1
|
Xedzro C, Shimamoto T, Yu L, Sugawara Y, Sugai M, Shimamoto T. First Report of mcr-10 in a Seafood-Borne ESBL-Producing Enterobacter xiangfangensis Strain. Curr Microbiol 2025; 82:194. [PMID: 40085164 PMCID: PMC11909031 DOI: 10.1007/s00284-025-04179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
mcr-10 is among the growing families of newly identified plasmid-mediated mobile colistin-resistance genes. In this study, we identified an mcr-10 gene in a seafood-borne extended-spectrum β-lactamase (ESBL)-producing Enterobacter xiangfangensis. E. xiangfangensis strain, B12-S77, was subjected to whole genome sequencing using Illumina MiSeq and Oxford Nanopore Technologies. Bioinformatic analysis was performed using tools from the Center for Genomic Epidemiology. The minimum inhibitory concentration (MIC) of 19 antibiotics was determined by the broth microdilution method. Transferability of mcr-10-carrying plasmid was investigated by the conjugation experiment. The strain exhibited a multidrug-resistant (MDR) phenotype against more than three classes of antibiotics but remained susceptible to colistin and polymyxin B. mcr-10 was identified on a fused conjugative plasmid of the IncFIB (K):FII (Yp) backbone adjacent to the XerC-type tyrosine recombinase-gene. At least one insertion sequence (IS) was identified in both the downstream and upstream regions of the xerC-mcr-10 conserved region, indicating that this region may contribute to mcr-10 mobilization or integration into the bacterial genome. The strain belonged to sequence type (ST) 143 and carried the nlpI and mrkA virulence genes, which promote fimbrial adhesion or biofilm formation in enteric bacteria. This report provides novel insights into the emergence of mcr-10 in seafood-borne bacteria, and highlights the importance of surveillance in the seafood supply chain.
Collapse
Affiliation(s)
- Christian Xedzro
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima, 739-8528, Japan
| | - Toshi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima, 739-8528, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Disease, 4-2-1 Aoba-Cho, Higashimurayama, Tokyo, 189-0002, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Disease, 4-2-1 Aoba-Cho, Higashimurayama, Tokyo, 189-0002, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Disease, 4-2-1 Aoba-Cho, Higashimurayama, Tokyo, 189-0002, Japan
| | - Tadashi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima, 739-8528, Japan.
| |
Collapse
|
2
|
Fukuda A, Nakano H, Suzuki Y, Nakajima C, Usui M. Conjugative IncHI2/HI2A plasmids harbouring mcr-9 in colistin-susceptible Escherichia coli isolated from diseased pigs in Japan. Access Microbiol 2022; 4:acmi000454. [PMID: 36644431 PMCID: PMC9833416 DOI: 10.1099/acmi.0.000454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Colistin is a last resort antimicrobial used for the treatment of gram-negative bacterial infections. Plasmid-mediated colistin resistance (mcr) genes are a cause of global concern, and, thus far, mcr-1-10 have been identified. In a previous study, we screened mcr-1-5 in Escherichia coli derived from diseased pigs in Japan and reported a high prevalence of mcr-1, -3 and -5. However, the previous report on the prevalence of mcr genes was inaccurate. In the present study, we aimed to clarify the prevalence of all reported variants of mcr in E. coli derived from the diseased pigs, which were previously screened for mcr-1-5. Additionally, we also characterized the mcr-9-positive E. coli , which was detected in this study. We screened mcr in 120 E. coli strains from diseased pigs and mcr-positive E. coli and an mcr-carrying plasmid were also characterized. One mcr-9-positive colistin-susceptible E. coli strain was detected (0.8 %). Plasmid-mediated mcr-9 was transferred to E. coli ML4909 as the recipient strain, and it was located on IncHI2/HI2A plasmid p387_L with other antimicrobial resistance genes (ARGs). The region harbouring ARGs including mcr-9, was similar to that on the Klebsiella pneumoniae chromosome harbouring mcr-9 isolated in Japan. mcr-3, -5 and -9 were detected (4.2 %) in colistin-susceptible strains. mcr-9 was found to be disseminated via the plasmid IncHI2/HI2A p387_L and transferred and inserted into chromosomes via a transposon. Our results suggest that mcr genes should be monitored regularly, regardless of their susceptibility to colistin.
Collapse
Affiliation(s)
- Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hitomi Nakano
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yasuhiko Suzuki
- Hokkaido University International Institute for Zoonosis Control, Division of Bioresources, Sapporo, Hokkaido, Japan
| | - Chie Nakajima
- Hokkaido University International Institute for Zoonosis Control, Division of Bioresources, Sapporo, Hokkaido, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
3
|
Mmatli M, Mbelle NM, Osei Sekyere J. Global epidemiology, genetic environment, risk factors and therapeutic prospects of mcr genes: A current and emerging update. Front Cell Infect Microbiol 2022; 12:941358. [PMID: 36093193 PMCID: PMC9462459 DOI: 10.3389/fcimb.2022.941358] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 12/28/2022] Open
Abstract
Background Mobile colistin resistance (mcr) genes modify Lipid A molecules of the lipopolysaccharide, changing the overall charge of the outer membrane. Results and discussion Ten mcr genes have been described to date within eleven Enterobacteriaceae species, with Escherichia coli, Klebsiella pneumoniae, and Salmonella species being the most predominant. They are present worldwide in 72 countries, with animal specimens currently having the highest incidence, due to the use of colistin in poultry for promoting growth and treating intestinal infections. The wide dissemination of mcr from food animals to meat, manure, the environment, and wastewater samples has increased the risk of transmission to humans via foodborne and vector-borne routes. The stability and spread of mcr genes were mediated by mobile genetic elements such as the IncHI2 conjugative plasmid, which is associated with multiple mcr genes and other antibiotic resistance genes. The cost of acquiring mcr is reduced by compensatory adaptation mechanisms. MCR proteins are well conserved structurally and via enzymatic action. Thus, therapeutics found effective against MCR-1 should be tested against the remaining MCR proteins. Conclusion The dissemination of mcr genes into the clinical setting, is threatening public health by limiting therapeutics options available. Combination therapies are a promising option for managing and treating colistin-resistant Enterobacteriaceae infections whilst reducing the toxic effects of colistin.
Collapse
Affiliation(s)
- Masego Mmatli
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Nontombi Marylucy Mbelle
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN, United States
- Department of Dermatology, School of Medicine, University of Pretoria, Pretoria, South Africa
- *Correspondence: John Osei Sekyere, ;
| |
Collapse
|
4
|
Sato T, Harada K, Usui M, Yokota SI, Horiuchi M. Colistin Susceptibility in Companion Animal-Derived Escherichia coli, Klebsiella spp., and Enterobacter spp. in Japan: Frequent Isolation of Colistin-Resistant Enterobacter cloacae Complex. Front Cell Infect Microbiol 2022; 12:946841. [PMID: 35873176 PMCID: PMC9299427 DOI: 10.3389/fcimb.2022.946841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Transmission of colistin-resistant Enterobacterales from companion animals to humans poses a clinical risk as colistin is a last-line antimicrobial agent for treatment of multidrug-resistant Gram-negative bacteria including Enterobacterales. In this study, we investigated the colistin susceptibility of 285 Enterobacterales (including 140 Escherichia coli, 86 Klebsiella spp., and 59 Enterobacter spp.) isolated from companion animals in Japan. We further characterized colistin-resistant isolates by multilocus sequence typing (MLST), phylogenetic analysis of hsp60 sequences, and population analysis profiling, to evaluate the potential clinical risk of companion animal-derived colistin-resistant Enterobacterales to humans in line with the One Health approach. All E. coli isolates were susceptible to colistin, and only one Klebsiella spp. isolate (1.2%, 1/86 isolates) was colistin resistant. Enterobacter spp. isolates were frequently colistin resistant (20.3%, 12/59 isolates). In colistin-resistant Enterobacter spp., all except one isolate exhibited colistin heteroresistance by population analysis profiling. These colistin-heteroresistant isolates belonged to clusters I, II, IV, VIII, and XII based on hsp60 phylogeny. MLST analysis revealed that 12 colistin-resistant Enterobacter spp. belonged to the Enterobacter cloacae complex; five Enterobacter kobei (four ST591 and one ST1577), three Enterobacter asburiae (one ST562 and two ST1578), two Enterobacter roggenkampii (ST606 and ST1576), and Enterobacter hormaechei (ST1579) and E. cloacae (ST765) (each one strain). Forty-two percent of the colistin-resistant E. cloacae complex isolates (predominantly ST562 and ST591) belonged to lineages with human clinical isolates. Four E. kobei ST591 isolates were resistant to third-generation cephalosporines, aminoglycosides, and fluroquinolones but remained susceptible to carbapenems. In conclusion, our study is the first to our knowledge to report the frequent isolation of the colistin-resistant E. cloacae complex from companion animals. Furthermore, a subset of isolates belonged to human-associated lineages with resistance to multiple classes of antibiotics. These data warrant monitoring carriage of the colistin-resistant E. cloacae complex in companion animals as part of a domestic infection control procedure in line with the One Health approach.
Collapse
Affiliation(s)
- Toyotaka Sato
- Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan.,Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuki Harada
- Department of Veterinary Internal Medicine, Tottori University, Tottori, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, School/Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Xu T, Xue CX, Chen Y, Huang J, Wu W, Lu Y, Huang Q, Chen D, Zhou K. Frequent convergence of mcr-9 and carbapenemase genes in Enterobacter cloacae complex driven by epidemic plasmids and host incompatibility. Emerg Microbes Infect 2022; 11:1959-1972. [PMID: 35848148 PMCID: PMC9359198 DOI: 10.1080/22221751.2022.2103456] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Convergence of mcr and carbapenemase genes has been sporadically detected in Enterobacter cloacae complex (ECC) with an upward trend. However, the state of the epidemic and underlying mechanism of such convergence has been poorly understood. In this study, the co-occurrence of MCR and carbapenemases was systematically analyzed in 230 clinical ECC isolates collected between 2000 and 2018 together with a global dataset consisting of 3,559 ECC genomes compiled from GenBank. We identified 48 mcr-9/mcr-10-positive isolates (MCR-ECC) (20.9%) in our collection, and a comparable ratio of MCR-ECC (720/3559, 20.2%) was detected in the global dataset. A high prevalence of carbapenemase-producing MCR-ECC (MCR-CREC) was further identified in the MCR-ECC of both datasets (16/48, 33.3%; 388/720, 53.9%), demonstrating a frequent convergence of mcr-9/10 and carbapenemase genes in ECC worldwide. An epidemic IncHI2/2A plasmid with a highly conserved backbone was identified and largely contributed to the dissemination of mcr-9 in ECC worldwide. A highly conserved IncX3-type NDM-1-carrying plasmid and IncN-type IMP-4-carrying plasmid were additionally detected in MCR-CREC isolated in China. Our surveillance data showed that MCR-CREC emerged (in 2013) much later than MCR-ECC (in 2000), indicating that MCR-CREC could be derived from MCR-ECC by additional captures of carbapenemase-encoding plasmids. Tests of plasmid stability and incompatibility showed that the mcr-9/mcr-10-encoding plasmids with the NDM-1-encoding plasmids stably remained in ECC but incompatible in Escherichia coli, suggesting that the convergence was host-dependent. The findings extend our concern on the convergence of resistance to the last resort antibiotics and highlight the necessity of continued surveillance in the future.
Collapse
Affiliation(s)
- Tingting Xu
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Chun-Xu Xue
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Junxi Huang
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Weiyuan Wu
- Clinical Laboratory, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Yuemei Lu
- Clinical Laboratory, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Qiuhui Huang
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Dandan Chen
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
6
|
Emergence of a Novel Plasmid-Mediated Tigecycline Resistance Gene Cluster,
tmexCD4-toprJ4
, in Klebsiella quasipneumoniae and Enterobacter
roggenkampii. Microbiol Spectr 2022; 10:e0109422. [PMID: 35862955 PMCID: PMC9431256 DOI: 10.1128/spectrum.01094-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The occurrence of transferable tigecycline resistance determinants, tmexCD1-toprJ1, tmexCD2-toprJ2, tmexCD3-toprJ1b, and multiple tet(A) and tet(X) variants, presents an unprecedented challenge to clinical therapeutic options. tmexCD-toprJ-like gene clusters can mediate multidrug resistance and have been detected in a variety of bacteria. Here, we characterized the fourth tmexCD-toprJ-like gene cluster, tmexCD4-toprJ4, identified on untypeable plasmids of Klebsiella quasipneumoniae and Enterobacter roggenkampii isolated from chicken meat and environmental samples from farm markets, respectively. TMexCD4-TOprJ4 was closely related (92 to 99% amino acid identity) to TMexCD1-TOprJ1, TMexCD2-TOprJ2, and TMexCD3-TOprJ1. Phylogenetic analysis revealed that tmexCD4-toprJ4 was not in the same branch as the other three variants. Expression of tmexCD4-toprJ4 increased tigecycline efflux in Escherichia coli and resulted in a 4- to 8-fold increase in MICs of tigecycline in E. coli and Klebsiella pneumoniae. Moreover, tmexCD4-toprJ4 can act synergistically with its upstream gene tet(A) to reduce the susceptibility of E. coli and K. pneumoniae strains to tigecycline. The tmexCD4-toprJ4-containing plasmid is a novel plasmid type and can be transferred to E. coli and K. pneumoniae only via electrotransformation. The increasing emergence of plasmid-mediated tigecycline resistance gene clusters suggests that the spread of tmexCD-toprJ-like gene clusters requires widespread attention. IMPORTANCE The plasmid-mediated tigecycline resistance gene cluster tmexCD1-toprJ1 and other variants have been detected in a variety of strains from multiple sources, including human-derived strains. In addition to tigecycline, these tmexCD-toprJ-like gene clusters reduce susceptibility of the host strain to many other antimicrobials. Here, we identified tmexCD4-toprJ4 in K. quasipneumoniae and E. roggenkampii, suggesting that this gene cluster is already present in the human-associated environment and the risk of transmission to humans is increased. Monitoring tigecycline-resistant Gram-negative bacteria is essential for understanding and addressing the spread of this gene cluster in agriculture and health care.
Collapse
|
7
|
Hamame A, Davoust B, Cherak Z, Rolain JM, Diene SM. Mobile Colistin Resistance ( mcr) Genes in Cats and Dogs and Their Zoonotic Transmission Risks. Pathogens 2022; 11:698. [PMID: 35745552 PMCID: PMC9230929 DOI: 10.3390/pathogens11060698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Pets, especially cats and dogs, represent a great potential for zoonotic transmission, leading to major health problems. The purpose of this systematic review was to present the latest developments concerning colistin resistance through mcr genes in pets. The current study also highlights the health risks of the transmission of colistin resistance between pets and humans. Methods: We conducted a systematic review on mcr-positive bacteria in pets and studies reporting their zoonotic transmission to humans. Bibliographic research queries were performed on the following databases: Google Scholar, PubMed, Scopus, Microsoft Academic, and Web of Science. Articles of interest were selected using the PRISMA guideline principles. Results: The analyzed articles from the investigated databases described the presence of mcr gene variants in pets including mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-8, mcr-9, and mcr-10. Among these articles, four studies reported potential zoonotic transmission of mcr genes between pets and humans. The epidemiological analysis revealed that dogs and cats can be colonized by mcr genes that are beginning to spread in different countries worldwide. Overall, reported articles on this subject highlight the high risk of zoonotic transmission of colistin resistance genes between pets and their owners. Conclusions: This review demonstrated the spread of mcr genes in pets and their transmission to humans, indicating the need for further measures to control this significant threat to public health. Therefore, we suggest here some strategies against this threat such as avoiding zoonotic transmission.
Collapse
Affiliation(s)
- Afaf Hamame
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Bernard Davoust
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Zineb Cherak
- Faculté des Sciences de la Nature et de la Vie, Université Batna-2, Route de Constantine, Fésdis, Batna 05078, Algeria;
| | - Jean-Marc Rolain
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Seydina M. Diene
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| |
Collapse
|
8
|
Emergence of Colistin Resistance Gene mcr- 10 in Enterobacterales Isolates Recovered from Fecal Samples of Chickens, Slaughterhouse Workers, and a Nearby Resident. Microbiol Spectr 2022; 10:e0041822. [PMID: 35412362 PMCID: PMC9045214 DOI: 10.1128/spectrum.00418-22] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The wide spread of plasmid-borne mobilized colistin resistance (mcr) genes from animals to humans broadly challenges the clinical use of polymyxins. Here, we evaluated the incidence of a recently reported mcr variant, mcr-10, in animals and humans in the same area. Our results revealed the presence of novel mcr-10-carrying plasmids in two Klebsiella pneumoniae isolates from chickens, one Escherichia coli isolate from slaughterhouse workers, and a chromosome-borne mcr-10 gene in Enterobacter kobei from a healthy resident in the same region. It is worth mentioning that the multidrug-resistant ST11 K. pneumoniae isolates coharboring mcr-10 and mcr-8 genes in two separate plasmids not only were resistant to polymyxins (MIC = 8 mg/L) but also showed reduced susceptibility to tigecycline (MIC ≥ 2 mg/L) due to the tet(A) mutation or the tmexCD1-toprJ1 gene cluster. The structure xerC-mcr10-insCinsD-like was found in genetic environments of both the plasmid and chromosome carrying mcr-10. We compared genomic epidemiological characteristics of mcr-10-harboring bacteria available in 941,449 genomes in the NCBI database (including strains of K. pneumoniae, E. coli, and E. kobei) with isolates in this study. The results indicated a sporadic distribution of mcr-10 all around the world and in a variety of sources, including humans, environments, and animals, which confirms that mcr-10 has spread among various hosts and warrants close monitoring and further future studies. IMPORTANCE We discovered mcr-10-harboring isolates in the "one health" approach and reported for the first time multidrug-resistant clinically threatening ST11 K. pneumoniae isolates coharboring mcr-10 and mcr-8 genes that are resistant to polymyxins and show reduced susceptibility to tigecycline. The exhaustive screening of 941,449 bacterial genomes in the GenBank database discovered a sporadic distribution of mcr-10-harboring isolates all around the world in a variety of sources, especially humans, which warrants close monitoring and a particular concern in clinical settings.
Collapse
|