1
|
Dalldorf C, Hefner Y, Szubin R, Johnsen J, Mohamed E, Li G, Krishnan J, Feist AM, Palsson BO, Zielinski DC. Diversity of Transcriptional Regulatory Adaptation in E. coli. Mol Biol Evol 2024; 41:msae240. [PMID: 39531644 PMCID: PMC11588850 DOI: 10.1093/molbev/msae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The transcriptional regulatory network (TRN) in bacteria is thought to rapidly evolve in response to selection pressures, modulating transcription factor (TF) activities and interactions. In order to probe the limits and mechanisms surrounding the short-term adaptability of the TRN, we generated, evolved, and characterized knockout (KO) strains in Escherichia coli for 11 regulators selected based on measured growth impact on glucose minimal media. All but one knockout strain (Δlrp) were able to recover growth and did so requiring few convergent mutations. We found that the TF knockout adaptations could be divided into four categories: (i) Strains (ΔargR, ΔbasR, Δlon, ΔzntR, and Δzur) that recovered growth without any regulator-specific adaptations, likely due to minimal activity of the regulator on the growth condition, (ii) Strains (ΔcytR, ΔmlrA, and ΔybaO) that recovered growth without TF-specific mutations but with differential expression of regulators with overlapping regulons to the KO'ed TF, (iii) Strains (Δcrp and Δfur) that recovered growth using convergent mutations within their regulatory networks, including regulated promoters and connected regulators, and (iv) Strains (Δlrp) that were unable to fully recover growth, seemingly due to the broad connectivity of the TF within the TRN. Analyzing growth capabilities in evolved and unevolved strains indicated that growth adaptation can restore fitness to diverse substrates often despite a lack of TF-specific mutations. This work reveals the breadth of TRN adaptive mechanisms and suggests these mechanisms can be anticipated based on the network and functional context of the perturbed TFs.
Collapse
Affiliation(s)
- Christopher Dalldorf
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Josefin Johnsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark
| | - Elsayed Mohamed
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark
| | - Gaoyuan Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Jayanth Krishnan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens, Lyngby, Denmark
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Zion S, Katz S, Hershberg R. Escherichia coli adaptation under prolonged resource exhaustion is characterized by extreme parallelism and frequent historical contingency. PLoS Genet 2024; 20:e1011333. [PMID: 38885285 PMCID: PMC11213340 DOI: 10.1371/journal.pgen.1011333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/28/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Like many other non-sporulating bacterial species, Escherichia coli is able to survive prolonged periods of resource exhaustion, by entering a state of growth called long-term stationary phase (LTSP). In July 2015, we initiated a set of evolutionary experiments aimed at characterizing the dynamics of E. coli adaptation under LTSP. In these experiments populations of E. coli were allowed to initially grow on fresh rich media, but were not provided with any new external growth resources since their establishment. Utilizing whole genome sequencing data obtained for hundreds of clones sampled at 12 time points spanning the first six years of these experiments, we reveal several novel aspects of the dynamics of adaptation. First, we show that E. coli continuously adapts genetically, up to six years under resource exhaustion, through the highly convergent accumulation of mutations. We further show that upon entry into LTSP, long-lasting lineages are established. This lineage structure is in itself convergent, with similar lineages arising across independently evolving populations. The high parallelism with which adaptations occur under LTSP, combined with the LTSP populations' lineage structure, enable us to screen for pairs of loci displaying a significant association in the occurrence of mutations, suggestive of a historical contingency. We find that such associations are highly frequent and that a third of convergently mutated loci are involved in at least one such association. Combined our results demonstrate that LTSP adaptation is characterized by remarkably high parallelism and frequent historical contingency.
Collapse
Affiliation(s)
- Shira Zion
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sophia Katz
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Kanje LE, Kumburu H, Kuchaka D, Shayo M, Juma MA, Kimu P, Beti M, van Zwetselaar M, Wadugu B, Mmbaga BT, Mkumbaye SI, Sonda T. Short reads-based characterization of pathotype diversity and drug resistance among Escherichia coli isolated from patients attending regional referral hospitals in Tanzania. BMC Med Genomics 2024; 17:110. [PMID: 38671498 PMCID: PMC11055328 DOI: 10.1186/s12920-024-01882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Escherichia coli is known to cause about 2 million deaths annually of which diarrhea infection is leading and typically occurs in children under 5 years old. Although Africa is the most affected region there is little information on their pathotypes diversity and their antimicrobial resistance. OBJECTIVE To determine the pathotype diversity and antimicrobial resistance among E. coli from patients attending regional referral hospitals in Tanzania. MATERIALS AND METHODS A retrospective cross-section laboratory-based study where a total of 138 archived E. coli isolates collected from 2020 to 2021 from selected regional referral hospitals in Tanzania were sequenced using the Illumina Nextseq550 sequencer platform. Analysis of the sequences was done in the CGE tool for the identification of resistance genes and virulence genes. SPSS version 20 was used to summarize data using frequency and proportion. RESULTS Among all 138 sequenced E. coli isolates, the most prevalent observed pathotype virulence genes were of extraintestinal E. coli UPEC fyuA gene 82.6% (114/138) and NMEC irp gene 81.9% (113/138). Most of the E. coli pathotypes observed exist as a hybrid due to gene overlapping, the most prevalent pathotypes observed were NMEC/UPEC hybrid 29.7% (41/138), NMEC/UPEC/EAEC hybrid 26.1% (36/138), NMEC/UPEC/DAEC hybrid 18.1% (25/138) and EAEC 15.2% (21/138). Overall most E. coli carried resistance gene to ampicillin 90.6% (125/138), trimethoprim 85.5% (118/138), tetracycline 79.9% (110/138), ciprofloxacin 76.1% (105/138) and 72.5% (100/138) Nalidixic acid. Hybrid pathotypes were more resistant than non-hybrid pathotypes. CONCLUSION Whole genome sequencing reveals the presence of hybrid pathotypes with increased drug resistance among E. coli isolated from regional referral hospitals in Tanzania.
Collapse
Affiliation(s)
- Livin E Kanje
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania.
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania.
| | - Happiness Kumburu
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Clinical Laboratory, Kilimanjaro Christian Medical Center, Kilimanjaro, Tanzania
| | - Davis Kuchaka
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Mariana Shayo
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Masoud A Juma
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- State University of Zanzibar, Zanzibar, Tanzania
| | - Patrick Kimu
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Melkiory Beti
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | | | - Boaz Wadugu
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Blandina T Mmbaga
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Clinical Laboratory, Kilimanjaro Christian Medical Center, Kilimanjaro, Tanzania
| | - Sixbert Isdory Mkumbaye
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Clinical Laboratory, Kilimanjaro Christian Medical Center, Kilimanjaro, Tanzania
| | - Tolbert Sonda
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Clinical Laboratory, Kilimanjaro Christian Medical Center, Kilimanjaro, Tanzania
| |
Collapse
|
4
|
Behringer MG, Ho WC, Miller SF, Worthan SB, Cen Z, Stikeleather R, Lynch M. Trade-offs, trade-ups, and high mutational parallelism underlie microbial adaptation during extreme cycles of feast and famine. Curr Biol 2024; 34:1403-1413.e5. [PMID: 38460514 PMCID: PMC11066936 DOI: 10.1016/j.cub.2024.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/12/2023] [Accepted: 02/16/2024] [Indexed: 03/11/2024]
Abstract
Microbes are evolutionarily robust organisms capable of rapid adaptation to complex stress, which enables them to colonize harsh environments. In nature, microbes are regularly challenged by starvation, which is a particularly complex stress because resource limitation often co-occurs with changes in pH, osmolarity, and toxin accumulation created by metabolic waste. Often overlooked are the additional complications introduced by eventual resource replenishment, as successful microbes must withstand rapid environmental shifts before swiftly capitalizing on replenished resources to avoid invasion by competing species. To understand how microbes navigate trade-offs between growth and survival, ultimately adapting to thrive in environments with extreme fluctuations, we experimentally evolved 16 Escherichia coli populations for 900 days in repeated feast/famine conditions with cycles of 100-day starvation before resource replenishment. Using longitudinal population-genomic analysis, we found that evolution in response to extreme feast/famine is characterized by narrow adaptive trajectories with high mutational parallelism and notable mutational order. Genetic reconstructions reveal that early mutations result in trade-offs for biofilm and motility but trade-ups for growth and survival, as these mutations conferred positively correlated advantages during both short-term and long-term culture. Our results demonstrate how microbes can navigate the adaptive landscapes of regularly fluctuating conditions and ultimately follow mutational trajectories that confer benefits across diverse environments.
Collapse
Affiliation(s)
- Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, 21st Avenue S, Nashville, TN 37232, USA; Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 21st Avenue S, Nashville, TN 37232, USA.
| | - Wei-Chin Ho
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA; Department of Biology, University of Texas at Tyler, University Blvd., Tyler, TX 75799, USA.
| | - Samuel F Miller
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA
| | - Sarah B Worthan
- Department of Biological Sciences, Vanderbilt University, 21st Avenue S, Nashville, TN 37232, USA
| | - Zeer Cen
- Department of Biological Sciences, Vanderbilt University, 21st Avenue S, Nashville, TN 37232, USA
| | - Ryan Stikeleather
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA
| |
Collapse
|
5
|
Suyama T, Kanno N, Matsukura S, Chihara K, Noda N, Hanada S. Transcriptome and Deletion Mutant Analyses Revealed that an RpoH Family Sigma Factor Is Essential for Photosystem Production in Roseateles depolymerans under Carbon Starvation. Microbes Environ 2023; 38. [PMID: 36878600 PMCID: PMC10037100 DOI: 10.1264/jsme2.me22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Roseateles depolymerans is an obligately aerobic bacterium that produces a photosynthetic apparatus only under the scarcity of carbon substrates. We herein examined changes in the transcriptomes of R. depolymerans cells to clarify the expression of photosynthesis genes and their upstream regulatory factors under carbon starvation. Transcriptomes 0, 1, and 6 h after the depletion of a carbon substrate indicated that transcripts showing the greatest variations (a 500-fold increase [6 h/0 h]) were light-harvesting proteins (PufA and PufB). Moreover, loci with more than 50-fold increases (6 h/0 h) were fully related to the photosynthetic gene cluster. Among 13 sigma factor genes, the transcripts of a sigma 70 family sigma factor related to RpoH (SP70) increased along photosynthesis genes under starvation; therefore, a knockout experiment of SP70 was performed. ΔSP70 mutants were found to lack photosynthetic pigments (carotenoids and bacteriochlo-rophyll a) regardless of carbon starvation. We also examined the effects of heat stress on ΔSP70 mutants, and found that SP70 was also related to heat stress tolerance, similar to other RpoH sigma factors (while heat stress did not trigger photosystem production). The deficient accumulation of photosynthetic pigments and the heat stress tolerance of ΔSP70 mutants were both complemented by the introduction of an intact SP70 gene. Furthermore, the transcription of photosynthetic gene operons (puf, puh, and bch) was markedly reduced in the ΔSP70 mutant. The RpoH homologue SP70 was concluded to be a sigma factor that is essential for the transcription of photosynthetic gene operons in R. depolymerans.
Collapse
Affiliation(s)
- Tetsushi Suyama
- Bio-Analytical Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Nanako Kanno
- Photosynthetic Microbial Consortia Laboratory, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| | - Satoko Matsukura
- Bio-Analytical Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kotaro Chihara
- Bio-Analytical Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
- Department of Life Science and Medical Bioscience, Waseda University
| | - Naohiro Noda
- Bio-Analytical Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
- Department of Life Science and Medical Bioscience, Waseda University
| | - Satoshi Hanada
- Photosynthetic Microbial Consortia Laboratory, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| |
Collapse
|
6
|
Henderson AL, Moreno A, Kram KE. Parallel Evolution towards Increased Motility in Long-Term Cultures of Escherichia coli, Even Though Motility was Not Required for Long-Term Survival. Microbiol Spectr 2022; 10:e0233021. [PMID: 35735986 PMCID: PMC9431438 DOI: 10.1128/spectrum.02330-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli can survive for long periods in batch culture in the laboratory, where they experience a stressful and heterogeneous environment. During this incubation, E. coli acquires mutations that are selected in response to this environment, ultimately leading to evolved populations that are better adapted to these complex conditions, which can lead to a better understanding of evolutionary mechanisms. Mutations in regulatory genes often play a role in adapting to heterogeneous environments. To identify such mutations, we examined transcriptional differences during log phase growth in unaged cells compared to those that had been aged for 10 days and regrown. We identified expression changes in genes involved in motility and chemotaxis after adaptation to long-term cultures. We hypothesized that aged populations would also have phenotypic changes in motility and that motility may play a role in survival and adaptation to long-term cultures. While aged populations did show an increase in motility, this increase was not essential for survival in long-term cultures. We identified mutations in the regulatory gene sspA and other genes that may contribute to the observed differences in motility. Taken together, these data provide an overall picture of the role of mutations in regulatory genes for adaptation while underscoring that all changes that occur during evolution in stressful environments are not necessarily adaptive. IMPORTANCE Understanding how bacteria adapt in long-term cultures aids in both better treatment options for bacterial infections and gives insight into the mechanisms involved in bacterial evolution. In the past, it has been difficult to study these organisms in their natural environments. By using experimental evolution in heterogeneous and stressful laboratory conditions, we can more closely mimic natural environments and examine evolutionary mechanisms. One way to observe these mechanisms is to look at transcriptomic and genomic data from cells adapted to these complex conditions. Here, we found that although aged cells increase motility, this increase is not essential for survival in these conditions. These data emphasize that not all changes that occur due to evolutionary processes are adaptive, but these observations could still lead to hypotheses about the causative mutations. The information gained here allow us to make inferences about general mechanisms underlying phenotypic changes due to evolution.
Collapse
Affiliation(s)
- Autumn L. Henderson
- Department of Biology, California State University, Dominguez Hills, Carson, California, USA
| | - Angie Moreno
- Department of Biology, California State University, Dominguez Hills, Carson, California, USA
| | - Karin E. Kram
- Department of Biology, California State University, Dominguez Hills, Carson, California, USA
| |
Collapse
|
7
|
Nandy P. The role of sigma factor competition in bacterial adaptation under prolonged starvation. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35594140 DOI: 10.1099/mic.0.001195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The study of adaptive microbial evolution in the laboratory can illuminate the genetic mechanisms of gaining fitness under a pre-defined set of selection factors. Laboratory evolution of bacteria under long-term starvation has gained importance in recent years because of its ability to uncover adaptive strategies that overcome prolonged nutrient limitation, a condition often encountered by natural microbes. In this evolutionary paradigm, bacteria are maintained in an energy-restricted environment in a growth phase called long-term stationary phase (LTSP). This phase is characterized by a stable, viable population size and highly dynamic genetic changes. Multiple independent iterations of LTSP evolution experiments have given rise to mutants that are slow-growing compared to the ancestor. Although the antagonistic regulation between rapid growth and the stress response is well-known in bacteria (especially Escherichia coli), the growth deficit of many LTSP-adapted mutants has not been explored in detail. In this review, I pinpoint the trade-off between growth and stress response as a dominant driver of evolutionary strategies under prolonged starvation. Focusing on mainly E. coli-based research, I discuss the various affectors and regulators of the competition between sigma factors to occupy their targets on the genome, and assess its effect on growth advantage in stationary phase (GASP). Finally, I comment on some crucial issues that hinder the progress of the field, including identification of novel metabolites in nutrient-depleted media, and the importance of using multidisciplinary research to resolve them.
Collapse
Affiliation(s)
- Pabitra Nandy
- National Centre for Biological Sciences (NCBS-TIFR), Bangalore, India.,Max Planck Institute for Evolutionary Biology, Plӧn, Germany
| |
Collapse
|
8
|
Hazan R, Schoemann M, Klutstein M. Endurance of extremely prolonged nutrient prevention across kingdoms of life. iScience 2021; 24:102745. [PMID: 34258566 PMCID: PMC8258982 DOI: 10.1016/j.isci.2021.102745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Numerous observations demonstrate that microorganisms can survive very long periods of nutrient deprivation and starvation. Moreover, it is evident that prolonged periods of starvation are a feature of many habitats, and many cells in all kingdoms of life are found in prolonged starvation conditions. Bacteria exhibit a range of responses to long-term starvation. These include genetic adaptations such as the long-term stationary phase and the growth advantage in stationary phase phenotypes characterized by mutations in stress-signaling genes and elevated mutation rates. Here, we suggest using the term "endurance of prolonged nutrient prevention" (EPNP phase), to describe this phase, which was also recently described in eukaryotes. Here, we review this literature and describe the current knowledge about the adaptations to very long-term starvation conditions in bacteria and eukaryotes, its conceptual and structural conservation across all kingdoms of life, and point out possible directions that merit further research.
Collapse
Affiliation(s)
- Ronen Hazan
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| | - Miriam Schoemann
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| | - Michael Klutstein
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 9112001, Israel
| |
Collapse
|
9
|
Shoemaker WR, Polezhaeva E, Givens KB, Lennon JT. Molecular Evolutionary Dynamics of Energy Limited Microorganisms. Mol Biol Evol 2021; 38:4532-4545. [PMID: 34255090 PMCID: PMC8476154 DOI: 10.1093/molbev/msab195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Microorganisms have the unique ability to survive extended periods of time in environments with extremely low levels of exploitable energy. To determine the extent that energy limitation affects microbial evolution, we examined the molecular evolutionary dynamics of a phylogenetically diverse set of taxa over the course of 1,000 days. We found that periodic exposure to energy limitation affected the rate of molecular evolution, the accumulation of genetic diversity, and the rate of extinction. We then determined the degree that energy limitation affected the spectrum of mutations as well as the direction of evolution at the gene level. Our results suggest that the initial depletion of energy altered the direction and rate of molecular evolution within each taxon, though after the initial depletion the rate and direction did not substantially change. However, this consistent pattern became diminished when comparisons were performed across phylogenetically distant taxa, suggesting that while the dynamics of molecular evolution under energy limitation are highly generalizable across the microbial tree of life, the targets of adaptation are specific to a given taxon.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USACurrent affiliation
| | | | - Kenzie B Givens
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USACurrent affiliation
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
10
|
Katz S, Avrani S, Yavneh M, Hilau S, Gross J, Hershberg R. Dynamics of Adaptation During Three Years of Evolution Under Long-Term Stationary Phase. Mol Biol Evol 2021; 38:2778-2790. [PMID: 33734381 PMCID: PMC8233507 DOI: 10.1093/molbev/msab067] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many bacterial species that cannot sporulate, such as the model bacterium Escherichia coli, can nevertheless survive for years, following exhaustion of external resources, in a state termed long-term stationary phase (LTSP). Here we describe the dynamics of E. coli adaptation during the first three years spent under LTSP. We show that during this time, E. coli continuously adapts genetically through the accumulation of mutations. For nonmutator clones, the majority of mutations accumulated appear to be adaptive under LTSP, reflected in an extremely convergent pattern of mutation accumulation. Despite the rapid and convergent manner in which populations adapt under LTSP, they continue to harbor extensive genetic variation. The dynamics of evolution of mutation rates under LTSP are particularly interesting. The emergence of mutators affects overall mutation accumulation rates as well as the mutational spectra and the ultimate spectrum of adaptive alleles acquired under LTSP. With time, mutators can evolve even higher mutation rates through the acquisition of additional mutation rate-enhancing mutations. Different mutator and nonmutator clones within a single population and time point can display extreme variation in their mutation rates, resulting in differences in both the dynamics of adaptation and their associated deleterious burdens. Despite these differences, clones that vary greatly in their mutation rates tend to coexist within their populations for many years, under LTSP.
Collapse
Affiliation(s)
- Sophia Katz
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sarit Avrani
- Department of Evolutionary and Environmental Biology and the Institute of Evolution, University of Haifa, Haifa, Israel
| | - Meitar Yavneh
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sabrin Hilau
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jonathan Gross
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
11
|
Evolution in Long-Term Stationary-Phase Batch Culture: Emergence of Divergent Escherichia coli Lineages over 1,200 Days. mBio 2021; 12:mBio.03337-20. [PMID: 33500336 PMCID: PMC7858067 DOI: 10.1128/mbio.03337-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteria have remarkable metabolic capabilities and adaptive plasticity, enabling them to survive in changing environments. In nature, bacteria spend a majority of their time in a state of slow growth or maintenance, scavenging nutrients for survival. In natural environments, bacteria survive conditions of starvation and stress. Long-term batch cultures are an excellent laboratory system to study adaptation during nutrient stress because cells can incubate for months to years without the addition of nutrients. During long-term batch culture, cells adapt to acquire energy from cellular detritus, creating a complex and dynamic environment for mutants of increased relative fitness to exploit. Here, we analyzed the genomes of 1,117 clones isolated from a single long-term batch culture incubated for 1,200 days. A total of 679 mutations included single nucleotide polymorphisms, indels, mobile genetic element movement, large deletions up to 64 kbp, and amplifications up to ∼500 kbp. During the 3.3-year incubation, two main lineages diverged, evolving continuously. At least twice, a previously fixed mutation reverted back to the wild-type allele, suggesting beneficial mutations may later become maladaptive due to the dynamic environment and changing selective pressures. Most of the mutated genes encode proteins involved in metabolism, transport, or transcriptional regulation. Clones from the two lineages are physiologically distinct, based on outgrowth in fresh medium and competition against the parental strain. Similar population dynamics and mutations in hfq, rpoS, paaX, lrp, sdhB, and dtpA were detected in three additional parallel populations sequenced through day 60, providing evidence for positive selection. These data provide new insight into the population structure and mutations that may be beneficial during periods of starvation in evolving bacterial communities.
Collapse
|
12
|
Gross J, Avrani S, Katz S, Hilau S, Hershberg R. Culture Volume Influences the Dynamics of Adaptation under Long-Term Stationary Phase. Genome Biol Evol 2020; 12:2292-2301. [PMID: 33283867 DOI: 10.1093/gbe/evaa210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli and many other bacterial species, which are incapable of sporulation, can nevertheless survive within resource exhausted media by entering a state termed long-term stationary phase (LTSP). We have previously shown that E. coli populations adapt genetically under LTSP in an extremely convergent manner. Here, we examine how the dynamics of LTSP genetic adaptation are influenced by varying a single parameter of the experiment-culture volume. We find that culture volume affects survival under LTSP, with viable counts decreasing as volumes increase. Across all volumes, mutations accumulate with time, and the majority of mutations accumulated demonstrate signals of being adaptive. However, positive selection appears to affect mutation accumulation more strongly at higher, compared with lower volumes. Finally, we find that several similar genes are likely involved in adaptation across volumes. However, the specific mutations within these genes that contribute to adaptation can vary in a consistent manner. Combined, our results demonstrate how varying a single parameter of an evolutionary experiment can substantially influence the dynamics of observed adaptation.
Collapse
Affiliation(s)
- Jonathan Gross
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Sarit Avrani
- The Department of Evolutionary and Environmental Biology and the Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Sophia Katz
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Sabrin Hilau
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
13
|
Abstract
Many nonsporulating bacterial species can survive for years within exhausted growth media in a state termed long-term stationary phase (LTSP). We have been carrying out evolutionary experiments aimed at elucidating the dynamics of genetic adaptation under LTSP. We showed that Escherichia coli adapts to prolonged resource exhaustion through the highly convergent acquisition of mutations. In the most striking example of such convergent adaptation, we observed that across all independently evolving LTSP populations, over 90% of E. coli cells carry mutations to one of three specific sites of the RNA polymerase core enzyme (RNAPC). These LTSP adaptations reduce the ability of the cells carrying them to grow once fresh resources are again provided. Here, we examine how LTSP populations recover from costs associated with their adaptation once resources are again provided to them. We demonstrate that due to the ability of LTSP populations to maintain high levels of standing genetic variation during adaptation, costly adaptations are very rapidly purged from the population once they are provided with fresh resources. We further demonstrate that recovery from costs acquired during adaptation under LTSP occurs more rapidly than would be possible if LTSP adaptations had fixed during the time populations spent under resource exhaustion. Finally, we previously reported that under LTSP, some clones develop a mutator phenotype, greatly increasing their mutation accumulation rates. Here, we show that the mechanisms by which populations recover from costs associated with fixed adaptations may depend on mutator status.IMPORTANCE Many bacterial species can survive for decades under starvation, following the exhaustion of external growth resources. We have previously shown that bacteria genetically adapt under these conditions in a manner that reduces their ability to grow once resources again become available. Here, we study how populations that have been subject to very prolonged resource exhaustion recover from costs associated with their adaptation. We demonstrate that rapid adaptations acquired under prolonged starvation tend to be highly transient, rapidly reducing in frequency once bacteria are no longer starved. Our results shed light on the longer-term consequences of bacterial survival under prolonged starvation. More generally, these results may also be applicable to understanding longer-term consequences of rapid adaptation to additional conditions as well.
Collapse
|
14
|
Escherichia coli Has a Unique Transcriptional Program in Long-Term Stationary Phase Allowing Identification of Genes Important for Survival. mSystems 2020; 5:5/4/e00364-20. [PMID: 32753505 PMCID: PMC7406224 DOI: 10.1128/msystems.00364-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Microbes live in complex and constantly changing environments, but it is difficult to replicate this in the laboratory. Escherichia coli has been used as a model organism in experimental evolution studies for years; specifically, we and others have used it to study evolution in complex environments by incubating the cells into long-term stationary phase (LTSP) in rich media. In LTSP, cells experience a variety of stresses and changing conditions. While we have hypothesized that this experimental system is more similar to natural environments than some other lab conditions, we do not yet know how cells respond to this environment biochemically or physiologically. In this study, we began to unravel the cells' responses to this environment by characterizing the transcriptome of cells during LTSP. We found that cells in LTSP have a unique transcriptional program and that several genes are uniquely upregulated or downregulated in this phase. Further, we identified two genes, cspB and cspI, which are most highly expressed in LTSP, even though these genes are primarily known to respond to cold shock. By competing cells lacking these genes with wild-type cells, we show that these genes are also important for survival during LTSP. These data can help identify gene products that may play a role in survival in this complex environment and lead to identification of novel functions of proteins.IMPORTANCE Experimental evolution studies have elucidated evolutionary processes, but usually in chemically well-defined and/or constant environments. Using complex environments is important to begin to understand how evolution may occur in natural environments, such as soils or within a host. However, characterizing the stresses that cells experience in these complex environments can be challenging. One way to approach this is by determining how cells biochemically acclimate to heterogenous environments. In this study, we began to characterize physiological changes by analyzing the transcriptome of cells in a dynamic complex environment. By characterizing the transcriptional profile of cells in long-term stationary phase, a heterogenous and stressful environment, we can begin to understand how cells physiologically and biochemically react to the laboratory environment, and how this compares to more-natural conditions.
Collapse
|
15
|
Qin H, Liu Y, Cao X, Jiang J, Lian W, Qiao D, Xu H, Cao Y. RpoS is a pleiotropic regulator of motility, biofilm formation, exoenzymes, siderophore and prodigiosin production, and trade-off during prolonged stationary phase in Serratia marcescens. PLoS One 2020; 15:e0232549. [PMID: 32484808 PMCID: PMC7266296 DOI: 10.1371/journal.pone.0232549] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Prodigiosin is an important secondary metabolite produced by Serratia marcescens. It can help strains resist stresses from other microorganisms and environmental factors to achieve self-preservation. Prodigiosin is also a promising secondary metabolite due to its pharmacological characteristics. However, pigmentless S. marcescens mutants always emerge after prolonged starvation, which might be a way for the bacteria to adapt to starvation conditions, but it could be a major problem in the industrial application of S. marcescens. To identify the molecular mechanisms of loss of prodigiosin production, two mutants were isolated after 16 days of prolonged incubation of wild-type (WT) S. marcescens 1912768R; one mutant (named 1912768WR) exhibited reduced production of prodigiosin, and a second mutant (named 1912768W) was totally defective. Comparative genomic analysis revealed that the two mutants had either mutations or deletions in rpoS. Knockout of rpoS in S. marcescens 1912768R had pleiotropic effects. Complementation of rpoS in the ΔrpoS mutant further confirmed that RpoS was a positive regulator of prodigiosin production and that its regulatory role in prodigiosin biosynthesis was opposite that in Serratia sp. ATCC 39006, which had a different type of pig cluster; further, rpoS from Serratia sp. ATCC 39006 and other strains complemented the prodigiosin defect of the ΔrpoS mutant, suggesting that the pig promoters are more important than the genes in the regulation of prodigiosin production. Deletion of rpoS strongly impaired the resistance of S. marcescens to stresses but increased membrane permeability for nutritional competence; competition assays in rich and minimum media showed that the ΔrpoS mutant outcompeted its isogenic WT strain. All these data support the idea that RpoS is pleiotropic and that the loss of prodigiosin biosynthesis in S. marcescens 1912768R during prolonged incubation is due to a mutation in rpoS, which appears to be a self-preservation and nutritional competence (SPANC) trade-off.
Collapse
Affiliation(s)
- Han Qin
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, P.R. China
| | - Ying Liu
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, P.R. China
| | - Xiyue Cao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, P.R. China
| | - Jia Jiang
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, P.R. China
| | - Weishao Lian
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, P.R. China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, P.R. China
| | - Hui Xu
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, P.R. China
- * E-mail: (YC); (HX)
| | - Yi Cao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, P.R. China
- * E-mail: (YC); (HX)
| |
Collapse
|
16
|
Ali F, Seshasayee ASN. Dynamics of genetic variation in transcription factors and its implications for the evolution of regulatory networks in Bacteria. Nucleic Acids Res 2020; 48:4100-4114. [PMID: 32182360 PMCID: PMC7192604 DOI: 10.1093/nar/gkaa162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/05/2020] [Accepted: 03/03/2020] [Indexed: 11/25/2022] Open
Abstract
The evolution of regulatory networks in Bacteria has largely been explained at macroevolutionary scales through lateral gene transfer and gene duplication. Transcription factors (TF) have been found to be less conserved across species than their target genes (TG). This would be expected if TFs accumulate mutations faster than TGs. This hypothesis is supported by several lab evolution studies which found TFs, especially global regulators, to be frequently mutated. Despite these studies, the contribution of point mutations in TFs to the evolution of regulatory network is poorly understood. We tested if TFs show greater genetic variation than their TGs using whole-genome sequencing data from a large collection of Escherichia coli isolates. TFs were less diverse than their TGs across natural isolates, with TFs of large regulons being more conserved. In contrast, TFs showed higher mutation frequency in adaptive laboratory evolution experiments. However, over long-term laboratory evolution spanning 60 000 generations, mutation frequency in TFs gradually declined after a rapid initial burst. Extrapolating the dynamics of genetic variation from long-term laboratory evolution to natural populations, we propose that point mutations, conferring large-scale gene expression changes, may drive the early stages of adaptation but gene regulation is subjected to stronger purifying selection post adaptation.
Collapse
Affiliation(s)
- Farhan Ali
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka 560065, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka 560065, India
| |
Collapse
|
17
|
A Mutant RNA Polymerase Activates the General Stress Response, Enabling Escherichia coli Adaptation to Late Prolonged Stationary Phase. mSphere 2020; 5:5/2/e00092-20. [PMID: 32295870 PMCID: PMC7160681 DOI: 10.1128/msphere.00092-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
An important general mechanism of a bacterium’s adaptation to its environment involves adjusting the balance between growing fast and tolerating stresses. One paradigm where this plays out is in prolonged stationary phase: early studies showed that attenuation, but not complete elimination, of the general stress response enables early adaptation of the bacterium E. coli to the conditions established about 10 days into stationary phase. We show here that this balance is not static and that it is tilted back in favor of the general stress response about 2 weeks later. This can be established by direct mutations in the master regulator of the general stress response or by mutations in the core RNA polymerase enzyme itself. These conditions can support the development of antibiotic tolerance although the bacterium is not exposed to the antibiotic. Further exploration of the growth-stress balance over the course of stationary phase will necessarily require a deeper understanding of the events in the extracellular milieu. Escherichia coli populations undergo repeated replacement of parental genotypes with fitter variants deep in stationary phase. We isolated one such variant, which emerged after 3 weeks of maintaining an E. coli K-12 population in stationary phase. This variant displayed a small colony phenotype and slow growth and was able to outcompete its ancestor over a narrow time window in stationary phase. The variant also shows tolerance to beta-lactam antibiotics, though not previously exposed to the antibiotic. We show that an RpoC(A494V) mutation confers the slow growth and small colony phenotype on this variant. The ability of this mutation to confer a growth advantage in stationary phase depends on the availability of the stationary-phase sigma factor σS. The RpoC(A494V) mutation upregulates the σS regulon. As shown over 20 years ago, early in prolonged stationary phase, σS attenuation, but not complete loss of activity, confers a fitness advantage. Our study shows that later mutations enhance σS activity, either by mutating the gene for σS directly or via mutations such as RpoC(A494V). The balance between the activities of the housekeeping major sigma factor and σS sets up a trade-off between growth and stress tolerance, which is tuned repeatedly during prolonged stationary phase. IMPORTANCE An important general mechanism of a bacterium’s adaptation to its environment involves adjusting the balance between growing fast and tolerating stresses. One paradigm where this plays out is in prolonged stationary phase: early studies showed that attenuation, but not complete elimination, of the general stress response enables early adaptation of the bacterium E. coli to the conditions established about 10 days into stationary phase. We show here that this balance is not static and that it is tilted back in favor of the general stress response about 2 weeks later. This can be established by direct mutations in the master regulator of the general stress response or by mutations in the core RNA polymerase enzyme itself. These conditions can support the development of antibiotic tolerance although the bacterium is not exposed to the antibiotic. Further exploration of the growth-stress balance over the course of stationary phase will necessarily require a deeper understanding of the events in the extracellular milieu.
Collapse
|
18
|
Klebsiella and Providencia emerge as lone survivors following long-term starvation of oral microbiota. Proc Natl Acad Sci U S A 2019; 116:8499-8504. [PMID: 30975748 PMCID: PMC6486781 DOI: 10.1073/pnas.1820594116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well-understood that many bacteria have evolved to survive catastrophic events using a variety of mechanisms, which include expression of stress-response genes, quiescence, necrotrophy, and metabolic advantages obtained through mutation. However, the dynamics of individuals leveraging these abilities to gain a competitive advantage in an ecologically complex setting remain unstudied. In this study, we observed the saliva microbiome throughout the ecological perturbation of long-term starvation, allowing only the species best equipped to access and use the limited resources to survive. During the first several days, the community underwent a death phase that resulted in a ∼50-100-fold reduction in the number of viable cells. Interestingly, after this death phase, only three species, Klebsiella pneumoniae, Klebsiella oxytoca, and Providencia alcalifaciens, all members of the family Enterobacteriaceae, appeared to be transcriptionally active and recoverable. Klebsiella are significant human pathogens, frequently resistant to multiple antibiotics, and recently, ectopic colonization of the gut by oral Klebsiella was documented to induce dysbiosis and inflammation. MetaOmics analyses provided several leads for further investigation regarding the ecological success of the Enterobacteriaceae. The isolates accumulated single nucleotide polymorphisms in known growth advantage in stationary phase alleles and produced natural products closely resembling antimicrobial cyclic depsipeptides. The results presented in this study suggest that pathogenic Enterobacteriaceae persist much longer than their more benign neighbors in the salivary microbiome when faced with starvation. This is particularly significant, given that hospital surfaces contaminated with oral fluids, especially sinks and drains, are well-established sources of outbreaks of drug-resistant Enterobacteriaceae.
Collapse
|
19
|
Experimental Evolution of Escherichia coli K-12 at High pH and with RpoS Induction. Appl Environ Microbiol 2018; 84:AEM.00520-18. [PMID: 29802191 DOI: 10.1128/aem.00520-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022] Open
Abstract
Experimental evolution of Escherichia coli K-12 W3110 by serial dilutions for 2,200 generations at high pH extended the range of sustained growth from pH 9.0 to pH 9.3. pH 9.3-adapted isolates showed mutations in DNA-binding regulators and envelope proteins. One population showed an IS1 knockout of phoB (encoding the positive regulator of the phosphate regulon). A phoB::kanR knockout increased growth at high pH. phoB mutants are known to increase production of fermentation acids, which could enhance fitness at high pH. Mutations in pcnB [poly(A) polymerase] also increased growth at high pH. Three out of four populations showed deletions of torI, an inhibitor of TorR, which activates expression of torCAD (trimethylamine N-oxide respiration) at high pH. All populations showed point mutations affecting the stationary-phase sigma factor RpoS, either in the coding gene or in genes for regulators of RpoS expression. RpoS is required for survival at extremely high pH. In our microplate assay, rpoS deletion slightly decreased growth at pH 9.1. RpoS protein accumulated faster at pH 9 than at pH 7. The RpoS accumulation at high pH required the presence of one or more antiadaptors that block degradation (IraM, IraD, and IraP). Other genes with mutations after high-pH evolution encode regulators, such as those encoded by yobG (mgrB) (PhoPQ regulator), rpoN (nitrogen starvation sigma factor), malI, and purR, as well as envelope proteins, such as those encoded by ompT and yahO Overall, E. coli evolution at high pH selects for mutations in key transcriptional regulators, including phoB and the stationary-phase sigma factor RpoS.IMPORTANCEEscherichia coli in its native habitat encounters high-pH stress such as that of pancreatic secretions. Experimental evolution over 2,000 generations showed selection for mutations in regulatory factors, such as deletion of the phosphate regulator PhoB and mutations that alter the function of the global stress regulator RpoS. RpoS is induced at high pH via multiple mechanisms.
Collapse
|
20
|
Wytock TP, Fiebig A, Willett JW, Herrou J, Fergin A, Motter AE, Crosson S. Experimental evolution of diverse Escherichia coli metabolic mutants identifies genetic loci for convergent adaptation of growth rate. PLoS Genet 2018; 14:e1007284. [PMID: 29584733 PMCID: PMC5892946 DOI: 10.1371/journal.pgen.1007284] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/10/2018] [Accepted: 03/02/2018] [Indexed: 01/08/2023] Open
Abstract
Cell growth is determined by substrate availability and the cell’s metabolic capacity to assimilate substrates into building blocks. Metabolic genes that determine growth rate may interact synergistically or antagonistically, and can accelerate or slow growth, depending on genetic background and environmental conditions. We evolved a diverse set of Escherichia coli single-gene deletion mutants with a spectrum of growth rates and identified mutations that generally increase growth rate. Despite the metabolic differences between parent strains, mutations that enhanced growth largely mapped to core transcription machinery, including the β and β’ subunits of RNA polymerase (RNAP) and the transcription elongation factor, NusA. The structural segments of RNAP that determine enhanced growth have been previously implicated in antibiotic resistance and in the control of transcription elongation and pausing. We further developed a computational framework to characterize how the transcriptional changes that occur upon acquisition of these mutations affect growth rate across strains. Our experimental and computational results provide evidence for cases in which RNAP mutations shift the competitive balance between active transcription and gene silencing. This study demonstrates that mutations in specific regions of RNAP are a convergent adaptive solution that can enhance the growth rate of cells from distinct metabolic states. The loss of a metabolic function caused by gene deletion can be compensated, in certain cases, by the concurrent mutation of a second gene. Whether such gene pairs share a local chemical or regulatory relationship or interact via a non-local mechanism has implications for the co-evolution of genetic changes, development of alternatives to gene therapy, and the design of combination antimicrobial therapies that select against resistance. Yet, we lack a comprehensive knowledge of adaptive responses to metabolic mutations, and our understanding of the mechanisms underlying genetic rescue remains limited. We present results of a laboratory evolution approach that has the potential to address both challenges, showing that mutations in specific regions of RNA polymerase enhance growth rates of distinct mutant strains of Escherichia coli with a spectrum of growth defects. Several of these adaptive mutations are deleterious when engineered directly into the original wild-type strain under alternative cultivation conditions, and thus have epistatic rescue properties when paired with the corresponding primary metabolic gene deletions. Our combination of adaptive evolution, directed genetic engineering, and mathematical analysis of transcription and growth rate distinguishes between rescue interactions that are specific or non-specific to a particular deletion. Our study further supports a model for RNA polymerase as a locus of convergent adaptive evolution from different sub-optimal metabolic starting points.
Collapse
Affiliation(s)
- Thomas P. Wytock
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, United States of America
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Jonathan W. Willett
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Julien Herrou
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Aleksandra Fergin
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Adilson E. Motter
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, United States of America
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (AEM); (SC)
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AEM); (SC)
| |
Collapse
|
21
|
Westphal LL, Lau J, Negro Z, Moreno IJ, Ismail Mohammed W, Lee H, Tang H, Finkel SE, Kram KE. Adaptation of Escherichia coli to long-term batch culture in various rich media. Res Microbiol 2018; 169:145-156. [PMID: 29454026 DOI: 10.1016/j.resmic.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/22/2017] [Accepted: 01/23/2018] [Indexed: 12/29/2022]
Abstract
Experimental evolution studies have characterized the genetic strategies microbes utilize to adapt to their environments, mainly focusing on how microbes adapt to constant and/or defined environments. Using a system that incubates Escherichia coli in different complex media in long-term batch culture, we have focused on how heterogeneity and environment affects adaptive landscapes. In this system, there is no passaging of cells, and therefore genetic diversity is lost only through negative selection, without the experimentally-imposed bottlenecking common in other platforms. In contrast with other experimental evolution systems, because of cycling of nutrients and waste products, this is a heterogeneous environment, where selective pressures change over time, similar to natural environments. We determined that incubation in each environment leads to different adaptations by observing the growth advantage in stationary phase (GASP) phenotype. Re-sequencing whole genomes of populations identified both mutant alleles in a conserved set of genes and differences in evolutionary trajectories between environments. Reconstructing identified mutations in the parental strain background confirmed the adaptive advantage of some alleles, but also identified a surprising number of neutral or even deleterious mutations. This result indicates that complex epistatic interactions may be under positive selection within these heterogeneous environments.
Collapse
Affiliation(s)
- Lacey L Westphal
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, RRI 303, 1050 Child's Way, Los Angeles, CA, 90089-2910, USA.
| | - Jasmine Lau
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| | - Zuly Negro
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| | - Ivan J Moreno
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| | - Wazim Ismail Mohammed
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, Bloomington, IN, 47405, USA.
| | - Heewook Lee
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, GHC 7719, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
| | - Haixu Tang
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, Bloomington, IN, 47405, USA.
| | - Steven E Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, RRI 303, 1050 Child's Way, Los Angeles, CA, 90089-2910, USA.
| | - Karin E Kram
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| |
Collapse
|