1
|
Ehrenfeld M, Segeth F, Mantwill K, Brockhaus C, Zhao Y, Ploner C, Kolk A, Gschwend JE, Nawroth R, Holm PS. Targeting Cell Cycle Facilitates E1A-Independent Adenoviral Replication. J Virol 2023; 97:e0037023. [PMID: 37219458 PMCID: PMC10308897 DOI: 10.1128/jvi.00370-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
DNA replication of E1-deleted first-generation adenoviruses (AdV) in cultured cancer cells has been reported repeatedly and it was suggested that certain cellular proteins could functionally compensate for E1A, leading to the expression of the early region 2 (E2)-encoded proteins and subsequently virus replication. Referring to this, the observation was named E1A-like activity. In this study, we investigated different cell cycle inhibitors with respect to their ability to increase viral DNA replication of dl70-3, an E1-deleted adenovirus. Our analyses of this issue revealed that in particular inhibition of cyclin-dependent kinases 4/6 (CDK4/6i) increased E1-independent adenovirus E2-expression and viral DNA replication. Detailed analysis of the E2-expression in dl70-3 infected cells by RT-qPCR showed that the increase in E2-expression originated from the E2-early promoter. Mutations of the two E2F-binding sites in the E2-early promoter (pE2early-LucM) caused a significant reduction in E2-early promoter activity in trans-activation assays. Accordingly, mutations of the E2F-binding sites in the E2-early promoter in a virus named dl70-3/E2Fm completely abolished CDK4/6i induced viral DNA replication. Thus, our data show that E2F-binding sites in the E2-early promoter are crucial for E1A independent adenoviral DNA replication of E1-deleted vectors in cancer cells. IMPORTANCE E1-deleted AdV vectors are considered replication deficient and are important tools for the study of virus biology, gene therapy, and large-scale vaccine development. However, deletion of the E1 genes does not completely abolish viral DNA replication in cancer cells. Here, we report, that the two E2F-binding sites in the adenoviral E2-early promoter contribute substantially to the so-called E1A-like activity in tumor cells. With this finding, on the one hand, the safety profile of viral vaccine vectors can be increased and, on the other hand, the oncolytic property for cancer therapy might be improved through targeted manipulation of the host cell.
Collapse
Affiliation(s)
- Maximilian Ehrenfeld
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Felicia Segeth
- Department of Oral and Maxillofacial Surgery, Medical University of Innsbruck, Innsbruck, Austria
- Department of Molecular Biology, Leopold-Franzens-Universität Innsbruck, Austria
| | - Klaus Mantwill
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Corinna Brockhaus
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Yuling Zhao
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jürgen E. Gschwend
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roman Nawroth
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Per Sonne Holm
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Oral and Maxillofacial Surgery, Medical University of Innsbruck, Innsbruck, Austria
- XVir Therapeutics GmbH, Munich, Germany
| |
Collapse
|
2
|
Abstract
Embryonic stem (ES) cells are pluripotent cells directly derived from early stage embryos that retain the ability to differentiate into all cell types. This unique feature is the basis of various applications of ES cell technology such as in vitro models of mammalian development, germline transgenesis to make knockout mice, and a generic source for cell therapy in regenerative medicine. To achieve success in these applications, the pluripotency of ES cells has to be kept stable during long-term culture in vitro, leading to the necessity of determining the molecular basis for maintaining ES self-renewal. This paper summarizes the recent progress in this area, focusing mainly on the LIF signaling pathway and the transcription factor Oct-3/4. Although it is still unclear how these components works together, a model is presented here that provides a plan to solve this problem.
Collapse
Affiliation(s)
- H Niwa
- Stem Cell Regulation Research, Area of Molecular Therapeutics, Course of Advanced Medicine, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
3
|
Abstract
Embryonic genome activation (EGA) occurs by the 2-cell stage in mouse embryos. To understand the molecular basis of EGA, it is important to determine whether EGA can be supported by maternally inherited factors or if it requires the synthesis of additional transcription factors. We used a quantitative reverse transcription-polymerase chain reaction (RT-PCR) method to test whether protein synthesis is required for the transcriptional activation of six housekeeping genes (U2afbp-rs, Hprt, Pdha1, Prps1, Odc, and Cox7c). Cycloheximide treatment reduced the expression of these mRNAs in 2-cell embryos to the same degree as alpha-amanitin treatment. Cycloheximide treatment did not reduce the expression of maternally inherited mRNAs, indicating that its effect is specific for transcription-dependent gene expression. These results contrast with earlier results reported for the Hsp70 gene. This difference may reflect differences in promoter requirements. We conclude that protein synthesis is required for the activation of most, if not all, housekeeping genes in the mouse embryo, and that the time of EGA may be controlled, in part, by the regulated recruitment of maternal mRNAs encoding key transcription factors.
Collapse
Affiliation(s)
- Q Wang
- Fels Institute for Cancer Research and Molecular Biology, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
4
|
Takeda T, Kurachi H, Yamamoto T, Homma H, Adachi K, Morishige K, Miyake A, Murata Y. Alternative signaling mechanism of leukemia inhibitory factor responsiveness in a differentiating embryonal carcinoma cell. Endocrinology 1997; 138:2689-96. [PMID: 9202205 DOI: 10.1210/endo.138.7.5280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Leukemia inhibitory factor (LIF) is a cytokine that plays an important role during mouse embryogenesis. We showed that adenovirus E1A represses the interleukin-6 signal transduction pathway that uses the same JAK tyrosine kinase and STAT (signal transducer and activator of transcription) transcription factor as LIF. Here, we report that the LIF-JAK-STAT signal transduction pathway is blocked in cellular E1A-expressing undifferentiated F9 cells, and that the block is overcome by retinoic acid-induced differentiation. LIF failed to stimulate the expression of the acute phase response element (APRE)-driven luciferase gene in undifferentiated F9 cells, whereas the luciferase activity was remarkably increased by LIF treatment in differentiated F9 (dF9) cells. We analyzed the mechanism of the APRE regulation and found that the LIF-induced APRE-binding activity was regulated in a differentiation-dependent manner. The protein levels and the tyrosine phosphorylation of JAK1, JAK2, and STAT3 in F9 cells were not different from those in dF9 cells. The exogenous expression of activated c-Ha-ras partially recovered the LIF responsiveness of the APRE-luciferase gene in F9 cells, but the dominant negative ras N-17 did not repress the LIF-induced activation of APRE-luciferase in dF9 cells. These results suggested that an unknown coactivation process that is partially compensated by Ras is required for STAT3-APRE binding in F9 cells.
Collapse
Affiliation(s)
- T Takeda
- Department of Obstetrics and Gynecology, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kalvakolanu DV, Borden EC. An overview of the interferon system: signal transduction and mechanisms of action. Cancer Invest 1996; 14:25-53. [PMID: 8597888 DOI: 10.3109/07357909609018435] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- D V Kalvakolanu
- Department of Microbology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
6
|
Nakatsuji N. Development of Postimplantation Mouse Embryos: Unexplored Field Rich in Unanswered Questions. (gastrulation/primordial germ cell/neurulation/stem cell/cell lineage). Dev Growth Differ 1992. [DOI: 10.1111/j.1440-169x.1992.00489.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|