1
|
Xiao Q, Zhang L, Xu X, Dai R, Tan Y, Li X, Jin D, Fan Y. Nitrogen-Metabolism Inhibitor NmrA Regulates Conidial Production, Melanin Synthesis, and Virulence in Phytopathogenic Fungus Verticillium dahliae. PHYTOPATHOLOGY 2025; 115:281-289. [PMID: 39688539 DOI: 10.1094/phyto-07-24-0226-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
NmrA homologs have been reported as conserved regulators of nitrogen metabolite repression in various fungi. Here, we identified an NmrA homolog in Verticillium dahliae and reported its functions in nitrogen utilization, growth and development, and pathogenesis. VdNmrA interacts with the V. dahliae AreA protein and regulates the expression of a typical NMR target, the formamidase gene. VdNmrA deletion mutants exhibited significantly slower colony growth on media with Gln or Arg. Furthermore, VdNmrA deletion impaired hyphal growth, spore production, hyperosmotic stress tolerance, and melanin biosynthesis. Fewer reactive oxygen species were produced in VdNmrA mutants, and the NADPH oxidase genes noxA and noxB showed lowered expression levels compared with the wild type. VdNmrA mutants exhibited reduced virulence on cotton and Arabidopsis compared with wild-type strains. Our results indicated that VdNmrA functioned as a nitrogen metabolite repression repressor and played important roles in nutrient utilization, fungal development, stress tolerance, and pathogenicity in V. dahliae.
Collapse
Affiliation(s)
- Qi Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Leyuan Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xueping Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Renyu Dai
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yingqing Tan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xianbi Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Dan Jin
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yanhua Fan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Jia X, Song J, Wu Y, Feng S, Sun Z, Hu Y, Yu M, Han R, Zeng B. Strategies for the Enhancement of Secondary Metabolite Production via Biosynthesis Gene Cluster Regulation in Aspergillus oryzae. J Fungi (Basel) 2024; 10:312. [PMID: 38786667 PMCID: PMC11121810 DOI: 10.3390/jof10050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The filamentous fungus Aspergillus oryzae (A. oryzae) has been extensively used for the biosynthesis of numerous secondary metabolites with significant applications in agriculture and food and medical industries, among others. However, the identification and functional prediction of metabolites through genome mining in A. oryzae are hindered by the complex regulatory mechanisms of secondary metabolite biosynthesis and the inactivity of most of the biosynthetic gene clusters involved. The global regulatory factors, pathway-specific regulatory factors, epigenetics, and environmental signals significantly impact the production of secondary metabolites, indicating that appropriate gene-level modulations are expected to promote the biosynthesis of secondary metabolites in A. oryzae. This review mainly focuses on illuminating the molecular regulatory mechanisms for the activation of potentially unexpressed pathways, possibly revealing the effects of transcriptional, epigenetic, and environmental signal regulation. By gaining a comprehensive understanding of the regulatory mechanisms of secondary metabolite biosynthesis, strategies can be developed to enhance the production and utilization of these metabolites, and potential functions can be fully exploited.
Collapse
Affiliation(s)
- Xiao Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
- College of Materials and Energy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiayi Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang 110819, China
| | - Yijian Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Sai Feng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Zeao Sun
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Yan Hu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Mengxue Yu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Rui Han
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (X.J.); (J.S.); (Y.W.); (S.F.); (Z.S.); (Y.H.); (M.Y.); (R.H.)
| |
Collapse
|
3
|
Jakab Á, Csillag K, Antal K, Boczonádi I, Kovács R, Pócsi I, Emri T. Total transcriptome response for tyrosol exposure in Aspergillus nidulans. Fungal Biol 2024; 128:1664-1674. [PMID: 38575239 DOI: 10.1016/j.funbio.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/27/2023] [Accepted: 01/12/2024] [Indexed: 04/06/2024]
Abstract
Although tyrosol is a quorum-sensing molecule of Candida species, it has antifungal activity at supraphysiological concentrations. Here, we studied the effect of tyrosol on the physiology and genome-wide transcription of Aspergillus nidulans to gain insight into the background of the antifungal activity of this compound. Tyrosol efficiently reduced germination of conidia and the growth on various carbon sources at a concentration of 35 mM. The growth inhibition was fungistatic rather than fungicide on glucose and was accompanied with downregulation of 2199 genes related to e.g. mitotic cell cycle, glycolysis, nitrate and sulphate assimilation, chitin biosynthesis, and upregulation of 2250 genes involved in e.g. lipid catabolism, amino acid degradation and lactose utilization. Tyrosol treatment also upregulated genes encoding glutathione-S-transferases (GSTs), increased specific GST activities and the glutathione (GSH) content of the cells, suggesting that A. nidulans can detoxify tyrosol in a GSH-dependent manner even though this process was weak. Tyrosol did not induce oxidative stress in this species, but upregulated "response to nutrient levels", "regulation of nitrogen utilization", "carbon catabolite activation of transcription" and "autophagy" genes. Tyrosol may have disturbed the regulation and orchestration of cellular metabolism, leading to impaired use of nutrients, which resulted in growth reduction.
Collapse
Affiliation(s)
- Ágnes Jakab
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary; Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032, Debrecen, Hungary.
| | - Kinga Csillag
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032, Debrecen, Hungary
| | - Károly Antal
- Department of Zoology, Faculty of Sciences, Eszterházy Károly Catholic University, 3300, Eger, Hungary
| | - Imre Boczonádi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032, Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032, Debrecen, Hungary; HUN-REN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032, Debrecen, Hungary; HUN-REN-UD Fungal Stress Biology Research Group, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Zhang Q, Wang Q, Chen H, Chen L, Wang F, Gu Z, Shi G, Liu L, Ding Z. Lignin-degrading enzyme production was enhanced by the novel transcription factor Ptf6 in synergistic microbial co-culture. Microbiol Res 2024; 280:127575. [PMID: 38147744 DOI: 10.1016/j.micres.2023.127575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Synergistic microbial co-culture has been an efficient and energy-saving strategy to produce lignin-degrading enzymes (LDEs), including laccase, manganese peroxidase, and versatile peroxidase. However, the regulatory mechanism of microbial co-culture is still unclear. Herein, the extracellular LDE activities of four white-rot fungi were significantly increased by 88-544% over monoculture levels when co-cultured with Rhodotorula mucilaginosa. Ptf6 was demonstrated from the 9 million Y1H clone library to be a shared GATA transcription factor in the four fungi, and could directly bind to the laccase gene promoter. Ptf6 exists in two alternatively spliced isoforms under monoculture, namely Ptf6-α (1078 amino acids) containing Cys2/Cys2-type zinc finger and Ptf6-β (963 amino acids) lacking the complete domain. Ptf6 responded to co-culture by up-regulation of both its own transcripts and the proportion of Ptf6-α. Ptf6-α positively activated the production of most LDE isoenzymes and bound to four GATA motifs on the LDEs' promoter with different affinities. Moreover, Ptf6-regulation mechanism can be applicable to a variety of microbial co-culture systems. This study lays a theoretical foundation for further improving LDEs production and providing an efficient way to enhance the effects of biological and enzymatic pretreatment for lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haixiu Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhenghua Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Mohamed NZ, Shaban L, Safan S, El-Sayed ASA. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiol Res 2023; 272:127385. [PMID: 37141853 DOI: 10.1016/j.micres.2023.127385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Attenuating the Taxol productivity of fungi with the subculturing and storage under axenic conditions is the challenge that halts the feasibility of fungi to be an industrial platform for Taxol production. This successive weakening of Taxol productivity by fungi could be attributed to the epigenetic down-regulation and molecular silencing of most of the gene clusters encoding Taxol biosynthetic enzymes. Thus, exploring the epigenetic regulating mechanisms controlling the molecular machinery of Taxol biosynthesis could be an alternative prospective technology to conquer the lower accessibility of Taxol by the potent fungi. The current review focuses on discussing the different molecular approaches, epigenetic regulators, transcriptional factors, metabolic manipulators, microbial communications and microbial cross-talking approaches on restoring and enhancing the Taxol biosynthetic potency of fungi to be industrial platform for Taxol production.
Collapse
Affiliation(s)
- Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
6
|
Liu H, Qiao J, Shangguan J, Guo X, Xing Z, Zhou X, Zhao M, Zhu J. A Gene from Ganoderma lucidum with Similarity to nmrA of Filamentous Ascomycetes Contributes to Regulating AreA. J Fungi (Basel) 2023; 9:jof9050516. [PMID: 37233227 DOI: 10.3390/jof9050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Fungal AreA is a key nitrogen metabolism transcription factor in nitrogen metabolism repression (NMR). Studies have shown that there are different ways to regulate AreA activity in yeast and filamentous ascomycetes, but in Basidiomycota, how AreA is regulated is unknown. Here, a gene from Ganoderma lucidum with similarity to nmrA of filamentous ascomycetes was identified. The NmrA interacted with the C-terminal of AreA according to yeast two-hybrid assay. In order to determine the effect of NmrA on the AreA, 2 nmrA silenced strains of G. lucidum, with silencing efficiencies of 76% and 78%, were constructed using an RNA interference method. Silencing nmrA resulted in a decreased content of AreA. The content of AreA in nmrAi-3 and nmrAi-48 decreased by approximately 68% and 60%, respectively, compared with that in the WT in the ammonium condition. Under the nitrate culture condition, silencing nmrA resulted in a 40% decrease compared with the WT. Silencing nmrA also reduced the stability of the AreA protein. When the mycelia were treated with cycloheximide for 6 h, the AreA protein was almost undetectable in the nmrA silenced strains, while there was still approximately 80% of the AreA protein in the WT strains. In addition, under the nitrate culture, the content of AreA protein in the nuclei of the WT strains was significantly increased compared with that under the ammonium condition. However, when nmrA was silenced, the content of the AreA protein in the nuclei did not change compared with the WT. Compared with the WT, the expression of the glutamine synthetase gene in nmrAi-3 and nmrAi-48 strains increased by approximately 94% and 88%, respectively, under the ammonium condition, while the expression level of the nitrate reductase gene in nmrAi-3 and nmrAi-48 strains increased by approximately 100% and 93%, respectively, under the nitrate condition. Finally, silencing nmrA inhibited mycelial growth and increased ganoderic acid biosynthesis. Our findings are the first to reveal that a gene from G. lucidum with similarity to the nmrA of filamentous ascomycetes contributes to regulating AreA, which provides new insight into how AreA is regulated in Basidiomycota.
Collapse
Affiliation(s)
- He Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinjin Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaolei Shangguan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyu Guo
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenzhen Xing
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolin Zhou
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingwen Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
NmrA acts as a positive regulator of nitrate assimilation in Phaeodactylum tricornutum. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
The C2H2 Zinc Finger Protein MaNCP1 Contributes to Conidiation through Governing the Nitrate Assimilation Pathway in the Entomopathogenic Fungus Metarhizium acridum. J Fungi (Basel) 2022; 8:jof8090942. [PMID: 36135667 PMCID: PMC9505000 DOI: 10.3390/jof8090942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022] Open
Abstract
Zinc finger proteins are an important class of multifunctional regulators. Here, the roles of a C2H2 zinc finger protein MaNCP1 (Metarhizium acridum nitrate-related conidiation pattern shift regulatory factor 1) in nitrogen utilization and conidiation were explored in the entomopathogenic fungus M. acridum. The results showed that MaNCP1-disruption mutant (ΔMaNCP1) impaired the ability to utilize nitrate, ammonium and glutamine and reduced the expression of nitrate assimilation-related genes, suggesting that MaNCP1 was involved in governing nitrogen utilization. In addition, the conidial yield of the ΔMaNCP1 strain, cultured on the microcycle conidiation medium (SYA), was significantly decreased, which could be restored or even enhanced than that of the WT strain through increasing the nitrate content in SYA medium. Further study showed that MaAreA, a core regulator in the nitrogen catabolism repression (NCR) pathway, was a downstream target gene of MaNCP1. Screening the differential expression genes between WT and ΔMaNCP1 strains revealed that the conidial yield of M. acridum regulated by nitrate might be related to NCR pathway on SYA medium. It could be concluded that MaNCP1 contributes to the nitrate assimilation and conidiation, which will provide further insights into the relationship between the nitrogen utilization and conidiation in fungi.
Collapse
|
9
|
Li C, Xia Y, Jin K. N-terminal zinc fingers of MaNCP1 contribute to growth, stress tolerance, and virulence in Metarhizium acridum. Int J Biol Macromol 2022; 216:426-436. [PMID: 35809667 DOI: 10.1016/j.ijbiomac.2022.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/31/2022]
Abstract
C2H2 zinc finger proteins (ZFPs) are a class of important transcriptional regulators in eukaryotes involved in multiple biological regulation processes. Here, MaNCP1, a C2H2 ZFP, was functionally characterized in the model entomopathogenic fungus Metarhizium acridum. Deletion of MaNCP1 delayed conidial germination and hyphal growth, decreased the conidial yield and reduced the tolerances to UV-B irradiation and heat-shock. The N-terminal zinc fingers (ZFs) of MaNCP1 made the main contributions to these traits. In addition, disruption of MaNCP1 altered the conidial surface structure and decreased the conidial hydrophobicity. Bioassays showed that the virulence of the MaNCP1-disruption strain (ΔMaNCP1) was reduced in topical inoculation compared to the WT or the mutant complemented strain (CP), and the N-terminal C2H2 ZFs made a major contribution to virulence. Furthermore, the ΔMaNCP1 and C2H2 ZFs deletion mutants (MaNCP1∆N and MaNCP1∆N+C) impaired cuticular penetration. RNA-seq showed that several cuticle-degrading genes were down-regulated in the ΔMaNCP1 background, suggesting that MaNCP1 plays vital roles in regulating insect cuticle penetration. In summary, MaNCP1 affected the growth, stress tolerances and virulence of M. acridum, and the N-terminal C2H2 ZFs played indispensable roles in these important biocontrol traits. These results provide further insights into the functions of C2H2 ZFPs in entomopathogenic fungi.
Collapse
Affiliation(s)
- Chaochuang Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, PR China; Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, PR China; Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, PR China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, PR China; Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, PR China; Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, PR China.
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, PR China; Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, PR China; Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, PR China.
| |
Collapse
|
10
|
Zhang P, Fang Z, Song Y, Wang S, Bao L, Liu M, Dang Y, Wei Y, Zhang SH. Aspartate Transaminase AST2 Involved in Sporulation and Necrotrophic Pathogenesis in the Hemibiotrophs Magnaporthe oryzae and Colletotrichum graminicola. Front Microbiol 2022; 13:864866. [PMID: 35479642 PMCID: PMC9037547 DOI: 10.3389/fmicb.2022.864866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Aspartate family includes five additional amino acids other than aspartate, among which most except aspartate have been reported for their action in pathogenesis by amino acid biosynthesis. However, how aspartate, the initial substrate of this family metabolic pathway, is involved in pathogenesis remains unknown. Here, we focused on aspartate transaminase (AST) that catalyzes transamination reaction between glutamate-aspartate in Magnaporthe oryzae. Three MoAST genes were bioinformatically analyzed, of which MoAST2 was uniquely upregulated when invasive hyphae switched to necrotrophic pathogenesis. MoAST2 deletion (ΔMoast2) caused a drastic reduction in conidiogenesis and appressorium formation. Particularly, ΔMoast2 was observed to be proliferated at the biotrophic phase but inhibited at the necrotrophic stage, and with invisible symptoms detected, suggesting a critical role in necrotrophic phase. Glutamate family restored the ΔMoast2 defects but aspartate family did not, inferring that transamination occurs from aspartate to glutamine. MoAST2 is cytosolic and possessed H2O2 stress tolerance. In parallel, Colletotrichum graminicola AST2, CgAST2 was proven to be a player in necrotrophic anthracnose development. Therefore, conserved AST2 is qualified to be a drug target for disease control.
Collapse
Affiliation(s)
- Penghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Zhenyu Fang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanyue Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shaowei Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Lina Bao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Mingyu Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yuejia Dang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yi Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China.,College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
11
|
MaNmrA, a Negative Transcription Regulator in Nitrogen Catabolite Repression Pathway, Contributes to Nutrient Utilization, Stress Resistance, and Virulence in Entomopathogenic Fungus Metarhizium acridum. BIOLOGY 2021; 10:biology10111167. [PMID: 34827160 PMCID: PMC8615229 DOI: 10.3390/biology10111167] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Nutrient metabolism is closely related to the growth, development, and pathogenicity of pathogenic fungi. The nitrogen catabolite repression (NCR) pathway is a well-known fungal nitrogen source regulation path, in which NmrA plays an important regulatory role. Here, we reported a negative regulatory protein MaNmrA, the NmrA homologous protein, in the entomopathogenic fungus Metarhizium acridum, and found that it played important roles in carbon and nitrogen metabolism, growth, stress tolerance, and virulence of M. acridum. Our work will provide a theoretical basis for further exploring the functions of NCR pathway related genes in entomopathogenic fungi. Abstract The NCR pathway plays an important regulatory role in the nitrogen metabolism of filamentous fungi. NmrA, a central negative regulatory protein in the NCR pathway and a key factor in sensing to the carbon metabolism, plays important roles in pathogenic fungal nutrition metabolism. In this study, we characterized the functions of MaNmrA in the insect pathogenic fungus M. acridum. Multiple sequence alignments found that the conserved domain (NAD/NADP binding domain) of MaNmrA was highly conservative with its homologues proteins. Deletion of MaNmrA improved the utilization of multiple carbon sources (such as glucose, mannose, sucrose, and trehalose) and non-preferred nitrogen sources (such as NaNO3 and urea), significantly delayed the conidial germination rate and reduced the conidial yield. The MaNmrA-disruption strain (ΔMaNmrA) significantly decreased tolerances to UV-B and heat-shock, and it also increased the sensitivity to the hypertonic substance sorbitol, oxygen stress substance H2O2, and cell wall destroyer calcofluor white, indicating that loss of MaNmrA affected cell wall integrity, tolerances to hypertonic and oxidative stress. Bioassays demonstrated that disruption of MaNmrA decreased the virulence in both topical inoculation and intrahemocoel injection tests. Further studies revealed that the appressorium formation, turgor pressure, and colonization in hemolymph were significantly reduced in the absence of MaNmrA. Our work will deepen the functional cognition of MaNmrA and make a contribution to the study of its homologous proteins.
Collapse
|
12
|
Biratsi A, Athanasopoulos A, Kouvelis VN, Gournas C, Sophianopoulou V. A highly conserved mechanism for the detoxification and assimilation of the toxic phytoproduct L-azetidine-2-carboxylic acid in Aspergillus nidulans. Sci Rep 2021; 11:7391. [PMID: 33795709 PMCID: PMC8016842 DOI: 10.1038/s41598-021-86622-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 03/09/2021] [Indexed: 02/01/2023] Open
Abstract
Plants produce toxic secondary metabolites as defense mechanisms against phytopathogenic microorganisms and predators. L-azetidine-2-carboxylic acid (AZC), a toxic proline analogue produced by members of the Liliaceae and Agavaciae families, is part of such a mechanism. AZC causes a broad range of toxic, inflammatory and degenerative abnormalities in human and animal cells, while it is known that some microorganisms have evolved specialized strategies for AZC resistance. However, the mechanisms underlying these processes are poorly understood. Here, we identify a widespread mechanism for AZC resistance in fungi. We show that the filamentous ascomycete Aspergillus nidulans is able to not only resist AZC toxicity but also utilize it as a nitrogen source via GABA catabolism and the action of the AzhA hydrolase, a member of a large superfamily of detoxifying enzymes, the haloacid dehalogenase-like hydrolase (HAD) superfamily. This detoxification process is further assisted by the NgnA acetyltransferase, orthologue of Mpr1 of Saccharomyces cerevisiae. We additionally show that heterologous expression of AzhA protein can complement the AZC sensitivity of S. cerevisiae. Furthermore, a detailed phylogenetic analysis of AzhA homologues in Fungi, Archaea and Bacteria is provided. Overall, our results unravel a widespread mechanism for AZC resistance among microorganisms, including important human and plant pathogens.
Collapse
Affiliation(s)
- Ada Biratsi
- grid.6083.d0000 0004 0635 6999Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research, Demokritos (NCSRD), Athens, Greece
| | - Alexandros Athanasopoulos
- grid.6083.d0000 0004 0635 6999Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research, Demokritos (NCSRD), Athens, Greece ,grid.6083.d0000 0004 0635 6999Light Microscopy Unit, Institute of Biosciences and Applications, National Centre for Scientific Research, Demokritos (NCSRD), Athens, Greece
| | - Vassili N. Kouvelis
- grid.5216.00000 0001 2155 0800Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Gournas
- grid.6083.d0000 0004 0635 6999Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research, Demokritos (NCSRD), Athens, Greece
| | - Vicky Sophianopoulou
- grid.6083.d0000 0004 0635 6999Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research, Demokritos (NCSRD), Athens, Greece
| |
Collapse
|
13
|
Peng M, Khosravi C, Lubbers RJM, Kun RS, Aguilar Pontes MV, Battaglia E, Chen C, Dalhuijsen S, Daly P, Lipzen A, Ng V, Yan J, Wang M, Visser J, Grigoriev IV, Mäkelä MR, de Vries RP. CreA-mediated repression of gene expression occurs at low monosaccharide levels during fungal plant biomass conversion in a time and substrate dependent manner. ACTA ACUST UNITED AC 2021; 7:100050. [PMID: 33778219 PMCID: PMC7985698 DOI: 10.1016/j.tcsw.2021.100050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022]
Abstract
Carbon catabolite repression enables fungi to utilize the most favourable carbon source in the environment, and is mediated by a key regulator, CreA, in most fungi. CreA-mediated regulation has mainly been studied at high monosaccharide concentrations, an uncommon situation in most natural biotopes. In nature, many fungi rely on plant biomass as their major carbon source by producing enzymes to degrade plant cell wall polysaccharides into metabolizable sugars. To determine the role of CreA when fungi grow in more natural conditions and in particular with respect to degradation and conversion of plant cell walls, we compared transcriptomes of a creA deletion and reference strain of the ascomycete Aspergillus niger during growth on sugar beet pulp and wheat bran. Transcriptomics, extracellular sugar concentrations and growth profiling of A. niger on a variety of carbon sources, revealed that also under conditions with low concentrations of free monosaccharides, CreA has a major effect on gene expression in a strong time and substrate composition dependent manner. In addition, we compared the CreA regulon from five fungi during their growth on crude plant biomass or cellulose. It showed that CreA commonly regulated genes related to carbon metabolism, sugar transport and plant cell wall degrading enzymes across different species. We therefore conclude that CreA has a crucial role for fungi also in adapting to low sugar concentrations as occurring in their natural biotopes, which is supported by the presence of CreA orthologs in nearly all fungi.
Collapse
Affiliation(s)
- Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Roland S Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Maria Victoria Aguilar Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Cindy Chen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Sacha Dalhuijsen
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Paul Daly
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Anna Lipzen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Vivian Ng
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Juying Yan
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Mei Wang
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Igor V Grigoriev
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States.,Department of Plant and Microbial Biology, University of California Berkeley, 111 Koshland Hall, Berkeley, CA 94720, USA
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
14
|
Daranagama ND, Suzuki Y, Shida Y, Ogasawara W. Involvement of Xyr1 and Are1 for Trichodermapepsin Gene Expression in Response to Cellulose and Galactose in Trichoderma reesei. Curr Microbiol 2020; 77:1506-1517. [DOI: 10.1007/s00284-020-01955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
|
15
|
Valente S, Cometto A, Piombo E, Meloni GR, Ballester AR, González-Candelas L, Spadaro D. Elaborated regulation of griseofulvin biosynthesis in Penicillium griseofulvum and its role on conidiation and virulence. Int J Food Microbiol 2020; 328:108687. [PMID: 32474227 DOI: 10.1016/j.ijfoodmicro.2020.108687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/14/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
Penicilium griseofulvum, the causal agent of apple blue mold, is able to produce in vitro and on apple a broad spectrum of secondary metabolites (SM), including patulin, roquefortine C and griseofulvin. Among them, griseofulvin is known for its antifungal and antiproliferative activity, and has received interest in many sectors, from medicine to agriculture. The biosynthesis of SM is finely regulated by filamentous fungi and can involve global regulators and pathway specific regulators, which are usually encoded by genes present in the same gene cluster as the backbone gene and tailoring enzymes. In the griseofulvin gene cluster, two putative transcription factors were previously identified, encoded by genes gsfR1 and gsfR2, and their role has been investigated in the present work. Analysis of P. griseofulvum knockout mutants lacking either gene suggest that gsfR2 forms part of a different pathway and gsfR1 exhibits many spectra of action, acting as regulator of griseofulvin and patulin biosynthesis and influencing conidia production and virulence on apple. The analysis of gsfR1 promoter revealed that the regulation of griseofulvin biosynthesis is also controlled by global regulators in response to many environmental stimuli, such as carbon and nitrogen. The influence of carbon and nitrogen on griseofulvin production was further investigated and verified, revealing a complex network of response and confirming the central role of gsfR1 in many processes in P. griseofulvum.
Collapse
Affiliation(s)
- Silvia Valente
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Agnese Cometto
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Edoardo Piombo
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Giovanna Roberta Meloni
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Ana-Rosa Ballester
- IATA-CSIC - Instituto de Agroquímica y Tecnología de Alimentos, Calle Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Luis González-Candelas
- IATA-CSIC - Instituto de Agroquímica y Tecnología de Alimentos, Calle Catedrático Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| | - Davide Spadaro
- Dept. Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| |
Collapse
|
16
|
Ámon J, Fernández-Martín R, Bokor E, Cultrone A, Kelly JM, Flipphi M, Scazzocchio C, Hamari Z. A eukaryotic nicotinate-inducible gene cluster: convergent evolution in fungi and bacteria. Open Biol 2018; 7:rsob.170199. [PMID: 29212709 PMCID: PMC5746545 DOI: 10.1098/rsob.170199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022] Open
Abstract
Nicotinate degradation has hitherto been elucidated only in bacteria. In the ascomycete Aspergillus nidulans, six loci, hxnS/AN9178 encoding the molybdenum cofactor-containing nicotinate hydroxylase, AN11197 encoding a Cys2/His2 zinc finger regulator HxnR, together with AN11196/hxnZ, AN11188/hxnY, AN11189/hxnP and AN9177/hxnT, are clustered and stringently co-induced by a nicotinate derivative and subject to nitrogen metabolite repression mediated by the GATA factor AreA. These genes are strictly co-regulated by HxnR. Within the hxnR gene, constitutive mutations map in two discrete regions. Aspergillus nidulans is capable of using nicotinate and its oxidation products 6-hydroxynicotinic acid and 2,5-dihydroxypyridine as sole nitrogen sources in an HxnR-dependent way. HxnS is highly similar to HxA, the canonical xanthine dehydrogenase (XDH), and has originated by gene duplication, preceding the origin of the Pezizomycotina. This cluster is conserved with some variations throughout the Aspergillaceae. Our results imply that a fungal pathway has arisen independently from bacterial ones. Significantly, the neo-functionalization of XDH into nicotinate hydroxylase has occurred independently from analogous events in bacteria. This work describes for the first time a gene cluster involved in nicotinate catabolism in a eukaryote and has relevance for the formation and evolution of co-regulated primary metabolic gene clusters and the microbial degradation of N-heterocyclic compounds.
Collapse
Affiliation(s)
- Judit Ámon
- Department of Microbiology, University of Szeged Faculty of Science and Informatics, Szeged, Hungary (present address of ZH)
| | | | - Eszter Bokor
- Department of Microbiology, University of Szeged Faculty of Science and Informatics, Szeged, Hungary (present address of ZH)
| | - Antonietta Cultrone
- Institute de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| | - Joan M Kelly
- Department of Biology, University of Essex, Colchester, UK
| | - Michel Flipphi
- Institute de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| | - Claudio Scazzocchio
- Institute de Génétique et Microbiologie, Université Paris-Sud, Orsay, France .,Department of Biology, University of Essex, Colchester, UK.,Department of Microbiology, Imperial College, London, UK (present address of CS).,Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France (present address of CS)
| | - Zsuzsanna Hamari
- Department of Microbiology, University of Szeged Faculty of Science and Informatics, Szeged, Hungary (present address of ZH) .,Institute de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| |
Collapse
|
17
|
Gournas C, Athanasopoulos A, Sophianopoulou V. On the Evolution of Specificity in Members of the Yeast Amino Acid Transporter Family as Parts of Specific Metabolic Pathways. Int J Mol Sci 2018; 19:E1398. [PMID: 29738448 PMCID: PMC5983819 DOI: 10.3390/ijms19051398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 12/11/2022] Open
Abstract
In the recent years, molecular modeling and substrate docking, coupled with biochemical and genetic analyses have identified the substrate-binding residues of several amino acid transporters of the yeast amino acid transporter (YAT) family. These consist of (a) residues conserved across YATs that interact with the invariable part of amino acid substrates and (b) variable residues that interact with the side chain of the amino acid substrate and thus define specificity. Secondary structure sequence alignments showed that the positions of these residues are conserved across YATs and could thus be used to predict the specificity of YATs. Here, we discuss the potential of combining molecular modeling and structural alignments with intra-species phylogenetic comparisons of transporters, in order to predict the function of uncharacterized members of the family. We additionally define some orphan branches which include transporters with potentially novel, and to be characterized specificities. In addition, we discuss the particular case of the highly specific l-proline transporter, PrnB, of Aspergillus nidulans, whose gene is part of a cluster of genes required for the utilization of proline as a carbon and/or nitrogen source. This clustering correlates with transcriptional regulation of these genes, potentially leading to the efficient coordination of the uptake of externally provided l-Pro via PrnB and its enzymatic degradation in the cell.
Collapse
Affiliation(s)
- Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications (IBE), National Centre for Scientific Research "Demokritos" (NCSRD), Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece.
| | - Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications (IBE), National Centre for Scientific Research "Demokritos" (NCSRD), Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece.
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications (IBE), National Centre for Scientific Research "Demokritos" (NCSRD), Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece.
| |
Collapse
|
18
|
Kalampokis IF, Kapetanakis GC, Aliferis KA, Diallinas G. Multiple nucleobase transporters contribute to boscalid sensitivity in Aspergillus nidulans. Fungal Genet Biol 2018; 115:52-63. [PMID: 29501616 DOI: 10.1016/j.fgb.2018.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 01/24/2023]
Abstract
The development of fungicide-resistant fungal populations represents a major challenge for the agrochemical and agri-food sectors, which threatens food supply and security. The issue becomes complex for fungi that cause quantitative and qualitative losses due to mycotoxin biosynthesis. Nonetheless, currently, the molecular details underlying fungicide action and fungal resistance mechanisms are partially known. Here, we have investigated whether plasma membrane transporters contribute to specific fungicide uptake in the model fungus Aspergillus nidulans. Independent physiological tests and toxicity screening of selected fungicides provided evidence that the antifungal activity of Succinate Dehydrogenase Inhibitors (SDHIs) is associated with the expression of several nucleobase-related transporters. In particular, it was shown that a strain genetically inactivated in all seven nucleobase-related transporters is resistant to the fungicide boscalid, whereas none of the single null mutants exhibited significant resistance level. By constructing and testing isogenic strains that over-express each one of the seven transporters, we confirmed that five of them, namely, UapC, AzgA, FycB, CntA, and FurA, contribute to boscalid uptake. Additionally, by employing metabolomics we have examined the effect of boscalid on the metabolism of isogenic strains expressing or genetically lacking boscalid-related nucleobase transporters. The results confirmed the involvement of specific nucleobase transporters in fungicide uptake, leading to the discovery of corresponding metabolites-biomarkers. This work is the first report on the involvement of specific transporters in fungicide uptake and toxicity and their impact on fungal metabolism regulation and results might be further exploited towards the deeper understanding of fungal resistance to fungicides.
Collapse
Affiliation(s)
- Ioannis F Kalampokis
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece
| | - George C Kapetanakis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece
| | - Konstantinos A Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, Athens 118 55, Greece.
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece.
| |
Collapse
|
19
|
Gomez-Gil L, Camara Almiron J, Rodriguez Carrillo PL, Olivares Medina CN, Bravo Ruiz G, Romo Rodriguez P, Corrales Escobosa AR, Gutierrez Corona F, Roncero MI. Nitrate assimilation pathway (NAP): role of structural (nit) and transporter (ntr1) genes in Fusarium oxysporum f.sp. lycopersici growth and pathogenicity. Curr Genet 2017; 64:493-507. [DOI: 10.1007/s00294-017-0766-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 01/12/2023]
|
20
|
Estiarte N, Crespo-Sempere A, Marín S, Sanchis V, Ramos A. Exploring polyamine metabolism of Alternaria alternata to target new substances to control the fungal infection. Food Microbiol 2017; 65:193-204. [DOI: 10.1016/j.fm.2017.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 01/18/2017] [Accepted: 02/01/2017] [Indexed: 11/30/2022]
|
21
|
The Magnaporthe oryzae nitrooxidative stress response suppresses rice innate immunity during blast disease. Nat Microbiol 2017; 2:17054. [DOI: 10.1038/nmicrobiol.2017.54] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/10/2017] [Indexed: 11/08/2022]
|
22
|
Bi F, Ment D, Luria N, Meng X, Prusky D. Mutation of AREA affects growth, sporulation, nitrogen regulation, and pathogenicity in Colletotrichum gloeosporioides. Fungal Genet Biol 2016; 99:29-39. [PMID: 28027951 DOI: 10.1016/j.fgb.2016.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/09/2016] [Accepted: 12/16/2016] [Indexed: 01/09/2023]
Abstract
The GATA transcription factor AreA is a global nitrogen regulator that restricts the utilization of complex and poor nitrogen sources in the presence of good nitrogen sources in microorganisms. In this study, we report the biological function of an AreA homolog (the CgareA gene) in the fruit postharvest pathogen Colletotrichum gloeosporioides. Targeted gene deletion mutants of areA exhibited significant reductions in vegetative growth, increases in conidia production, and slight decreases in conidial germination rates. Quantitative RT-PCR (qRT-PCR) analysis revealed that the expression of AreA was highly induced under nitrogen-limiting conditions. Moreover, compared to wild-type and complemented strains, nitrogen metabolism-related genes were misregulated in ΔareA mutant strains. Pathogenicity assays indicated that the virulence of ΔareA mutant strains were affected by the nitrogen content, but not the carbon content, of fruit hosts. Taken together, our results indicate that CgareA plays a critical role in fungal development, conidia production, regulation of nitrogen metabolism and virulence in Colletotrichum gloeosporioides.
Collapse
Affiliation(s)
- Fangcheng Bi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou 510640, China; Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou 510640, China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Dana Ment
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Neta Luria
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Xiangchun Meng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou 510640, China; Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangdong Province, Guangzhou 510640, China.
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
23
|
Han X, Qiu M, Wang B, Yin WB, Nie X, Qin Q, Ren S, Yang K, Zhang F, Zhuang Z, Wang S. Functional Analysis of the Nitrogen Metabolite Repression Regulator Gene nmrA in Aspergillus flavus. Front Microbiol 2016; 7:1794. [PMID: 27933036 PMCID: PMC5122588 DOI: 10.3389/fmicb.2016.01794] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/25/2016] [Indexed: 11/13/2022] Open
Abstract
In Aspergillus nidulans, the nitrogen metabolite repression (NMR) regulator NmrA plays a major role in regulating the activity of the GATA transcription factor AreA during nitrogen metabolism. However, the function of nmrA in A. flavus has not been previously studied. Here, we report the identification and functional analysis of nmrA in A. flavus. Our work showed that the amino acid sequences of NmrA are highly conserved among Aspergillus species and that A. flavus NmrA protein contains a canonical Rossmann fold motif. Deletion of nmrA slowed the growth of A. flavus but significantly increased conidiation and sclerotia production. Moreover, seed infection experiments indicated that nmrA is required for the invasive virulence of A. flavus. In addition, the ΔnmrA mutant showed increased sensitivity to rapamycin and methyl methanesulfonate, suggesting that nmrA could be responsive to target of rapamycin signaling and DNA damage. Furthermore, quantitative real-time reverse transcription polymerase chain reaction analysis suggested that nmrA might interact with other nitrogen regulatory and catabolic genes. Our study provides a better understanding of NMR and the nitrogen metabolism network in fungi.
Collapse
Affiliation(s)
- Xiaoyun Han
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Mengguang Qiu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Bin Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Xinyi Nie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Qiuping Qin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Silin Ren
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Kunlong Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Feng Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
24
|
Bi F, Barad S, Ment D, Luria N, Dubey A, Casado V, Glam N, Mínguez JD, Espeso EA, Fluhr R, Prusky D. Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi. MOLECULAR PLANT PATHOLOGY 2016; 17:1178-95. [PMID: 26666972 PMCID: PMC6638356 DOI: 10.1111/mpp.12355] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 05/22/2023]
Abstract
Fruit pathogens can contribute to the acidification or alkalinization of the host environment. This capability has been used to divide fungal pathogens into acidifying and/or alkalinizing classes. Here, we show that diverse classes of fungal pathogens-Colletotrichum gloeosporioides, Penicillium expansum, Aspergillus nidulans and Fusarium oxysporum-secrete small pH-affecting molecules. These molecules modify the environmental pH, which dictates acidic or alkaline colonizing strategies, and induce the expression of PACC-dependent genes. We show that, in many organisms, acidification is induced under carbon excess, i.e. 175 mm sucrose (the most abundant sugar in fruits). In contrast, alkalinization occurs under conditions of carbon deprivation, i.e. less than 15 mm sucrose. The carbon source is metabolized by glucose oxidase (gox2) to gluconic acid, contributing to medium acidification, whereas catalysed deamination of non-preferred carbon sources, such as the amino acid glutamate, by glutamate dehydrogenase 2 (gdh2), results in the secretion of ammonia. Functional analyses of Δgdh2 mutants showed reduced alkalinization and pathogenicity during growth under carbon deprivation, but not in high-carbon medium or on fruit rich in sugar, whereas analysis of Δgox2 mutants showed reduced acidification and pathogencity under conditions of excess carbon. The induction pattern of gdh2 was negatively correlated with the expression of the zinc finger global carbon catabolite repressor creA. The present results indicate that differential pH modulation by fruit fungal pathogens is a host-dependent mechanism, affected by host sugar content, that modulates environmental pH to enhance fruit colonization.
Collapse
Affiliation(s)
- Fangcheng Bi
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, and Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China
| | - Shiri Barad
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Dana Ment
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Neta Luria
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Amit Dubey
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | - Virginia Casado
- Department of Microbiology and Genetics, CIALE, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Nofar Glam
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Jose Diaz Mínguez
- Department of Microbiology and Genetics, CIALE, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Eduardo A Espeso
- Department of Molecular and Cellular Biology, Centro de Investigaciones Biológicas (C.I.B.), Madrid, 28040, Spain
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
25
|
Cetz-Chel JE, Balcázar-López E, Esquivel-Naranjo EU, Herrera-Estrella A. The Trichoderma atroviride putative transcription factor Blu7 controls light responsiveness and tolerance. BMC Genomics 2016; 17:327. [PMID: 27142227 PMCID: PMC4855978 DOI: 10.1186/s12864-016-2639-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/22/2016] [Indexed: 11/23/2022] Open
Abstract
Background Most living organisms use sunlight as a source of energy and/or information about their environment. Consequently, they have developed mechanisms to sense light quality and quantity. In the fungus Trichoderma atroviride blue-light is perceived through the Blue Light Regulator Complex, which in turn up-regulates a set of genes (blu) and down-regulates another set (bld), triggering asexual reproduction. To gain insight into this process, we characterized the blu7 gene, which encodes a protein containing a C2H2 zinc finger domain. Results Δblu7 mutants show reduced conidiation at low light fluences, which is still clear even when exposed to saturating light. For the first time we show a genome wide survey of light regulated gene expression in T. atroviride, including RNA-seq analyses of the wild type and the Δblu7 strains after brief exposure to blue-light. Our data show a reduction in the number of induced genes and an increase in down-regulated genes in the mutant. Light activates stress responses and several metabolic processes in the wild type strain that are no longer activated in the mutant. In agreement with the misregulation of metabolic processes, continuous exposure to white light strongly inhibited growth of the ∆blu7 mutant, in a carbon source dependent fashion. RNA-seq analyses under constant white light using glucose as sole carbon source revealed that localization and transport process present the opposite regulation pattern in the ∆blu7 and wild type strains. Genes related to amino acid, sugar and general transporters were enriched in the induced genes in the mutant and the repressed genes of the wild type. Peptone supplemented in the media restored growth of the ∆blu7 mutant in constant light, suggesting a role of Blu7 in the regulation of nitrogen metabolism in the presence of light. Conclusions Blu7 appears to regulate light sensitivity in terms of induction of conidiation, and to play a major role in supporting growth under continuous exposure to light. The diminished conidiation observed in ∆blu7 mutants is likely due to misregulation of the cAMP signaling pathway and ROS production, whereas their low tolerance to continuous exposure to light indicates that Blu7 is required for adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2639-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José E Cetz-Chel
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Edgar Balcázar-López
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Edgardo U Esquivel-Naranjo
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico.,Present Address: Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, 76230, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
26
|
Wang Y, Wang L, Liu F, Wang Q, Selvaraj JN, Xing F, Zhao Y, Liu Y. Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms. Toxins (Basel) 2016; 8:E83. [PMID: 27007394 PMCID: PMC4810228 DOI: 10.3390/toxins8030083] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/28/2016] [Accepted: 03/14/2016] [Indexed: 11/16/2022] Open
Abstract
Ochratoxin A (OTA), mainly produced by Aspergillus and Penicillum species, is one of the most important mycotoxin contaminants in agricultural products. It is detrimental to human health because of its nephrotoxicity, hepatotoxicity, carcinogenicity, teratogenicity, and immunosuppression. OTA structurally consists of adihydrocoumarin moiety linked with l-phenylalanine via an amide bond. OTA biosynthesis has been putatively hypothesized, although several contradictions exist on some processes of the biosynthetic pathway. We discuss recent information on molecular studies of OTA biosynthesis despite insufficient genetic background in detail. Accordingly, genetic regulation has also been explored with regard to the interaction between the regulators and the environmental factors. In this review, we focus on three aspects of OTA: OTA-producing strains, OTA biosynthetic pathway and the regulation mechanisms of OTA production. This can pave the way to assist in protecting food and feed from OTA contamination by understanding OTA biosynthetic pathway and regulatory mechanisms.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Liuqing Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Fei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Qi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Jonathan Nimal Selvaraj
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Yueju Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
- Key Laboratory of Agro-products Processing, Ministry of Agriculture, 1 Nongda South Road, Xibeiwang Town, Haidian District, Beijing 100193, China.
| |
Collapse
|
27
|
Xiong D, Wang Y, Tian C. Transcriptomic profiles of the smoke tree wilt fungus Verticillium dahliae under nutrient starvation stresses. Mol Genet Genomics 2015; 290:1963-77. [DOI: 10.1007/s00438-015-1052-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/22/2015] [Indexed: 11/27/2022]
|
28
|
Marroquin-Guzman M, Wilson RA. GATA-Dependent Glutaminolysis Drives Appressorium Formation in Magnaporthe oryzae by Suppressing TOR Inhibition of cAMP/PKA Signaling. PLoS Pathog 2015; 11:e1004851. [PMID: 25901357 PMCID: PMC4406744 DOI: 10.1371/journal.ppat.1004851] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 04/03/2015] [Indexed: 01/14/2023] Open
Abstract
Fungal plant pathogens are persistent and global food security threats. To invade their hosts they often form highly specialized infection structures, known as appressoria. The cAMP/ PKA- and MAP kinase-signaling cascades have been functionally delineated as positive-acting pathways required for appressorium development. Negative-acting regulatory pathways that block appressorial development are not known. Here, we present the first detailed evidence that the conserved Target of Rapamycin (TOR) signaling pathway is a powerful inhibitor of appressorium formation by the rice blast fungus Magnaporthe oryzae. We determined TOR signaling was activated in an M. oryzae mutant strain lacking a functional copy of the GATA transcription factor-encoding gene ASD4. Δasd4 mutant strains could not form appressoria and expressed GLN1, a glutamine synthetase-encoding orthologue silenced in wild type. Inappropriate expression of GLN1 increased the intracellular steady-state levels of glutamine in Δasd4 mutant strains during axenic growth when compared to wild type. Deleting GLN1 lowered glutamine levels and promoted appressorium formation by Δasd4 strains. Furthermore, glutamine is an agonist of TOR. Treating Δasd4 mutant strains with the specific TOR kinase inhibitor rapamycin restored appressorium development. Rapamycin was also shown to induce appressorium formation by wild type and Δcpka mutant strains on non-inductive hydrophilic surfaces but had no effect on the MAP kinase mutant Δpmk1. When taken together, we implicate Asd4 in regulating intracellular glutamine levels in order to modulate TOR inhibition of appressorium formation downstream of cPKA. This study thus provides novel insight into the metabolic mechanisms that underpin the highly regulated process of appressorium development. Many fungal pathogens destroy important crops by first gaining entrance to the host using specialized appressorial cells. Understanding the molecular mechanisms that control appressorium formation could provide new routes for managing severe plant diseases. Here, we describe a previously unknown regulatory pathway that suppresses appressorium formation by the rice pathogen Magnaporthe oryzae. We provide evidence that a mutant M. oryzae strain, unable to form appressoria, accumulates intracellular glutamine that, in turn, inappropriately activates a conserved signaling pathway called TOR. Reducing intracellular glutamine levels, or inactivating TOR, restored appressorium formation to the mutant strain. TOR activation is thus a powerful inhibitor of appressorium formation and could be leveraged to develop sustainable mitigation practices against recalcitrant fungal pathogens.
Collapse
Affiliation(s)
- Margarita Marroquin-Guzman
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Richard A. Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
29
|
|
30
|
Abstract
Mycotoxins are natural contaminants of food and feed products, posing a substantial health risk to humans and animals throughout the world. A plethora of filamentous fungi has been identified as mycotoxin producers and most of these fungal species belong to the genera Aspergillus, Fusarium, and Penicillium. A number of studies have been conducted to better understand the molecular mechanisms of biosynthesis of key mycotoxins and the regulatory cascades controlling toxigenesis. In many cases, the mycotoxin biosynthetic genes are clustered and regulated by one or more pathway-specific transcription factor(s). In addition, as biosynthesis of many secondary metabolites is coordinated with fungal growth and development, there are a number of upstream regulators affecting biosynthesis of mycotoxins in fungi. This review presents a concise summary of the regulation of mycotoxin biosynthesis, focusing on the roles of the upstream regulatory elements governing biosynthesis of aflatoxin and sterigmatocystin in Aspergillus.
Collapse
Affiliation(s)
| | - Jae-Hyuk Yu
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Downes DJ, Davis MA, Wong KH, Kreutzberger SD, Hynes MJ, Todd RB. Dual DNA binding and coactivator functions ofAspergillus nidulans TamA, a Zn(II)2Cys6 transcription factor. Mol Microbiol 2014; 92:1198-211. [DOI: 10.1111/mmi.12620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Damien J. Downes
- Department of Plant Pathology; Kansas State University; 4024 Throckmorton Plant Sciences Center Manhattan KS 66506 USA
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Meryl A. Davis
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Koon Ho Wong
- Department of Biological Chemistry & Molecular Pharmacology; Harvard Medical School; 240 Longwood Ave, Room C2-325 Boston MA 02115 USA
- Faculty of Health Sciences; University of Macau; Macau SAR China
| | - Sara D. Kreutzberger
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Michael J. Hynes
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Richard B. Todd
- Department of Plant Pathology; Kansas State University; 4024 Throckmorton Plant Sciences Center Manhattan KS 66506 USA
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| |
Collapse
|
32
|
Tayal N, Choudhary P, Pandit SB, Sandhu KS. Evolutionarily conserved and conformationally constrained short peptides might serve as DNA recognition elements in intrinsically disordered regions. MOLECULAR BIOSYSTEMS 2014; 10:1469-80. [PMID: 24668165 DOI: 10.1039/c3mb70539k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite recent advances, it is yet not clear how intrinsically disordered regions in proteins recognize their targets without any defined structures. Short linear motifs had been proposed to mediate molecular recognition by disordered regions; however, the underlying structural prerequisite remains elusive. Moreover, the role of short linear motifs in DNA recognition has not been studied. We report a repertoire of short evolutionarily Conserved Recognition Elements (CoREs) in long intrinsically disordered regions, which have very distinct amino-acid propensities from those of known motifs, and exhibit a strong tendency to retain their three-dimensional conformations compared to adjacent regions. The majority of CoREs directly interact with the DNA in the available 3D structures, which is further supported by literature evidence, analyses of ΔΔG values of DNA-binding energies and threading-based prediction of DNA binding potential. CoREs were enriched in cancer-associated missense mutations, further strengthening their functional nature. Significant enrichment of glycines in CoREs and the preference of glycyl ϕ-Ψ values within the left-handed bridge range in the l-disallowed region of the Ramachandran plot suggest that Gly-to-nonGly mutations within CoREs might alter the backbone conformation and consequently the function, a hypothesis that we reconciled using available mutation data. We conclude that CoREs might serve as bait for DNA recognition by long disordered regions and that certain mutations in these peptides can disrupt their DNA binding potential and consequently the protein function. We further hypothesize that the preferred conformations of CoREs and of glycyl residues therein might play an important role in DNA binding. The highly ordered nature of CoREs hints at a therapeutic strategy to inhibit malicious molecular interactions using small molecules mimicking CoRE conformations.
Collapse
Affiliation(s)
- Nitish Tayal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) - Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | | | | | | |
Collapse
|
33
|
Yang ZK, Ma YH, Zheng JW, Yang WD, Liu JS, Li HY. Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum. JOURNAL OF APPLIED PHYCOLOGY 2014; 26:73-82. [PMID: 24600163 PMCID: PMC3918386 DOI: 10.1007/s10811-013-0050-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 05/03/2023]
Abstract
The marine diatom Phaeodactylum tricornutum is attracting considerable interest as a candidate for biofuel production due to its fast growth and high lipid content. Nitrogen deficiency can increase the lipid content in certain microalgae species, including P. tricornutum. However, the molecular basis of such changes remains unclear without analyzing metabolism at the proteomic level. We attempted to systematically analyze protein expression level changes of P. tricornutum upon N deprivation. We observed translational level changes that could overall redirect the metabolic network from carbon flux towards lipid accumulation. N deprivation led to an increase in the expression of genes involved in nitrogen assimilation and fatty acid biosynthesis and a concomitant decrease in photosynthesis and lipid catabolism enzymes. These molecular level changes are consistent with the observed physiological changes, e.g., in photosynthesis rate and saturated lipid content. Our results provide information at the proteomic level of the key enzymes involved in carbon flux towards lipid accumulation in P. tricornutum and suggest candidates for genetic manipulation in microalgae breeding for biodiesel production.
Collapse
Affiliation(s)
- Zhi-Kai Yang
- Key Laboratory of Eutrophication and Prevention of Red Tide of Guangdong Higher Education Institute, Jinan University, Guangzhou, 510632 China
| | - Yu-Han Ma
- Key Laboratory of Eutrophication and Prevention of Red Tide of Guangdong Higher Education Institute, Jinan University, Guangzhou, 510632 China
| | - Jian-Wei Zheng
- Key Laboratory of Eutrophication and Prevention of Red Tide of Guangdong Higher Education Institute, Jinan University, Guangzhou, 510632 China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Prevention of Red Tide of Guangdong Higher Education Institute, Jinan University, Guangzhou, 510632 China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Prevention of Red Tide of Guangdong Higher Education Institute, Jinan University, Guangzhou, 510632 China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Prevention of Red Tide of Guangdong Higher Education Institute, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
34
|
Fernandez J, Marroquin-Guzman M, Wilson RA. Mechanisms of nutrient acquisition and utilization during fungal infections of leaves. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:155-74. [PMID: 24848414 DOI: 10.1146/annurev-phyto-102313-050135] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Foliar fungal pathogens challenge global food security, but how they optimize growth and development during infection is understudied. Despite adopting several lifestyles to facilitate nutrient acquisition from colonized cells, little is known about the genetic underpinnings governing pathogen adaption to host-derived nutrients. Homologs of common global and pathway-specific gene regulatory elements are likely to be involved, but their contribution to pathogenicity, and how they are connected to broader genetic networks, is largely unspecified. Here, we focus on carbon and nitrogen metabolism in foliar pathogens and consider what is known, and what is not known, about fungal exploitation of host nutrient and ask how common metabolic regulators have been co-opted to the plant-pathogenic lifestyle as well as how nutrients are utilized to drive infection.
Collapse
Affiliation(s)
- Jessie Fernandez
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583; , ,
| | | | | |
Collapse
|
35
|
Disruption of the nitrogen regulatory gene AcareA in Acremonium chrysogenum leads to reduction of cephalosporin production and repression of nitrogen metabolism. Fungal Genet Biol 2013; 61:69-79. [PMID: 24161729 DOI: 10.1016/j.fgb.2013.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 01/26/2023]
Abstract
AcareA, encoding a homologue of the fungal nitrogen regulatory GATA zinc-finger proteins, was cloned from Acremonium chrysogenum. Gene disruption and genetic complementation revealed that AcareA was required for nitrogen metabolism and cephalosporin production. Disruption of AcareA resulted in growth defect in the medium using nitrate, uric acid and low concentration of ammonium, glutamine or urea as sole nitrogen source. Transcriptional analysis showed that the transcription of niaD/niiA was increased drastically when induced with nitrate in the wild-type and AcareA complemented strains but not in AcareA disruption mutant. Consistent with the reduction of cephalosporin production, the transcription of pcbAB, cefD2, cefEF and cefG encoding the enzymes for cephalosporin production was reduced in AcareA disruption mutant. Band shift assays showed that AcAREA bound to the promoter regions of niaD, niiA and the bidirectional promoter region of pcbAB-pcbC. Sequence analysis showed that all the AcAREA binding sites contain the consensus GATA elements. These results indicated that AcAREA plays an important role both in the regulation of nitrogen metabolism and cephalosporin production in A. chrysogenum.
Collapse
|
36
|
Kroll K, Pähtz V, Kniemeyer O. Elucidating the fungal stress response by proteomics. J Proteomics 2013; 97:151-63. [PMID: 23756228 DOI: 10.1016/j.jprot.2013.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/09/2013] [Accepted: 06/01/2013] [Indexed: 10/26/2022]
Abstract
Fungal species need to cope with stress, both in the natural environment and during interaction of human- or plant pathogenic fungi with their host. Many regulatory circuits governing the fungal stress response have already been discovered. However, there are still large gaps in the knowledge concerning the changes of the proteome during adaptation to environmental stress conditions. With the application of proteomic methods, particularly 2D-gel and gel-free, LC/MS-based methods, first insights into the composition and dynamic changes of the fungal stress proteome could be obtained. Here, we review the recent proteome data generated for filamentous fungi and yeasts. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Kristin Kroll
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Philosophenweg 12, 07743 Jena, Germany
| | - Vera Pähtz
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Philosophenweg 12, 07743 Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care Jena, University Hospital (CSCC), 07747 Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany; Friedrich Schiller University, Institute of Microbiology, Philosophenweg 12, 07743 Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care Jena, University Hospital (CSCC), 07747 Jena, Germany.
| |
Collapse
|
37
|
Transcriptional changes in the transition from vegetative cells to asexual development in the model fungus Aspergillus nidulans. EUKARYOTIC CELL 2012; 12:311-21. [PMID: 23264642 DOI: 10.1128/ec.00274-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphogenesis encompasses programmed changes in gene expression that lead to the development of specialized cell types. In the model fungus Aspergillus nidulans, asexual development involves the formation of characteristic cell types, collectively known as the conidiophore. With the aim of determining the transcriptional changes that occur upon induction of asexual development, we have applied massive mRNA sequencing to compare the expression pattern of 19-h-old submerged vegetative cells (hyphae) with that of similar hyphae after exposure to the air for 5 h. We found that the expression of 2,222 (20.3%) of the predicted 10,943 A. nidulans transcripts was significantly modified after air exposure, 2,035 being downregulated and 187 upregulated. The activation during this transition of genes that belong specifically to the asexual developmental pathway was confirmed. Another remarkable quantitative change occurred in the expression of genes involved in carbon or nitrogen primary metabolism. Genes participating in polar growth or sexual development were transcriptionally repressed, as were those belonging to the HogA/SakA stress response mitogen-activated protein (MAP) kinase pathway. We also identified significant expression changes in several genes purportedly involved in redox balance, transmembrane transport, secondary metabolite production, or transcriptional regulation, mainly binuclear-zinc cluster transcription factors. Genes coding for these four activities were usually grouped in metabolic clusters, which may bring regulatory implications for the induction of asexual development. These results provide a blueprint for further stage-specific gene expression studies during conidiophore development.
Collapse
|
38
|
Fernandez J, Wilson RA. Why no feeding frenzy? Mechanisms of nutrient acquisition and utilization during infection by the rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1286-93. [PMID: 22947213 DOI: 10.1094/mpmi-12-11-0326] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Magnaporthe oryzae is a devastating pathogen of rice and wheat. It is a hemibiotroph that exhibits symptomless biotrophic growth for the first 4 to 5 days of infection of susceptible cultivars before becoming necrotrophic. Here, we review recent advances in our understanding of how M. oryzae is able to grow, acquire nutrients, and interact with the plant cell during infection. In particular, we describe direct mechanisms (such as the integration of carbon and nitrogen metabolism by trehalose-6-phosphate synthase 1) and indirect mechanisms (such as the suppression of host responses) that allow M. oryzae to utilize available host nutrient. We contrast the ability of M. oryzae to voraciously metabolize a wide range of carbon and nitrogen sources in vitro with the carefully orchestrated development it displays during the biotrophic phase of in planta growth and ask how the two observations can be reconciled. We also look at how nutrient acquisition and effector biology might be linked in order to facilitate rapid colonization of the plant host.
Collapse
Affiliation(s)
- J Fernandez
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | |
Collapse
|
39
|
Fernandez J, Wright JD, Hartline D, Quispe CF, Madayiputhiya N, Wilson RA. Principles of carbon catabolite repression in the rice blast fungus: Tps1, Nmr1-3, and a MATE-family pump regulate glucose metabolism during infection. PLoS Genet 2012; 8:e1002673. [PMID: 22570632 PMCID: PMC3342947 DOI: 10.1371/journal.pgen.1002673] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 03/12/2012] [Indexed: 12/14/2022] Open
Abstract
Understanding the genetic pathways that regulate how pathogenic fungi respond to their environment is paramount to developing effective mitigation strategies against disease. Carbon catabolite repression (CCR) is a global regulatory mechanism found in a wide range of microbial organisms that ensures the preferential utilization of glucose over less favourable carbon sources, but little is known about the components of CCR in filamentous fungi. Here we report three new mediators of CCR in the devastating rice blast fungus Magnaporthe oryzae: the sugar sensor Tps1, the Nmr1-3 inhibitor proteins, and the multidrug and toxin extrusion (MATE)-family pump, Mdt1. Using simple plate tests coupled with transcriptional analysis, we show that Tps1, in response to glucose-6-phosphate sensing, triggers CCR via the inactivation of Nmr1-3. In addition, by dissecting the CCR pathway using Agrobacterium tumefaciens-mediated mutagenesis, we also show that Mdt1 is an additional and previously unknown regulator of glucose metabolism. Mdt1 regulates glucose assimilation downstream of Tps1 and is necessary for nutrient utilization, sporulation, and pathogenicity. This is the first functional characterization of a MATE-family protein in filamentous fungi and the first description of a MATE protein in genetic regulation or plant pathogenicity. Perturbing CCR in Δtps1 and MDT1 disruption strains thus results in physiological defects that impact pathogenesis, possibly through the early expression of cell wall-degrading enzymes. Taken together, the importance of discovering three new regulators of carbon metabolism lies in understanding how M. oryzae and other pathogenic fungi respond to nutrient availability and control development during infection.
Collapse
Affiliation(s)
- Jessie Fernandez
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Janet D. Wright
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - David Hartline
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Cristian F. Quispe
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Nandakumar Madayiputhiya
- Proteomic and Metabolomic Core Facility, Redox Biology Center, Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Richard A. Wilson
- Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
40
|
Kosalková K, García-Estrada C, Barreiro C, Flórez MG, Jami MS, Paniagua MA, Martín JF. Casein phosphopeptides drastically increase the secretion of extracellular proteins in Aspergillus awamori. Proteomics studies reveal changes in the secretory pathway. Microb Cell Fact 2012; 11:5. [PMID: 22234238 PMCID: PMC3283509 DOI: 10.1186/1475-2859-11-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/10/2012] [Indexed: 11/24/2022] Open
Abstract
Background The secretion of heterologous animal proteins in filamentous fungi is usually limited by bottlenecks in the vesicle-mediated secretory pathway. Results Using the secretion of bovine chymosin in Aspergillus awamori as a model, we found a drastic increase (40 to 80-fold) in cells grown with casein or casein phosphopeptides (CPPs). CPPs are rich in phosphoserine, but phosphoserine itself did not increase the secretion of chymosin. The stimulatory effect is reduced about 50% using partially dephosphorylated casein and is not exerted by casamino acids. The phosphopeptides effect was not exerted at transcriptional level, but instead, it was clearly observed on the secretion of chymosin by immunodetection analysis. Proteomics studies revealed very interesting metabolic changes in response to phosphopeptides supplementation. The oxidative metabolism was reduced, since enzymes involved in fermentative processes were overrepresented. An oxygen-binding hemoglobin-like protein was overrepresented in the proteome following phosphopeptides addition. Most interestingly, the intracellular pre-protein enzymes, including pre-prochymosin, were depleted (most of them are underrepresented in the intracellular proteome after the addition of CPPs), whereas the extracellular mature form of several of these secretable proteins and cell-wall biosynthetic enzymes was greatly overrepresented in the secretome of phosphopeptides-supplemented cells. Another important 'moonlighting' protein (glyceraldehyde-3-phosphate dehydrogenase), which has been described to have vesicle fusogenic and cytoskeleton formation modulating activities, was clearly overrepresented in phosphopeptides-supplemented cells. Conclusions In summary, CPPs cause the reprogramming of cellular metabolism, which leads to massive secretion of extracellular proteins.
Collapse
|
41
|
Peñalva MA, Galindo A, Abenza JF, Pinar M, Calcagno-Pizarelli AM, Arst Jr HN, Pantazopoulou A. Searching for gold beyond mitosis: Mining intracellular membrane traffic in Aspergillus nidulans. CELLULAR LOGISTICS 2012; 2:2-14. [PMID: 22645705 PMCID: PMC3355971 DOI: 10.4161/cl.19304] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 12/29/2022]
Abstract
The genetically tractable filamentous ascomycete fungus Aspergillus nidulans has been successfully exploited to gain major insight into the eukaryotic cell cycle. More recently, its amenability to in vivo multidimensional microscopy has fueled a potentially gilded second age of A. nidulans cell biology studies. This review specifically deals with studies on intracellular membrane traffic in A. nidulans. The cellular logistics are subordinated to the needs imposed by the polarized mode of growth of the multinucleated hyphal tip cells, whereas membrane traffic is adapted to the large intracellular distances. Recent work illustrates the usefulness of this fungus for morphological and biochemical studies on endosome and Golgi maturation, and on the role of microtubule-dependent motors in the long-distance movement of endosomes. The fungus is ideally suited for genetic studies on the secretory pathway, as mutations impairing secretion reduce apical extension rates, resulting in phenotypes detectable by visual inspection of colonies.
Collapse
Affiliation(s)
- Miguel A. Peñalva
- Departamento de Medicina Molecular; Centro de Investigaciones Biológicas CSIC; Madrid, Spain
| | - Antonio Galindo
- Departamento de Medicina Molecular; Centro de Investigaciones Biológicas CSIC; Madrid, Spain
| | - Juan F. Abenza
- Departamento de Medicina Molecular; Centro de Investigaciones Biológicas CSIC; Madrid, Spain
| | - Mario Pinar
- Departamento de Medicina Molecular; Centro de Investigaciones Biológicas CSIC; Madrid, Spain
| | | | | | - Areti Pantazopoulou
- Departamento de Medicina Molecular; Centro de Investigaciones Biológicas CSIC; Madrid, Spain
| |
Collapse
|
42
|
Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum. PLoS Pathog 2011; 7:e1002266. [PMID: 21980289 PMCID: PMC3182926 DOI: 10.1371/journal.ppat.1002266] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/28/2011] [Indexed: 11/20/2022] Open
Abstract
In F. graminearum, the transcriptional regulator Tri6 is encoded within the trichothecene gene cluster and regulates genes involved in the biosynthesis of the secondary metabolite deoxynivalenol (DON). The Tri6 protein with its Cys2His2 zinc-finger may also conform to the class of global transcription regulators. This class of global transcriptional regulators mediate various environmental cues and generally responds to the demands of cellular metabolism. To address this issue directly, we sought to find gene targets of Tri6 in F. graminearum grown in optimal nutrient conditions. Chromatin immunoprecipitation followed by Illumina sequencing (ChIP-Seq) revealed that in addition to identifying six genes within the trichothecene gene cluster, Tri1, Tri3, Tri6, Tri7, Tri12 and Tri14, the ChIP-Seq also identified 192 additional targets potentially regulated by Tri6. Functional classification revealed that, among the annotated genes, ∼40% are associated with cellular metabolism and transport and the rest of the target genes fall into the category of signal transduction and gene expression regulation. ChIP-Seq data also revealed Tri6 has the highest affinity toward its own promoter, suggesting that this gene could be subject to self-regulation. Electro mobility shift assays (EMSA) performed on the promoter of Tri6 with purified Tri6 protein identified a minimum binding motif of GTGA repeats as a consensus sequence. Finally, expression profiling of F. graminearum grown under nitrogen-limiting conditions revealed that 49 out of 198 target genes are differentially regulated by Tri6. The identification of potential new targets together with deciphering novel binding sites for Tri6, casts new light into the role of this transcriptional regulator in the overall growth and development of F. graminearum. Our knowledge of mechanisms involved in the activation and biosynthesis of DON comes largely from in vitro culture studies. Cumulated knowledge suggests that the physiological status of the fungus and the availability of nutrients are the main determining factors for DON production. Integration of various environmental cues to coordinate expression of secondary metabolic genes is thought to be mediated by a combination of global and pathway-specific transcription factors. While the global transcriptional factors respond to broad range of environmental cues such as the availability of carbon and nitrogen, the pathway-specific transcriptional factors regulate genes within a gene cluster. In F. graminearum, the transcriptional regulator Tri6 is encoded within the trichothecene gene cluster and regulates genes involved in the synthesis and transport of DON. In this report, we utilized ChIP-Seq to demonstrate that Tri6 can potentially bind to promoters and regulate genes not involved in the synthesis of DON and furthermore, many of these non-trichothecene genes are involved in various aspects of cellular metabolism, including transport and energy. Expression profiling revealed that many of the target genes are differentially regulated by Tri6, thus validating our hypothesis that Tri6 is a global regulator involved in cellular metabolism.
Collapse
|
43
|
Yin W, Keller NP. Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol 2011; 49:329-39. [PMID: 21717315 DOI: 10.1007/s12275-011-1009-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/15/2011] [Indexed: 01/19/2023]
Abstract
Filamentous fungi produce a variety of secondary metabolites of diverse beneficial and detrimental activities to humankind. The genes required for a given secondary metabolite are typically arranged in a gene cluster. There is considerable evidence that secondary metabolite gene regulation is, in part, by transcriptional control through hierarchical levels of transcriptional regulatory elements involved in secondary metabolite cluster regulation. Identification of elements regulating secondary metabolism could potentially provide a means of increasing production of beneficial metabolites, decreasing production of detrimental metabolites, aid in the identification of 'silent' natural products and also contribute to a broader understanding of molecular mechanisms by which secondary metabolites are produced. This review summarizes regulation of secondary metabolism associated with transcriptional regulatory elements from a broad view as well as the tremendous advances in discovery of cryptic or novel secondary metabolites by genomic mining.
Collapse
Affiliation(s)
- Wenbing Yin
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
44
|
Hartmann T, Sasse C, Schedler A, Hasenberg M, Gunzer M, Krappmann S. Shaping the fungal adaptome--stress responses of Aspergillus fumigatus. Int J Med Microbiol 2011; 301:408-16. [PMID: 21565548 DOI: 10.1016/j.ijmm.2011.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aspergillus fumigatus as prime pathogen to cause aspergillosis has evolved as a saprophyte, but is also able to infect and colonise immunocompromised hosts. Based on the 'dual use' hypothesis of fungal pathogenicity, general characteristics have to be considered as unspecific virulence determinants, among them stress adaptation capacities. The susceptible, warm-blooded mammalian host represents a specific ecological niche that poses several kinds of stress conditions to the fungus during the course of infection. Detailed knowledge about the cellular pathways and adaptive traits that have evolved in A. fumigatus to counteract situations of stress and varying environmental conditions is crucial for the identification of novel and specific antifungal targets. Comprehensive profiling data accompanied by mutant analyses have shed light on such stressors, and nutritional deprivation, oxidative stress, hypoxia, elevated temperature, alkaline pH, extensive secretion, and, in particular during treatment with antifungals, cell membrane perturbations appear to represent the major hazards A. fumigatus has to cope with during infection. Further efforts employing innovative approaches and advanced technologies will have to be made to expand our knowledge about the scope of the A. fumigatus adaptome that is relevant for disease.
Collapse
Affiliation(s)
- Thomas Hartmann
- Research Center for Infectious Diseases, Julius-Maximilians-University Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Fernandez J, Wilson RA. The sugar sensor, trehalose-6-phosphate synthase (Tps1), regulates primary and secondary metabolism during infection by the rice blast fungus: WillMagnaporthe oryzae's“sweet tooth” become its “Achilles’ heel”? Mycology 2011. [DOI: 10.1080/21501203.2011.563431] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Jessie Fernandez
- a Department of Plant Pathology , University of Nebraska-Lincoln , 406I Plant Sciences Hall, Lincoln, NE 68583-0722, USA
| | - Richard A. Wilson
- a Department of Plant Pathology , University of Nebraska-Lincoln , 406I Plant Sciences Hall, Lincoln, NE 68583-0722, USA
| |
Collapse
|
46
|
Galhano R, Talbot NJ. The biology of blast: Understanding how Magnaporthe oryzae invades rice plants. FUNGAL BIOL REV 2011. [DOI: 10.1016/j.fbr.2011.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Wilson RA, Gibson RP, Quispe CF, Littlechild JA, Talbot NJ. An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proc Natl Acad Sci U S A 2010; 107:21902-7. [PMID: 21115813 PMCID: PMC3003025 DOI: 10.1073/pnas.1006839107] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To cause rice blast disease, the fungus Magnaporthe oryzae breaches the tough outer cuticle of the rice leaf by using specialized infection structures called appressoria. These cells allow the fungus to invade the host plant and proliferate rapidly within leaf tissue. Here, we show that a unique NADPH-dependent genetic switch regulates plant infection in response to the changing nutritional and redox conditions encountered by the pathogen. The biosynthetic enzyme trehalose-6-phosphate synthase (Tps1) integrates control of glucose-6-phosphate metabolism and nitrogen source utilization by regulating the oxidative pentose phosphate pathway, the generation of NADPH, and the activity of nitrate reductase. We report that Tps1 directly binds to NADPH and, thereby, regulates a set of related transcriptional corepressors, comprising three proteins, Nmr1, Nmr2, and Nmr3, which can each bind NADP. Targeted deletion of any of the Nmr-encoding genes partially suppresses the nonpathogenic phenotype of a Δtps1 mutant. Tps1-dependent Nmr corepressors control the expression of a set of virulence-associated genes that are derepressed during appressorium-mediated plant infection. When considered together, these results suggest that initiation of rice blast disease by M. oryzae requires a regulatory mechanism involving an NADPH sensor protein, Tps1, a set of NADP-dependent transcriptional corepressors, and the nonconsuming interconversion of NADPH and NADP acting as signal transducer.
Collapse
Affiliation(s)
- Richard A. Wilson
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom; and
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0722
| | - Robert P. Gibson
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom; and
| | - Cristian F. Quispe
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0722
| | | | - Nicholas J. Talbot
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom; and
| |
Collapse
|
48
|
Abreu C, Sanguinetti M, Amillis S, Ramon A. UreA, the major urea/H+ symporter in Aspergillus nidulans. Fungal Genet Biol 2010; 47:1023-33. [PMID: 20633690 DOI: 10.1016/j.fgb.2010.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 06/16/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
We report here the characterization of UreA, a high-affinity urea/H+ symporter of Aspergillus nidulans. The deletion of the encoding gene abolishes urea transport at low substrate concentrations, suggesting that in these conditions UreA is the sole transport system specific for urea in A. nidulans. The ureA gene is not inducible by urea or its precursors, but responds to nitrogen metabolite repression, necessitating for its expression the AreA GATA factor. In contrast to what was observed for other transporters in A. nidulans, repression by ammonium is also operative during the isotropic growth phase. The activity of UreA is down-regulated post-translationally by ammonium-promoted endocytosis. A number of homologues of UreA have been identified in A. nidulans and other Aspergilli, which cluster in four groups, two of which contain the urea transporters characterized so far in fungi and plants. This phylogeny may have arisen by gene duplication events, giving place to putative transport proteins that could have acquired novel, still unidentified functions.
Collapse
Affiliation(s)
- Cecilia Abreu
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | | | | | |
Collapse
|
49
|
Zhao X, Hume SL, Johnson C, Thompson P, Huang J, Gray J, Lamb HK, Hawkins AR. The transcription repressor NmrA is subject to proteolysis by three Aspergillus nidulans proteases. Protein Sci 2010; 19:1405-19. [PMID: 20506376 DOI: 10.1002/pro.421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The role of specific cleavage of transcription repressor proteins by proteases and how this may be related to the emerging theme of dinucleotides as cellular signaling molecules is poorly characterized. The transcription repressor NmrA of Aspergillus nidulans discriminates between oxidized and reduced dinucleotides, however, dinucleotide binding has no effect on its interaction with the zinc finger in the transcription activator AreA. Protease activity in A. nidulans was assayed using NmrA as the substrate, and was absent in mycelium grown under nitrogen sufficient conditions but abundant in mycelium starved of nitrogen. One of the proteases was purified and identified as the protein Q5BAR4 encoded by the gene AN2366.2. Fluorescence confocal microscopy showed that the nuclear levels of NmrA were reduced approximately 38% when mycelium was grown on nitrate compared to ammonium and absent when starved of nitrogen. Proteolysis of NmrA occurred in an ordered manner by preferential digestion within a C-terminal surface exposed loop and subsequent digestion at other sites. NmrA digested at the C-terminal site was unable to bind to the AreA zinc finger. These data reveal a potential new layer of control of nitrogen metabolite repression by the ordered proteolytic cleavage of NmrA. NmrA digested at the C-terminal site retained the ability to bind NAD(+) and showed a resistance to further digestion that was enhanced by the presence of NAD(+). This is the first time that an effect of dinucleotide binding to NmrA has been demonstrated.
Collapse
Affiliation(s)
- Xiao Zhao
- Institute of Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, Framlington Place NE2 4HH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
50
|
López-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. THE PLANT CELL 2010; 22:2459-75. [PMID: 20639450 PMCID: PMC2929112 DOI: 10.1105/tpc.110.075937] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/03/2010] [Accepted: 06/22/2010] [Indexed: 05/19/2023]
Abstract
During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source-independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the DeltameaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi.
Collapse
Affiliation(s)
| | | | | | - Antonio Di Pietro
- Departamento de Genética, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel, 14071 Córdoba, Spain
| |
Collapse
|