1
|
Embarcadero-Jiménez S, Araujo-Palomares CL, Moreno-Perlín T, Ramírez-Álvarez N, Quezada-Hernández C, Batista-García RA, Sanchez-Flores A, Calcáneo-Hernández G, Silva-Jiménez H. Physiology and comparative genomics of the haloalkalitolerant and hydrocarbonoclastic marine strain Rhodococcus ruber MSA14. Arch Microbiol 2024; 206:328. [PMID: 38935150 DOI: 10.1007/s00203-024-04050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Marine hydrocarbonoclastic bacteria can use polycyclic aromatic hydrocarbons as carbon and energy sources, that makes these bacteria highly attractive for bioremediation in oil-polluted waters. However, genomic and metabolic differences between species are still the subject of study to understand the evolution and strategies to degrade PAHs. This study presents Rhodococcus ruber MSA14, an isolated bacterium from marine sediments in Baja California, Mexico, which exhibits adaptability to saline environments, a high level of intrinsic pyrene tolerance (> 5 g L- 1), and efficient degradation of pyrene (0.2 g L- 1) by 30% in 27 days. Additionally, this strain demonstrates versatility by using naphthalene and phenanthrene as individual carbon sources. The genome sequencing of R. ruber MSA14 revealed a genome spanning 5.45 Mbp, a plasmid of 72 kbp, and three putative megaplasmids, lengths between 110 and 470 Kbp. The bioinformatics analysis of the R. ruber MSA14 genome revealed 56 genes that encode enzymes involved in the peripheral and central pathways of aromatic hydrocarbon catabolism, alkane, alkene, and polymer degradation. Within its genome, R. ruber MSA14 possesses genes responsible for salt tolerance and siderophore production. In addition, the genomic analysis of R. ruber MSA14 against 13 reference genomes revealed that all compared strains have at least one gene involved in the alkanes and catechol degradation pathway. Overall, physiological assays and genomic analysis suggest that R. ruber MSA14 is a new haloalkalitolerant and hydrocarbonoclastic strain toward a wide range of hydrocarbons, making it a promising candidate for in-depth characterization studies and bioremediation processes as part of a synthetic microbial consortium, as well as having a better understanding of the catabolic potential and functional diversity among the Rhodococci group.
Collapse
Affiliation(s)
- Salvador Embarcadero-Jiménez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Tijuana-Ensenada, No. 3917, Fraccionamiento Playitas, Ensenada, Baja California, 22860, México
| | - Cynthia Lizzeth Araujo-Palomares
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Tijuana-Ensenada, No. 3917, Fraccionamiento Playitas, Ensenada, Baja California, 22860, México
| | - Tonatiuh Moreno-Perlín
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, C.P. 62209, México
| | - Nancy Ramírez-Álvarez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Tijuana-Ensenada, No. 3917, Fraccionamiento Playitas, Ensenada, Baja California, 22860, México
| | - Cristina Quezada-Hernández
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Tijuana-Ensenada, No. 3917, Fraccionamiento Playitas, Ensenada, Baja California, 22860, México
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, C.P. 62209, México
- Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas s/n, Jaén, 23071, España
| | - Alejandro Sanchez-Flores
- Instituto de Biotecnología, Unidad Universitaria de Secuenciación Masiva y Bioinformática, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, C.P. 62210, México
| | - Gabriela Calcáneo-Hernández
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, C.P. 04510, México
| | - Hortencia Silva-Jiménez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Tijuana-Ensenada, No. 3917, Fraccionamiento Playitas, Ensenada, Baja California, 22860, México.
| |
Collapse
|
2
|
Suzuki-Minakuchi C, Yamamoto N, Takahira S, Yamaguchi M, Takeda Y, Okada K, Shigeto S, Nojiri H. Transcriptional heterogeneity of catabolic genes on the plasmid pCAR1 causes host-specific carbazole degradation. Appl Environ Microbiol 2024; 90:e0124723. [PMID: 38289097 PMCID: PMC10880608 DOI: 10.1128/aem.01247-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/21/2023] [Indexed: 02/22/2024] Open
Abstract
To elucidate why plasmid-borne catabolic ability differs among host bacteria, we assessed the expression dynamics of the Pant promoter on the carbazole-degradative conjugative plasmid pCAR1 in Pseudomonas putida KT2440(pCAR1) (hereafter, KTPC) and Pseudomonas resinovorans CA10. The Pant promoter regulates the transcription of both the car and ant operons, which are responsible for converting carbazole into anthranilate and anthranilate into catechol, respectively. In the presence of anthranilate, transcription of the Pant promoter is induced by the AraC/XylS family regulator AntR, encoded on pCAR1. A reporter cassette containing the Pant promoter followed by gfp was inserted into the chromosomes of KTPC and CA10. After adding anthranilate, GFP expression in the population of CA10 showed an unimodal distribution, whereas a small population with low GFP fluorescence intensity appeared for KTPC. CA10 has a gene, antRCA, that encodes an iso-functional homolog of AntR on its chromosome. When antRCA was disrupted, a small population with low GFP fluorescence intensity appeared. In contrast, overexpression of pCAR1-encoded AntR in KTPC resulted in unimodal expression under the Pant promoter. These results suggest that the expression of pCAR1-encoded AntR is insufficient to ameliorate the stochastic expression of the Pant promoter. Raman spectra of single cells collected using deuterium-labeled carbazole showed that the C-D Raman signal exhibited greater variability for KTPC than CA10. These results indicate that heterogeneity at the transcriptional level of the Pant promoter due to insufficient AntR availability causes fluctuations in the pCAR1-borne carbazole-degrading capacity of host bacterial cells.IMPORTANCEHorizontally acquired genes increase the competitiveness of host bacteria under selective conditions, although unregulated expression of foreign genes may impose fitness costs. The "appropriate" host for a plasmid is empirically known to maximize the expression of plasmid-borne traits. In the case of pCAR1-harboring Pseudomonas strains, P. resinovorans CA10 exhibits strong carbazole-degrading capacity, whereas P. putida KT2440 harboring pCAR1 exhibits low degradation capacity. Our results suggest that a chromosomally encoded transcription factor affects transcriptional and metabolic fluctuations in host cells, resulting in different carbazole-degrading capacities as a population. This study may provide a clue for determining appropriate hosts for a plasmid and for regulating the expression of plasmid-borne traits, such as the degradation of xenobiotics and antibiotic resistance.
Collapse
Affiliation(s)
- Chiho Suzuki-Minakuchi
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Natsumi Yamamoto
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Saki Takahira
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masataka Yamaguchi
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, Japan
| | - Yutaro Takeda
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Shigeto
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Hyogo, Japan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Jiang Q, Lu W, Zhang L, Jin Y, Wang Y, Chen J, Ye Z, Xiao M. Promotion mechanism of self-transmissible degradative plasmid transfer in maize rhizosphere and its application in naphthalene degradation in soil. J Environ Sci (China) 2022; 115:240-252. [PMID: 34969451 DOI: 10.1016/j.jes.2021.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/14/2023]
Abstract
Rhizospheres can promote self-transmissible plasmid transfer, however, the corresponding mechanism has not received much attention. Plant-microbe remediation is an effective way to promote pollutant biodegradation; however, some pollutants, such as naphthalene, are harmful to plants and result in inefficient plant-microbe remediation. In this study, transfer of a TOL-like plasmid, a self-transmissible plasmid loaded with genetic determinants for pollutant degradation, among different bacteria was examined in bulk and rhizosphere soils as well as addition of maize root exudate and its artificial root exudate (ARE). The results showed that the numbers of transconjugants and recipients as well as bacterial metabolic activities, such as xylE mRNA expression levels and catechol 2,3-dioxygenase (C23O) activities of bacteria, remained high in rhizosphere soils, when compared with bulk soils. The number of transconjugants and bacterial metabolic activities increased with the increasing exudate and ARE concentrations, whereas the populations of donor and recipient bacteria were substantially unaltered at all concentrations. All the experiments consistently showed that a certain number of bacteria is required for self-transmissible plasmid transfer, and that the increased plasmid transfer might predominantly be owing to bacterial metabolic activity stimulated by root exudates and ARE. Furthermore, ARE addition increased naphthalene degradation by transconjugants in both culture medium and soil. Thus, the combined action of a wide variety of components in ARE might contribute to the increased plasmid transfer and naphthalene degradation. These findings suggest that ARE could be an effectively alternative for plant-microbe remediation of pollutants in environments where plants cannot survive.
Collapse
Affiliation(s)
- Qiuyan Jiang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenwei Lu
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Department of Food Science, Shanghai Business School, Shanghai 200235, China
| | - Lei Zhang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yeqing Jin
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yujing Wang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jun Chen
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ziyi Ye
- Shanghai Landscape Architecture Construction Co., Ltd., Shanghai 200235, China
| | - Ming Xiao
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 200240, China.
| |
Collapse
|
4
|
Biodegradation of aromatic pollutants meets synthetic biology. Synth Syst Biotechnol 2021; 6:153-162. [PMID: 34278013 PMCID: PMC8260767 DOI: 10.1016/j.synbio.2021.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 02/02/2023] Open
Abstract
Ubiquitously distributed microorganisms are natural decomposers of environmental pollutants. However, because of continuous generation of novel recalcitrant pollutants due to human activities, it is difficult, if not impossible, for microbes to acquire novel degradation mechanisms through natural evolution. Synthetic biology provides tools to engineer, transform or even re-synthesize an organism purposefully, accelerating transition from unable to able, inefficient to efficient degradation of given pollutants, and therefore, providing new solutions for environmental bioremediation. In this review, we described the pipeline to build chassis cells for the treatment of aromatic pollutants, and presented a proposal to design microbes with emphasis on the strategies applied to modify the target organism at different level. Finally, we discussed challenges and opportunities for future research in this field.
Collapse
|
5
|
Kim M, Park J, Kang M, Yang J, Park W. Gain and loss of antibiotic resistant genes in multidrug resistant bacteria: One Health perspective. J Microbiol 2021; 59:535-545. [PMID: 33877574 DOI: 10.1007/s12275-021-1085-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
The emergence of multidrug resistance (MDR) has become a global health threat due to the increasing unnecessary use of antibiotics. Multidrug resistant bacteria occur mainly by accumulating resistance genes on mobile genetic elements (MGEs), made possible by horizontal gene transfer (HGT). Humans and animal guts along with natural and engineered environments such as wastewater treatment plants and manured soils have proven to be the major reservoirs and hotspots of spreading antibiotic resistance genes (ARGs). As those environments support the dissemination of MGEs through the complex interactions that take place at the human-animal-environment interfaces, a growing One Health challenge is for multiple sectors to communicate and work together to prevent the emergence and spread of MDR bacteria. However, maintenance of ARGs in a bacterial chromosome and/or plasmids in the environments might place energy burdens on bacterial fitness in the absence of antibiotics, and those unnecessary ARGs could eventually be lost. This review highlights and summarizes the current investigations into the gain and loss of ARG genes in MDR bacteria among human-animal-environment interfaces. We also suggest alternative treatments such as combinatory therapies or sequential use of different classes of antibiotics/adjuvants, treatment with enzyme-inhibitors, and phage therapy with antibiotics to solve the MDR problem from the perspective of One Health issues.
Collapse
Affiliation(s)
- Misung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jaeeun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Mingyeong Kang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jihye Yang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res 2019; 46:e35. [PMID: 29346586 PMCID: PMC5887522 DOI: 10.1093/nar/gkx1321] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
Plasmids are mobile genetics elements that play an important role in the environmental adaptation of microorganisms. Although plasmids are usually analyzed in cultured microorganisms, there is a need for methods that allow for the analysis of pools of plasmids (plasmidomes) in environmental samples. To that end, several molecular biology and bioinformatics methods have been developed; however, they are limited to environments with low diversity and cannot recover large plasmids. Here, we present PlasFlow, a novel tool based on genomic signatures that employs a neural network approach for identification of bacterial plasmid sequences in environmental samples. PlasFlow can recover plasmid sequences from assembled metagenomes without any prior knowledge of the taxonomical or functional composition of samples with an accuracy up to 96%. It can also recover sequences of both circular and linear plasmids and can perform initial taxonomical classification of sequences. Compared to other currently available tools, PlasFlow demonstrated significantly better performance on test datasets. Analysis of two samples from heavy metal-contaminated microbial mats revealed that plasmids may constitute an important fraction of their metagenomes and carry genes involved in heavy-metal homeostasis, proving the pivotal role of plasmids in microorganism adaptation to environmental conditions.
Collapse
Affiliation(s)
- Pawel S Krawczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Leszek Lipinski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
7
|
Segura A, Hernández-Sánchez V, Marqués S, Molina L. Insights in the regulation of the degradation of PAHs in Novosphingobium sp. HR1a and utilization of this regulatory system as a tool for the detection of PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:381-393. [PMID: 28285855 DOI: 10.1016/j.scitotenv.2017.02.180] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 05/15/2023]
Abstract
Novosphingobium sp. HR1a is able to grow using diverse polycyclic aromatic hydrocarbons (PAHs) as the sole carbon sources. We have identified two transposons that contain genes encoding several ring-hydroxylating dioxygenases and we have demonstrated the crucial role of one of these dioxygenases in the PAH metabolism in this strain; a mutant in the large subunit of this dioxygenase was unable to growth with 2-, 3-, or 4-rings aromatic hydrocarbons. Using a construction of lacZ gene fused with the pathway promoter, we determined that the expression of the dioxygenase gene was specifically induced in the presence of some PAHs and intermediates of their metabolic pathway. In silico analysis of the ORFs within the transposons and construction of the corresponding knock-out mutants allowed us to identify the main regulatory protein involved in PAH degradation in Novosphingobium sp. HR1a. To our knowledge this is the first time that a regulatory protein controlling the degradation pathway of high-molecular weight PAHs has been investigated. A deeper knowledge of the regulatory circuits that control the expression of PAH degradation has allowed us to design two biosensors for monitoring environments contaminated with oil-derived mixtures. Novosphingobium sp. HR1a (pKSR-1), the biosensor based on the promoter of the regulatory protein PahR, was more sensitive and faster in the detection of aromatic contaminants in environmental samples than Novosphingobium sp. HR1a (pKSA-1), the biosensor that is based on the PAHs-dioxygenase promoter (PpahA). Novosphingobium sp. HR1a (pKSR-1) was able to detect PAHs in the range of μgl-1 (ppb).
Collapse
Affiliation(s)
- Ana Segura
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Spain
| | - Verónica Hernández-Sánchez
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Spain
| | - Silvia Marqués
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Spain
| | - Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Spain.
| |
Collapse
|
8
|
Porwal S, Singh R. Cloning of merA Gene from Methylotenera Mobilis for Mercury Biotransformation. Indian J Microbiol 2016; 56:504-507. [PMID: 27784949 DOI: 10.1007/s12088-016-0613-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 07/22/2016] [Indexed: 10/21/2022] Open
Abstract
Mercury (Hg) is one of the most toxic heavy metal and is extremely harmful for the environment. The permissible limit of mercury in industrial effluents is 0.001 ppm, whereas there are various sites having very high levels of mercury contamination. In the present study, 10 different mercury (Hg) resistant bacterial strains were isolated from Ulhas Estuary, Mumbai (Hg concentration of 107 ppm). All the strains were subsequently grown on higher concentration of mercuric chloride (HgCl2), one of the isolate (USP5) showed significant growth at high concentration of Hg (40 ppm) and 16S rRNA gene sequencing revealed the identity of the bacterium as Methylotenera mobilis, (Accession no. KT714144). The mer operon was isolated and cloned in E.coli and checked for its ability to tolerate higher concentration of Hg. It has shown growth up to 70 ppm of Hg, also presence of merA gene indicated its ability to detoxify Hg into less toxic volatile form. The atomic absorption spectrophotometry confirmed the ability of clone to efficiently detoxify 60-90 % of the Hg (10-70 ppm) within 48-72 h. This clone can be used for effective volatilization of Hg from contaminated areas.
Collapse
Affiliation(s)
- Shalini Porwal
- Amity Institute of Microbial Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh 201303 India
| | - Rajni Singh
- Amity Institute of Microbial Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh 201303 India
| |
Collapse
|