; Tel.: +39-06-4991-0556
| |
Collapse
|
2
|
Schifferdecker AJ, Siurkus J, Andersen MR, Joerck-Ramberg D, Ling Z, Zhou N, Blevins JE, Sibirny AA, Piškur J, Ishchuk OP. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast. Appl Microbiol Biotechnol 2016; 100:3219-31. [PMID: 26743658 PMCID: PMC4786601 DOI: 10.1007/s00253-015-7266-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/13/2015] [Accepted: 12/19/2015] [Indexed: 01/05/2023]
Abstract
Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the “Custer effect”. Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.
Collapse
Affiliation(s)
| | - Juozas Siurkus
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Dorte Joerck-Ramberg
- Department of Systems Biology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Zhihao Ling
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - Nerve Zhou
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - James E Blevins
- Consulting statistician, Pinnmöllevägen 48, SE-24755, Dalby, Sweden
| | - Andriy A Sibirny
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street 14/16, Lviv, 79005, Ukraine.,Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowizca 4, Rzeszow, 35-601, Poland
| | - Jure Piškur
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | - Olena P Ishchuk
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden.
| |
Collapse
|
3
|
Moreno-García J, García-Martínez T, Millán MC, Mauricio JC, Moreno J. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions. Food Microbiol 2015; 51:1-9. [PMID: 26187821 DOI: 10.1016/j.fm.2015.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 03/19/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
A proteomic and exometabolomic study was conducted on Saccharomyces cerevisiae flor yeast strain growing under biofilm formation condition (BFC) with ethanol and glycerol as carbon sources and results were compared with those obtained under no biofilm formation condition (NBFC) containing glucose as carbon source. By using modern techniques, OFFGEL fractionator and LTQ-Orbitrap for proteome and SBSE-TD-GC-MS for metabolite analysis, we quantified 84 proteins including 33 directly involved in the metabolism of glycerol, ethanol and 17 aroma compounds. Contents in acetaldehyde, acetic acid, decanoic acid, 1,1-diethoxyethane, benzaldehyde and 2-phenethyl acetate, changed above their odor thresholds under BFC, and those of decanoic acid, ethyl octanoate, ethyl decanoate and isoamyl acetate under NBFC. Of the twenty proteins involved in the metabolism of ethanol, acetaldehyde, acetoin, 2,3-butanediol, 1,1-diethoxyethane, benzaldehyde, organic acids and ethyl esters, only Adh2p, Ald4p, Cys4p, Fas3p, Met2p and Plb1p were detected under BFC and as many Acs2p, Ald3p, Cem1p, Ilv2p, Ilv6p and Pox1p, only under NBFC. Of the eight proteins involved in glycerol metabolism, Gut2p was detected only under BFC while Pgs1p and Rhr2p were under NBFC. Finally, of the five proteins involved in the metabolism of higher alcohols, Thi3p was present under BFC, and Aro8p and Bat2p were under NBFC.
Collapse
Affiliation(s)
- Jaime Moreno-García
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - Teresa García-Martínez
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - M Carmen Millán
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - Juan Carlos Mauricio
- Department of Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Córdoba, Spain
| | - Juan Moreno
- Department of Agricultural Chemistry, Marie Curie (C3) building, Agrifood Campus of International Excellence CeiA3, University of Córdoba, Ctra. N-IV-A, km 396, 14014 Cordoba, Spain.
| |
Collapse
|
4
|
Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 2012; 15:48-54. [PMID: 23164578 DOI: 10.1016/j.ymben.2012.11.002] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/01/2012] [Accepted: 11/05/2012] [Indexed: 11/29/2022]
Abstract
Production of fuels and chemicals by industrial biotechnology requires efficient, safe and flexible cell factory platforms that can be used for production of a wide range of compounds. Here we developed a platform yeast cell factory for efficient provision of acetyl-CoA that serves as precursor metabolite for a wide range of industrially interesting products. We demonstrate that the platform cell factory can be used to improve the production of α-santalene, a plant sesquiterpene that can be used as a perfume by four-fold. This strain would be a useful tool to produce a wide range of acetyl-CoA-derived products.
Collapse
Affiliation(s)
- Yun Chen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
5
|
Ida Y, Furusawa C, Hirasawa T, Shimizu H. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. J Biosci Bioeng 2012; 113:192-5. [DOI: 10.1016/j.jbiosc.2011.09.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/15/2011] [Accepted: 09/24/2011] [Indexed: 11/29/2022]
|
6
|
Young ET, Yen K, Dombek KM, Law GL, Chang E, Arms E. Snf1-independent, glucose-resistant transcription of Adr1-dependent genes in a mediator mutant of Saccharomyces cerevisiae. Mol Microbiol 2009; 74:364-83. [PMID: 19732343 DOI: 10.1111/j.1365-2958.2009.06866.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucose represses transcription of a network of co-regulated genes in Saccharomyces cerevisiae, ensuring that it is utilized before poorer carbon sources are metabolized. Adr1 is a glucose-regulated transcription factor whose promoter binding and activity require Snf1, the yeast homologue of the AMP-activated protein kinase in higher eukaryotes. In this study we found that a temperature-sensitive allele of MED14, a Mediator middle subunit that tethers the tail to the body, allowed a low level of Adr1-independent ADH2 expression that can be enhanced by Adr1 in a dose-dependent manner. A low level of TATA-independent ADH2 expression was observed in the med14-truncated strain and transcription of ADH2 and other Adr1-dependent genes occurred in the absence of Snf1 and chromatin remodeling coactivators. Loss of ADH2 promoter nucleosomes had occurred in the med14 strain in repressing conditions and did not require ADR1. A global analysis of transcription revealed that loss of Med14 function was associated with both up- and down- regulation of several groups of co-regulated genes, with ADR1-dependent genes being the most highly represented in the upregulated class. Expression of most genes was not significantly affected by the loss of Med14 function.
Collapse
Affiliation(s)
- Elton T Young
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Li S, Ding B, LeJeune D, Ruggiero C, Chen X, Smerdon MJ. The roles of Rad16 and Rad26 in repairing repressed and actively transcribed genes in yeast. DNA Repair (Amst) 2007; 6:1596-606. [PMID: 17611170 PMCID: PMC2095784 DOI: 10.1016/j.dnarep.2007.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/11/2007] [Accepted: 05/16/2007] [Indexed: 11/17/2022]
Abstract
Nucleotide excision repair (NER) is a conserved DNA repair mechanism capable of removing a variety of helix-distorting DNA lesions. Rad26, a member of the Swi2/Snf2 superfamily of proteins, has been shown to be involved in a specialized NER process called transcription coupled NER. Rad16, another member of the same protein superfamily, has been shown to be required for genome-wide NER. Here we show that Rad16 and Rad26 play different roles in repairing repressed and actively transcribed genes in yeast. Rad16 is partially dispensable, and Rad26 plays a significant role in repairing certain regions of the repressed GAL1-10, PHO5 and ADH2 genes, especially in the core DNA of well-positioned nucleosomes. Simultaneous elimination of Rad16 and Rad26 results in no detectable repair in these regions of the repressed genes. Transcriptional induction of the GAL1-10 genes abolishes the role of Rad26, but does not affect the role of Rad16 in repairing the nontranscribed strand of the genes. Interestingly, when the transcription activator Gal4 is eliminated from the cells, Rad16 becomes partially dispensable and Rad26 plays a significant role in repairing both strands of the GAL1-10 genes even under inducing conditions. Our results suggest that Rad16 and Rad26 play different and, to some extent, complementary roles in repairing both strands of repressed genes, although the relative contributions of the two proteins can be different from gene to gene, and from region to region of a gene. However, Rad16 is solely responsible for repairing the nontranscribed strand of actively transcribed genes.
Collapse
Affiliation(s)
- Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Young ET, Kacherovsky N, Van Riper K. Snf1 protein kinase regulates Adr1 binding to chromatin but not transcription activation. J Biol Chem 2002; 277:38095-103. [PMID: 12167649 DOI: 10.1074/jbc.m206158200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast transcriptional activator Adr1 controls the expression of genes required for ethanol, glycerol, and fatty acid utilization. We show that Adr1 acts directly on the promoters of ADH2, ACS1, GUT1, CTA1, and POT1 using chromatin immunoprecipitation assays. The yeast homolog of the AMP-activated protein kinase, Snf1, promotes Adr1 chromatin binding in the absence of glucose, and the protein phosphatase complex, Glc7.Reg1, represses its binding in the presence of glucose. A post-translational process is implicated in the regulation of Adr1 binding activity. Chromatin binding by Adr1 is not the only step in ADH2 transcription that is regulated by glucose repression. Adr1 can bind to chromatin in repressed conditions in the presence of hyperacetylated histones. To study steps subsequent to promoter binding we utilized miniAdr1 transcription factors to characterize Adr1-dependent transcription in vitro. Yeast nuclear extracts prepared from glucose-repressed and glucose-derepressed cells are equally capable of supporting miniAdr1-dependent transcription and pre-initiation complex formation. Nuclear extracts prepared from a snf1 mutant support miniAdr1-dependent transcription but are partially defective in the formation of pre-initiation complexes with Mediator components being particularly depleted. We conclude that Snf1 regulates Adr1-dependent transcription primarily at the level of chromatin binding.
Collapse
Affiliation(s)
- Elton T Young
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA.
| | | | | |
Collapse
|
9
|
Sloan JS, Dombek KM, Young ET. Post-translational regulation of Adr1 activity is mediated by its DNA binding domain. J Biol Chem 1999; 274:37575-82. [PMID: 10608811 DOI: 10.1074/jbc.274.53.37575] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADR1 encodes a transcriptional activator that regulates genes involved in carbon source utilization in Saccharomyces cerevisiae. ADR1 is itself repressed by glucose, but the significance of this repression for regulating target genes is not known. To test if the reduction in Adr1 levels contributes to glucose repression of ADH2 expression, we generated yeast strains in which the level of Adr1 produced during growth in glucose-containing medium is similar to that present in wild-type cells grown in the absence of glucose. In these Adr1-overproducing strains, ADH2 expression remained tightly repressed, and UAS1, the element in the ADH2 promoter that binds Adr1, was sufficient to maintain glucose repression. Post-translational modification of Adr1 activity is implicated in repression, since ADH2 derepression occurred in the absence of de novo protein synthesis. The N-terminal 172 amino acids of Adr1, containing the DNA binding and nuclear localization domains, fused to the Herpesvirus VP16-encoded transcription activation domain, conferred regulated expression at UAS1. Nuclear localization of an Adr1-GFP fusion protein was not glucose-regulated, suggesting that the DNA binding domain of Adr1 is sufficient to confer regulated expression on target genes. A Gal4-Adr1 fusion protein was unable to confer glucose repression at GAL4-dependent promoters, suggesting that regulation mediated by ADR1 is specific to UAS1.
Collapse
Affiliation(s)
- J S Sloan
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | |
Collapse
|
10
|
Grauslund M, Lopes JM, Rønnow B. Expression of GUT1, which encodes glycerol kinase in Saccharomyces cerevisiae, is controlled by the positive regulators Adr1p, Ino2p and Ino4p and the negative regulator Opi1p in a carbon source-dependent fashion. Nucleic Acids Res 1999; 27:4391-8. [PMID: 10536147 PMCID: PMC148721 DOI: 10.1093/nar/27.22.4391] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Saccharomyces cerevisiae glycerol utilization is mediated by two enzymes, glycerol kinase (Gut1p) and mitochondrial glycerol-3-phosphate dehydrogenase (Gut2p). The carbon source regulation of GUT1 was studied using promoter-reporter gene fusions. The promoter activity was lowest during growth on glucose and highest on the non-fermentable carbon sources, glycerol, ethanol, lactate, acetate and oleic acid. Mutational analysis of the GUT1 promoter region showed that two upstream activation sequences, UAS(INO) and UAS(ADR1), are responsible for approximately 90% of the expression during growth on glycerol. UAS(ADR1) is a presumed binding site for the zinc finger transcription factor Adr1p and UAS(INO) is a presumed binding site for the basic helix-loop-helix transcription factors Ino2p and Ino4p. In vitro experiments showed Adr1 and Ino2/Ino4 protein-dependent binding to UAS(ADR1) and UAS(INO). The negative regulator Opi1p mediates repression of the GUT1 promoter, whereas the effects of the glucose repressors Mig1p and Mig2p are minor. Together, the experiments show that GUT1 is carbon source regulated by different activation and repression systems.
Collapse
Affiliation(s)
- M Grauslund
- Danisco Biotechnology, Danisco A/S, Langebrogade 1, DK-1001 Copenhagen K, Denmark
| | | | | |
Collapse
|
11
|
Donoviel MS, Young ET. Isolation and identification of genes activating UAS2-dependent ADH2 expression in Saccharomyces cerevisiae. Genetics 1996; 143:1137-48. [PMID: 8807288 PMCID: PMC1207385 DOI: 10.1093/genetics/143.3.1137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Two cis-acting elements have been identified that act synergistically to regulate expression of the glucose-repressed alcohol dehydrogenase 2 (ADH2) gene. UAS1 is bound by the trans-activator Adr1p. UAS2 is thought to be the binding site for an unidentified regulatory protein. A genetic selection based on a UAS2-dependent ADH2 reporter was devised to isolate genes capable of activating UAS2-dependent transcription. One set of UAS2-dependent genes contained SPT6/CRE2/SSN20. Multicopy SPT6 caused improper expression of chromosomal ADH2. A second set of UAS2-dependent clones contained a previously uncharacterized open reading frame designated MEU1 (Multicopy Enhancer of UAS2). A frame shift mutation in MEU1 abolished its ability to activate UAS2-dependent gene expression. Multicopy MEU1 expression suppressed the constitutive ADH2 expression caused by cre2-1. Disruption of MEU1 reduced endogenous ADH2 expression about twofold but had no effect on cell viability or growth. No homologues of MEU1 were identified by low-stringency Southern hybridization of yeast genomic DNA, and no significant homologues were found in the sequence data bases. A MEU1/beta-gal fusion protein was not localized to a particular region of the cell. MEU1 is linked to PPR1 on chromosome XII.
Collapse
Affiliation(s)
- M S Donoviel
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
12
|
Svetlov VV, Cooper TG. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 1995; 11:1439-84. [PMID: 8750235 DOI: 10.1002/yea.320111502] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- V V Svetlov
- Department of Microbiology and Immunology, University of Tennessee, Memphis 36163, USA
| | | |
Collapse
|
13
|
Umemura K, Atomi H, Kanai T, Teranishi Y, Ueda M, Tanaka A. A novel promoter, derived from the isocitrate lyase gene of Candida tropicalis, inducible with acetate in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 1995; 43:489-92. [PMID: 7632399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
When the isocitrate lyase gene, containing 5'-upstream and 3'-flanking regions, of an n-alkane-assimilating yeast Candida tropicalis was introduced into Saccharomyces cerevisiae, the enzyme was functionally overexpressed in the cells grown on acetate. The amount of the recombinant isocitrate lyase expressed in S. cerevisiae was as much as 30% of the total soluble proteins in the cells, being comparable to that with GAL7 functional under the control of galactose. The expression was also observed when the cells were grown on glycerol, lactate, ethanol or oleate. These facts indicate that the isocitrate lyase gene upstream region (UPR-ICL) contains a strong promoter functional in S. cerevisiae. UPR-ICL is active as a promoter on cheap carbon sources such as acetate and nonconventional carbon sources such as oleate, whereas many conventional strong promoters demand relatively expensive sugars or sugar derivatives. Therefore, it is promising to construct an economical recombinant protein production system by using UPR-ICL.
Collapse
Affiliation(s)
- K Umemura
- Department of Synthetic Chemistry and Biological Chemistry, Faculty of Engineering, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Cook WJ, Denis CL. Identification of three genes required for the glucose-dependent transcription of the yeast transcriptional activator ADR1. Curr Genet 1993; 23:192-200. [PMID: 8435848 DOI: 10.1007/bf00351495] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glucose repression of the ADH2 gene from Saccharomyces cerevisiae is mediated by the synthesis and activity of the transcriptional activator ADR1. In this study, we isolated mutations in three new genes (SAF1, SAF2 and SAF3) that suppressed the glucose-insensitive expression of ADH2 caused by the ADR1-5c allele. The mechanism by which the SAF genes maintain ADR1-5c function was investigated. Each of the mutated SAF genes was found to suppress ADR1-5c activity by lowering ADR1-5c steady state mRNA levels 5- to 8-fold under glucose growth conditions. ADR1 mRNA levels were similarly affected by the saf mutations. In contrast, mutations in the SAF genes had little or no effect on ADR1-5c or ADR1 mRNA levels under ethanol growth conditions. The stability of ADR1-5c mRNA was unaffected by mutations in each of the SAF genes, implying that the SAF genes are required for the transcription of ADR1 mRNA under glucose growth conditions. The possible function of the three SAF genes in ADR1 expression is discussed.
Collapse
Affiliation(s)
- W J Cook
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham 03824
| | | |
Collapse
|
15
|
Affiliation(s)
- J M Gancedo
- Instituto de Investigaciones Biomédicas del C.S.I.C., Facultad de Medicina UAM, Spain
| |
Collapse
|
16
|
Affiliation(s)
- J M Verdier
- Département de Biologie (SBCH), Centre d'Etudes Nucléaires de Saclay, Gif-Sur-Yvette, France
| |
Collapse
|
17
|
Saliola M, Shuster JR, Falcone C. The alcohol dehydrogenase system in the yeast, Kluyveromyces lactis. Yeast 1990; 6:193-204. [PMID: 2190430 DOI: 10.1002/yea.320060304] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have studied the alcohol dehydrogenase (ADH) system in the yeast Kluyveromyces lactis. Southern hybridization to the Saccharomyces cerevisiae ADH2 gene indicates four probable structural ADH genes in K. lactis. Two of these genes have been isolated from a genomic bank by hybridization to ADH2. The nucleotide sequence of one of these genes shows 80% and 50% sequence identity to the ADH genes of S. cerevisiae and Schizosaccharomyces pombe respectively. One K. lactis ADH gene is preferentially expressed in glucose-grown cells and, in analogy to S. cerevisiae, was named K1ADH1. The other gene, homologous to K1ADH1 in sequence, shows an amino-terminal extension which displays all of the characteristics of a mitochondrial targeting presequence. We named this gene K1ADH3. The two genes have been localized on different chromosomes by Southern hybridization to an orthogonal-field-alternation gel electrophoresis-resolved K. lactis genome. ADH activities resolved by gel electrophoresis revealed several ADH isozymes which are differently expressed in K. lactis cells depending on the carbon source.
Collapse
Affiliation(s)
- M Saliola
- Department of Cell and Developmental Biology, University of Rome, La Sapienza, Cittá Universitaria, Italy
| | | | | |
Collapse
|
18
|
Price VL, Taylor WE, Clevenger W, Worthington M, Young ET. Expression of heterologous proteins in Saccharomyces cerevisiae using the ADH2 promoter. Methods Enzymol 1990; 185:308-18. [PMID: 2116576 DOI: 10.1016/0076-6879(90)85027-l] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Abstract
This review briefly surveys the literature on the nature, regulation, genetics, and molecular biology of the major energy-yielding pathways in yeasts, with emphasis on Saccharomyces cerevisiae. While sugar metabolism has received the lion's share of attention from workers in this field because of its bearing on the production of ethanol and other metabolites, more attention is now being paid to ethanol metabolism and the regulation of aerobic metabolism by fermentable and nonfermentable substrates. The utility of yeast as a highly manipulable organism and the discovery that yeast metabolic pathways are subject to the same types of control as those of higher cells open up many opportunities in such diverse areas as molecular evolution and cancer research.
Collapse
Affiliation(s)
- C Wills
- Department of Biology, University of California, San Diego, La Jolla
| |
Collapse
|
20
|
Martin CE, Scheinbach S. Expression of proteins encoded by foreign genes in Saccharomyces cerevisiae. Biotechnol Adv 1989; 7:155-85. [PMID: 14545930 DOI: 10.1016/0734-9750(89)90357-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The yeast, Saccharomyces cerevisiae is currently used for the production of recombinant DNA-generated proteins derived from a variety of eukaryotic organisms. The applications of a yeast-based technology in the production of proteins for pharmaceutical and industrial purposes is discussed including current methods for introducing recombinant genes into yeast and strategies for maximizing their expression.
Collapse
Affiliation(s)
- C E Martin
- Rutgers University, Bureau of Biological Research, Nelson Laboratories, Busch Campus, P.O. Box 1059, Piscataway, NJ 08855-1059, USA
| | | |
Collapse
|