1
|
Abstract
Cardiovascular death is the most frequent cause of death in patients on peritoneal dialysis. Risk factors for cardiovascular death in these patients include those that affect the general population as well as those related to end-stage renal disease (ESRD) and those that are specific to peritoneal dialysis. The development of overhydration after loss of residual renal function is probably the most important cardiovascular risk factor specific to peritoneal dialysis. The high glucose load associated with peritoneal dialysis may lead to insulin resistance and to the development of an atherogenic lipid profile. The presence of glucose degradation products in conventional dialysis solutions, which leads to the local formation of advanced glycation end products, is also specific to peritoneal dialysis. Other risk factors that are not specific to peritoneal dialysis but are related to ESRD include calcifications and protein-energy wasting. When present together with inflammation and atherosclerosis, protein-energy wasting is associated with a marked increase in the risk of cardiovascular death. Obesity is not associated with increased cardiovascular risk in patients on any form of dialysis. Left ventricular hypertrophy and increased arterial stiffness are the most important risk factors for cardiovascular events in the general population.
Collapse
|
2
|
Nuclear Factor κB Mediates the Inhibitory Effects of Interleukin-1 on Growth Hormone-Inducible Gene Expression. ACTA ACUST UNITED AC 2008; 64:1427-35; discussion 1435-6. [DOI: 10.1097/ta.0b013e318174e8a4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Ahmed TA, Buzzelli MD, Lang CH, Capen JB, Shumate ML, Navaratnarajah M, Nagarajan M, Cooney RN. Interleukin-6 inhibits growth hormone-mediated gene expression in hepatocytes. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1793-803. [PMID: 17395896 DOI: 10.1152/ajpgi.00547.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During systemic inflammation, the liver becomes unresponsive to growth hormone (GH), resulting in decreased plasma insulin-like growth factor-I (IGF-I) with concomitant reductions in lean body mass. Transgenic mice that overexpress IL-6 also demonstrate impaired growth and decreased IGF-I. To determine whether IL-6 directly inhibits GH-inducible gene expression, CWSV-1 hepatocytes were incubated with IL-6 (10 ng/ml), then stimulated with recombinant human GH (500 ng/ml, 18 h). The increase in IGF-I and serine protease inhibitor 2.1 (Spi 2.1) mRNA in GH-treated cells was inhibited by treatment with IL-6 for 24 h. To investigate potential mechanisms, we examined the effects of IL-6 on GH receptor (GHR) expression and GH signaling via the JAK/signal transducer and activator of transcription (STAT) and MAP kinase pathways. Incubation of cells with IL-6 (10 ng/ml, 24 h) had no effect on GHR abundance or signaling proteins JAK2, STAT5b, and ERK1/2. Although GH transiently increased (2- to 5-fold) the tyrosine phosphorylation of GHR, JAK2, STAT5b, and ERK1/2, IL-6 did not alter these phosphorylation events. However, nuclear protein from IL-6-treated cells demonstrated reduced STAT5 DNA binding (by EMSA) at 15 min (-20%) and 60 min (-43%) after GH stimulation. To determine whether IL-6 inhibits GH-inducible promoter activity, CWSV-1 cells were transfected with Spi 2.1 or prolactin receptor promoter luciferase vectors, incubated with or without IL-6, then stimulated with GH. The induction of both Spi 2.1 (7.5-fold) and prolactin receptor (4-fold) promoter activity by GH was inhibited by IL-6. In summary, IL-6 mediates hepatic GH resistance by a time-dependent inhibition of GH-inducible promoter activity that is associated with reductions in STAT5 DNA binding.
Collapse
Affiliation(s)
- Tamer A Ahmed
- Dept. of Surgery, H070, Pennsylvania State Univ, College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Ahmed T, Yumet G, Shumate M, Lang CH, Rotwein P, Cooney RN. Tumor necrosis factor inhibits growth hormone-mediated gene expression in hepatocytes. Am J Physiol Gastrointest Liver Physiol 2006; 291:G35-44. [PMID: 16574984 DOI: 10.1152/ajpgi.00550.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Growth hormone (GH) stimulates STAT5 phosphorylation by JAK2, which activates IGF-I and serine protease inhibitor 2.1 (Spi 2.1) transcription, whereas STAT5 dephosphorylation by protein tyrosine phosphatases (PTPs) terminates this signal. We hypothesized that the inhibitory effects of TNF on GH signaling and gene transcription were responsible for hepatic GH resistance. CWSV-1 hepatocytes were treated with TNF, pervanadate (a PTP inhibitor), or both, before GH stimulation. Total and tyrosine-phosphorylated JAK2, STAT5, ERK1/2, SHP-1 and SHP-2, IGF-I, and Spi 2.1 mRNA levels were measured. GH stimulated STAT5 and ERK1/2 phosphorylation, IGF-I, and Spi 2.1 mRNA expression. TNF attenuated JAK2/STAT5 and ERK1/2 phosphorylation and IGF-I and Spi 2.1 mRNA expression following GH stimulation. SHP-1 and SHP-2 protein levels were unaltered by TNF or GH, and the GH-induced increase in SHP-1 PTP activity was not further increased by TNF. In TNF-treated cells, pervanadate restored STAT5 and ERK1/2 phosphorylation to control levels following GH stimulation but did not restore IGF-I or Spi 2.1 mRNA induction. Cells transfected with a Spi 2.1 promoter-luciferase vector demonstrate a 50-fold induction in luciferase activity following GH stimulation or cotransfection with a constitutively active STAT5 vector. TNF prevented the induction of Spi 2.1 promoter activity by GH and the STAT5 construct. We conclude that TNF does not inhibit GH activity by inducing SHP-1 or -2 expression and that correction of GH signaling defects in TNF-treated cells by pervanadate does not restore GH-induced gene expression. The inhibitory effects of TNF on GH-mediated gene transcription appear independent of STAT5 activity and previously identified abnormalities in JAK2/STAT5 signaling.
Collapse
Affiliation(s)
- Tamer Ahmed
- Department of Surgery, Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
5
|
Shumate ML, Yumet G, Ahmed TA, Cooney RN. Interleukin-1 inhibits the induction of insulin-like growth factor-I by growth hormone in CWSV-1 hepatocytes. Am J Physiol Gastrointest Liver Physiol 2005; 289:G227-39. [PMID: 15831712 DOI: 10.1152/ajpgi.00424.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sepsis results in hepatic "growth hormone (GH) resistance" with reductions in plasma IGF-I despite a two- to fourfold increase in circulating GH. In this study, we examine the effects of IL-1 on GH receptor (GHR) expression, GH signaling (via the JAK/STAT and MAPK pathways), and the induction of gene expression [IGF-I mRNA and serine protease inhibitor (Spi) 2.1] by GH in CWSV-1 hepatocytes. Incubation of cells with IL-1beta (10 ng/ml, 24 h) had no effect on the relative abundance of GHR or signaling proteins JAK2, STAT5b, and ERK1/2 in cell lysates. Baseline phosphorylation of GHR, JAK2, STAT5b, and ERK1/2 was minimal. After GH stimulation, tyrosine phosphorylation of GHR, JAK2, STAT5b, and ERK1/2 increased 2- to 10-fold. However, neither the time course nor the magnitude of GHR, JAK2, and ERK1/2 phosphorylation by GH were significantly altered by IL-1. The GH-induced translocation of STAT5b to the nucleus was not prevented by IL-1. Although phosphorylated STAT5 in nuclear extracts from GH + IL-1 cells was decreased by 24% (vs. controls) 15 min after GH stimulation, this did not result in reduced STAT5-DNA binding activity. Pretreatment with IL-1 did not significantly decrease IGF-I mRNA stability. We conclude that IL-1 only minimally affects the time course of JAK2/STAT5 and MAPK signaling by GH. Therefore, an inhibitory effect of IL-1 on IGF-I and Spi 2.1 mRNA synthesis by GH represents the most likely mechanism for IL-1-mediated GH resistance.
Collapse
Affiliation(s)
- Margaret L Shumate
- Dept. of Surgery, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
6
|
Affiliation(s)
- M Najimi
- Laboratory of Pediatric Hepatology, Faculty of Medicine, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
7
|
Drubin DA, Clawson GA. Spontaneous transformation of an immortalized hepatocyte cell line: potential role of a nuclear protease. Cancer Lett 2004; 213:39-48. [PMID: 15312682 DOI: 10.1016/j.canlet.2004.03.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 03/23/2004] [Accepted: 03/24/2004] [Indexed: 10/26/2022]
Abstract
In this study, we utilized an in vitro model of spontaneous transformation/progression, an SV40 large T antigen-immortalized rat hepatocyte cell line (designated CWSV14) that is very weakly tumorigenic at low-passage, but acquires a transformed phenotype upon extended passage in cell culture. Here we show that this mid-passage transformation is accompanied by development of aneuploidy and disorganization of the actin cytoskeleton, concomitant with a large increase in a chymotrypsin-like nuclear protease activity which we have previously implicated in chemical transformation of fibroblasts and ras-transformation of hepatocytes. Passage of the CWSV14 cells with AAPF(cmk), a relatively selective inhibitor of the nuclear protease activity, abrogates the acquisition of the transformed phenotype and prevents the changes in the actin cytoskeleton. We hypothesize that the nuclear protease may play a role in initiating development of genomic instability, paralleling the archetypical role of proteases in paradigms such as the SOS-type responses in bacteria and yeast.
Collapse
Affiliation(s)
- David A Drubin
- Departments of Pathology and Biochemistry and Molecular Biology, The Jake Gittlen Cancer Research Institute, H059, Hershey Medical Center, The Pennsylvania State University, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
8
|
Yumet G, Shumate ML, Bryant P, Lin CM, Lang CH, Cooney RN. Tumor necrosis factor mediates hepatic growth hormone resistance during sepsis. Am J Physiol Endocrinol Metab 2002; 283:E472-81. [PMID: 12169440 DOI: 10.1152/ajpendo.00107.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During sepsis, growth hormone (GH) resistance contributes to the catabolism of muscle protein. To determine the role of tumor necrosis factor (TNF) as a mediator of GH resistance, we examined the effects of a TNF antagonist [TNF-binding protein (TNFbp)] on the GH/insulin-like growth factor (IGF) I system during abdominal sepsis. To investigate potential mechanisms, the effects of TNF on the IGF-I response to GH and GH signaling were examined in cultured rat hepatocytes (CWSV-1). Three groups of rats were studied: Control, Sepsis, and Sepsis + TNFbp. Liver, gastrocnemius, and plasma were collected on day 5. In gastrocnemius, neither sepsis nor TNFbp altered the abundance of IGF-I mRNA. However, septic rats demonstrated an increase in circulating GH and a reduction in plasma IGF-I concentrations that was ameliorated by pretreatment with TNFbp. Liver from septic rats demonstrated a 50% reduction in GH receptor (GHR) and IGF-I mRNA on day 5 that was attenuated by TNFbp. However, the abundance of GHR protein was not different in liver from Control, Sepsis, or Sepsis + TNFbp rats. Consequently, a decreased amount of hepatic GHR does not explain the GH-resistant septic state. In CWSV-1 hepatocytes, TNF-alpha had no effect on GHR protein level but inhibited the induction of IGF-I mRNA by GH. Nuclear protein from TNF-treated hepatocytes demonstrated similar levels of phosphorylated signal transducer and activator of transcription-5 (STAT5) and DNA binding relative to controls 5 min after GH treatment. However, both of these parameters were decreased (vs. control) in TNF-treated cells 60 min after GH treatment. Collectively, these results suggest that TNF mediates hepatic GH resistance during sepsis by inhibiting the duration of signaling via the janus kinase-2/STAT5 pathway.
Collapse
Affiliation(s)
- Gladys Yumet
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
9
|
Huang JH, Liao WS. Synergistic induction of mouse serum amyloid A3 promoter by the inflammatory mediators IL-1 and IL-6. J Interferon Cytokine Res 1999; 19:1403-11. [PMID: 10638709 DOI: 10.1089/107999099312867] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Serum amyloid A (SAA), one of the major acute-phase proteins, increases several hundredfold in concentration in plasma following acute inflammation, primarily as a result of a 200-fold increase in its transcription rate. We have previously demonstrated that a 350-bp promoter fragment from the mouse SAA3 gene could confer conditioned medium-induced expression in cultured cells. The induction is mediated through a 42-bp distal response element (DRE) consisting of three functional regulatory elements. In this study, we show that interleukin-1 (IL-1) is the major cytokine in the conditioned medium responsible for SAA3 induction, and the induction by IL-1 can be effectively blocked by H-7, a protein kinase C inhibitor. Although IL-6 alone had no effect on SAA3 promoter activity, the addition of IL-6 and IL-1 resulted in dramatic synergistic activation of the reporter gene. We further show that the DRE is both necessary and sufficient to confer synergistic induction by IL-1 and IL-6. Moreover, individual mutation of the three regulatory elements within DRE either abolished or drastically reduced the synergistic induction. Our results indicate that synergistic activation of SAA3 promoter by IL-1 and IL-6 is achieved through integration of signals triggered by these two cytokines onto the DRE and that all three functionally distinct regulatory elements in the DRE are required to effectively and fully activate SAA3 gene transcription.
Collapse
Affiliation(s)
- J H Huang
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|
10
|
Guilhot S, Miller T, Cornman G, Isom HC. Apoptosis induced by tumor necrosis factor-alpha in rat hepatocyte cell lines expressing hepatitis B virus. THE AMERICAN JOURNAL OF PATHOLOGY 1996; 148:801-14. [PMID: 8774135 PMCID: PMC1861720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three well differentiated SV40-immortalized rat hepatocyte cell lines, CWSV1, CWSV2, and CWSV14, and Hepatitis B Virus (HBV)-producing cell lines derived from them were examined for sensitivity to tumor necrosis factor (TNF)-alpha. CWSV1, CWSV2, and CWSV14 cells were co-transfected with a DNA construct containing a dimer of the HBV genome and the neo gene and selected in G418 to generate stable cell lines. Characterization of these cell lines indicated that they contain integrated HBV DNA, contain low molecular weight HBV DNA compatible with the presence of HBV replication intermediates, express HBV transcripts, and produce HBV proteins. The viability of CWSV1, CWSV2, and CWSV2 cells was not significantly altered when they were treated with TNF-alpha at concentrations as high as 20,000 U/ml. The HBV-expressing CWSV1 cell line, SV1di36, and the HBV-expressing CWSV14 cell line, SV14di208, were also not killed when treated with TNF-alpha. However, the HBV-expressing CWSV2 cell line, SV2di366, was extensively killed when treated with TNF-alpha at concentrations ranging from 200 to 20,000 U/ml. Analysis of several different HBV-producing CWSV2 cell lines indicated that TNF-alpha killing depended upon the level of HBV expression. The TNF-alpha-induced cell killing in high HBV-producing CWSV2 cell lines was accompanied by the presence of an oligonucleosomal DNA ladder characteristic of apoptosis.
Collapse
Affiliation(s)
- S Guilhot
- Department of Microbiology and Immunology Penn State College of Medicine Hershey 17033, USA
| | | | | | | |
Collapse
|
11
|
Kempe KC, Isom HC, Greene FE. Responsiveness of an SV40-immortalized hepatocyte cell line to growth hormone. Biochem Pharmacol 1995; 49:1091-8. [PMID: 7748190 DOI: 10.1016/0006-2952(95)98506-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The response of an SV40-immortalized hepatocyte cell line (CWSV-1) derived from adult male rat hepatocytes to human growth hormone (hGH) was investigated. CWSV-1 cells, which have been characterized extensively, retain certain differentiated functions of normal liver (Woodworth and Isom, Mol Cell Biol 7: 3740-3748, 1987). This cell line consists of tightly associated polygonal, mononucleated cells that grow as monolayers. These cells showed no significant morphological changes with the addition of hGH. Northern blot analysis showed that continuous treatment of the CWSV-1 cells with hGH induced the expression of insulin-like growth factor I (IGF-I) and 5 alpha-reductase RNAs. In addition, continuous exposure to hGH resulted in the induction of expression of the growth hormone receptor/growth hormone binding protein (GHR/GHBP) genes. This study indicates that the CWSV-1 cells may serve as a valuable in vitro model system for studying the signaling pathway of GH.
Collapse
Affiliation(s)
- K C Kempe
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey 17033, USA
| | | | | |
Collapse
|
12
|
Expression of rat serum amyloid A1 gene involves both C/EBP-like and NF kappa B-like transcription factors. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98603-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Chen HM, Considine KB, Liao WS. Interleukin-6 responsiveness and cell-specific expression of the rat kininogen gene. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49939-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|