1
|
Panickar A, Manoharan A, Anbarasu A, Ramaiah S. Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs. Arch Microbiol 2024; 206:382. [PMID: 39153075 DOI: 10.1007/s00203-024-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Respiratory tract infections (RTIs) have a significant impact on global health, especially among children and the elderly. The key bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus and non-fermenting Gram Negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa are most commonly associated with RTIs. These bacterial pathogens have evolved a diverse array of resistance mechanisms through horizontal gene transfer, often mediated by mobile genetic elements and environmental acquisition. Treatment failures are primarily due to antimicrobial resistance and inadequate bacterial engagement, which necessitates the development of alternative treatment strategies. To overcome this, our review mainly focuses on different virulence mechanisms and their resulting pathogenicity, highlighting different therapeutic interventions to combat resistance. To prevent the antimicrobial resistance crisis, we also focused on leveraging the application of artificial intelligence and machine learning to manage RTIs. Integrative approaches combining mechanistic insights are crucial for addressing the global challenge of antimicrobial resistance in respiratory infections.
Collapse
Affiliation(s)
- Avani Panickar
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Manoharan
- Infectious Diseases Medical and Scientific Affairs, GlaxoSmithKline (GSK), Worli, Maharashtra, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Leung AKC, Lam JM, Barankin B, Leong KF, Hon KL. Group A β-hemolytic Streptococcal Pharyngitis: An Updated Review. Curr Pediatr Rev 2024; 21:2-17. [PMID: 37493159 DOI: 10.2174/1573396320666230726145436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Group A ß-hemolytic Streptococcus (GABHS) is the leading bacterial cause of acute pharyngitis in children and adolescents worldwide. OBJECTIVE This article aims to familiarize clinicians with the clinical manifestations, evaluation, diagnosis, and management of GABHS pharyngitis. METHODS A search was conducted in December 2022 in PubMed Clinical Queries using the key term "group A β-hemolytic streptococcal pharyngitis". This review covers mainly literature published in the previous ten years. RESULTS Children with GABHS pharyngitis typically present with an abrupt onset of fever, intense pain in the throat, pain on swallowing, an inflamed pharynx, enlarged and erythematous tonsils, a red and swollen uvula, enlarged tender anterior cervical lymph nodes. As clinical manifestations may not be specific, even experienced clinicians may have difficulties diagnosing GABHS pharyngitis solely based on epidemiologic or clinical grounds alone. Patients suspected of having GABHS pharyngitis should be confirmed by microbiologic testing (e.g., culture, rapid antigen detection test, molecular point-of-care test) of a throat swab specimen prior to the initiation of antimicrobial therapy. Microbiologic testing is generally unnecessary in patients with pharyngitis whose clinical and epidemiologic findings do not suggest GABHS. Clinical score systems such as the Centor score and McIssac score have been developed to help clinicians decide which patients should undergo diagnostic testing and reduce the unnecessary use of antimicrobials. Antimicrobial therapy should be initiated without delay once the diagnosis is confirmed. Oral penicillin V and amoxicillin remain the drugs of choice. For patients who have a non-anaphylactic allergy to penicillin, oral cephalosporin is an acceptable alternative. For patients with a history of immediate, anaphylactic-type hypersensitivity to penicillin, oral clindamycin, clarithromycin, and azithromycin are acceptable alternatives. CONCLUSION Early diagnosis and antimicrobial treatment are recommended to prevent suppurative complications (e.g., cervical lymphadenitis, peritonsillar abscess) and non-suppurative complications (particularly rheumatic fever) as well as to reduce the severity of symptoms, to shorten the duration of the illness and to reduce disease transmission.
Collapse
Affiliation(s)
- Alexander K C Leung
- Department of Pediatrics, The University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Joseph M Lam
- Department of Pediatrics and Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin Barankin
- Department of Dermatology, Toronto Dermatology Centre, Toronto, Ontario, Canada
| | - Kin F Leong
- Pediatric Institute, Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia
| | - Kam L Hon
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, China
| |
Collapse
|
3
|
Readnour BM, Ayinuola YA, Russo BT, Liang Z, Lee SW, Ploplis VA, Fischetti VA, Castellino FJ. Evolution of Streptococcus pyogenes has maximized the efficiency of the Sortase A cleavage motif for cell wall transpeptidation. J Biol Chem 2022; 298:101940. [PMID: 35430253 PMCID: PMC9123276 DOI: 10.1016/j.jbc.2022.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Trafficking of M-protein (Mprt) from the cytosol of Group A Streptococcus pyogenes (GAS) occurs via Sec translocase membrane channels that associate with Sortase A (SrtA), an enzyme that catalyzes cleavage of Mprt at the proximal C-terminal [-LPST355∗GEAA-] motif and subsequent transpeptidation of the Mprt-containing product to the cell wall (CW). These steps facilitate stable exposure of the N-terminus of Mprt to the extracellular milieu where it interacts with ligands. Previously, we found that inactivation of SrtA in GAS cells eliminated Mprt CW transpeptidation but effected little reduction in its cell surface exposure, indicating that the C-terminus of Mprt retained in the cytoplasmic membrane (CM) extends its N-terminus to the cell surface. Herein, we assessed the effects of mutating the Thr355 residue in the WT SrtA consensus sequence (LPST355∗GEAA-) in a specific Mprt, PAM. In vitro, we found that synthetic peptides with mutations (LPSX355GEAA) in the SrtA cleavage site displayed slower cleavage activities with rSrtA than the WT peptide. Aromatic residues at X had the lowest activities. Nonetheless, PAM/[Y355G] still transpeptidated the CW in vivo. However, when using isolated CMs from srtA-inactivated GAS cells, rapid cleavage of PAM/[LPSY355GEAA] occurred at E357∗ but transpeptidation did not take place. These results show that another CM-resident enzyme nonproductively cleaved PAM/[LPSYGE357∗AA]. However, SrtA associated with the translocon channel in vivo cleaved and transpeptidated PAM/[LPSX355∗GEAA] variants. These CM features allow diverse cleavage site variants to covalently attach to the CW despite the presence of other potent nonproductive CM proteases.
Collapse
Affiliation(s)
- Bradley M Readnour
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brady T Russo
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
4
|
Domachowske J. The Immune Response to Infection. Vaccines (Basel) 2021. [DOI: 10.1007/978-3-030-58414-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Chisholm RH, Sonenberg N, Lacey JA, McDonald MI, Pandey M, Davies MR, Tong SYC, McVernon J, Geard N. Epidemiological consequences of enduring strain-specific immunity requiring repeated episodes of infection. PLoS Comput Biol 2020; 16:e1007182. [PMID: 32502148 PMCID: PMC7299408 DOI: 10.1371/journal.pcbi.1007182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/17/2020] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
Group A Streptococcus (GAS) skin infections are caused by a diverse array of strain types and are highly prevalent in disadvantaged populations. The role of strain-specific immunity in preventing GAS infections is poorly understood, representing a critical knowledge gap in vaccine development. A recent GAS murine challenge study showed evidence that sterilising strain-specific and enduring immunity required two skin infections by the same GAS strain within three weeks. This mechanism of developing enduring immunity may be a significant impediment to the accumulation of immunity in populations. We used an agent-based mathematical model of GAS transmission to investigate the epidemiological consequences of enduring strain-specific immunity developing only after two infections with the same strain within a specified interval. Accounting for uncertainty when correlating murine timeframes to humans, we varied this maximum inter-infection interval from 3 to 420 weeks to assess its impact on prevalence and strain diversity, and considered additional scenarios where no maximum inter-infection interval was specified. Model outputs were compared with longitudinal GAS surveillance observations from northern Australia, a region with endemic infection. We also assessed the likely impact of a targeted strain-specific multivalent vaccine in this context. Our model produced patterns of transmission consistent with observations when the maximum inter-infection interval for developing enduring immunity was 19 weeks. Our vaccine analysis suggests that the leading multivalent GAS vaccine may have limited impact on the prevalence of GAS in populations in northern Australia if strain-specific immunity requires repeated episodes of infection. Our results suggest that observed GAS epidemiology from disease endemic settings is consistent with enduring strain-specific immunity being dependent on repeated infections with the same strain, and provide additional motivation for relevant human studies to confirm the human immune response to GAS skin infection. Group A Streptococcus (GAS) is a ubiquitous bacterial pathogen that exists in many distinct strains, and is a major cause of death and disability globally. Vaccines against GAS are under development, but their effective use will require better understanding of how immunity develops following infection. Evidence from an animal model of skin infection suggests that the generation of enduring strain-specific immunity requires two infections by the same strain within a short time frame. It is not clear if this mechanism of immune development operates in humans, nor how it would contribute to the persistence of GAS in populations and affect vaccine impact. We used a mathematical model of GAS transmission, calibrated to data collected in an Indigenous Australian community, to assess whether this mechanism of immune development is consistent with epidemiological observations, and to explore its implications for the impact of a vaccine. We found that it is plausible that repeat infections are required for the development of immunity in humans, and illustrate the difficulties associated with achieving sustained reductions in disease prevalence with a vaccine.
Collapse
Affiliation(s)
- Rebecca H. Chisholm
- Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nikki Sonenberg
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jake A. Lacey
- Doherty Department University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Malcolm I. McDonald
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Manisha Pandey
- Institute for Glycomics, Gold Coast Campus, Griffith University, Brisbane, Queensland, Australia
| | - Mark R. Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Steven Y. C. Tong
- Doherty Department University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Jodie McVernon
- Victorian Infectious Diseases Reference Laboratory Epidemiology Unit at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Victoria, Australia
| | - Nicholas Geard
- Victorian Infectious Diseases Reference Laboratory Epidemiology Unit at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Victoria, Australia
- School of Computing and Information Systems, Melbourne School of Engineering, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
6
|
Changes in emm types and superantigen gene content of Streptococcus pyogenes causing invasive infections in Portugal. Sci Rep 2019; 9:18051. [PMID: 31792274 PMCID: PMC6888849 DOI: 10.1038/s41598-019-54409-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
Fluctuations in the clonal composition of Group A Streptococcus (GAS) have been associated with the emergence of successful lineages and with upsurges of invasive infections (iGAS). This study aimed at identifying changes in the clones causing iGAS in Portugal. Antimicrobial susceptibility testing, emm typing and superantigen (SAg) gene profiling were performed for 381 iGAS isolates from 2010-2015. Macrolide resistance decreased to 4%, accompanied by the disappearance of the M phenotype and an increase of the iMLSB phenotype. The dominant emm types were: emm1 (28%), emm89 (11%), emm3 (9%), emm12 (8%), and emm6 (7%). There were no significant changes in the prevalence of individual emm types, emm clusters, or SAg profiles when comparing to 2006-2009, although an overall increasing trend was recorded during 2000-2015 for emm1, emm75, and emm87. Short-term increases in the prevalence of emm3, emm6, and emm75 may have been driven by concomitant SAg profile changes observed within these emm types, or reflect the emergence of novel genomic variants of the same emm types carrying different SAgs.
Collapse
|