1
|
Smith AC, Shrivastava A, Cartee JC, Bélanger M, Sharpe S, Lewis J, Budionno S, Gomez R, Khubbar MK, Pham CD, Gernert KM, Schmerer MW, Raphael BH, Learner ER, Kersh EN, Joseph SJ. Whole-genome sequencing resolves biochemical misidentification of Neisseria species from urogenital specimens. J Clin Microbiol 2024; 62:e0070424. [PMID: 39360841 PMCID: PMC11559007 DOI: 10.1128/jcm.00704-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Neisseria meningitidis (Nm) and Neisseria gonorrhoeae (Ng) are human pathogens that sometimes occupy the same anatomical niche. Ng, the causative agent of gonorrhea, infects 87 million individuals annually worldwide and is an urgent threat due to increasing drug resistance. Ng is a pathogen of the urogenital tract and may infect the oropharyngeal or rectal site, often asymptomatically. Conversely, Nm is an opportunistic pathogen. While often a commensal in the oropharyngeal tract, it is also the leading cause of bacterial meningitis with 1.2 million cases globally, causing significant morbidity and mortality. Horizontal gene transfer (HGT) is likely to occur between Ng and Nm due to their shared anatomical niches and genetic similarity, which poses challenges for accurate detection and treatment. Routine surveillance through the Gonococcal Isolate Surveillance Project and Strengthening the U.S. Response to Resistant Gonorrhea detected six concerning urogenital Neisseria isolates with contradicting species identification in Milwaukee (MIL). While all six isolates were positive for Ng using nucleic acid amplification testing (NAAT) and matrix-assisted laser desorption/ionization time of flight identified the isolates as Ng, two biochemical tests, Gonochek-II and API NH, classified them as Nm. To address this discrepancy, we performed whole-genome sequencing (WGS) using Illumina MiSeq on all isolates and employed various bioinformatics tools. Species detection analysis using BMScan, which uses WGS data, identified all isolates as Ng. Furthermore, Kraken revealed over 98% of WGS reads mapped to the Ng genome and <1% to Nm. Recombination analysis identified putative HGT in all MIL isolates within the γ-glutamyl transpeptidase (ggt) gene, a key component in the biochemical tests used to differentiate between Nm and Ng. Further analysis identified Nm as the source of HGT event. Specifically, the active Nm ggt gene replaced the Ng pseudogenes, ggt1 and ggt2. Together, this study demonstrates that closely related Neisseria species sharing a niche underwent HGT, which led to the misidentification of species following biochemical testing. Importantly, NAAT accurately detected Ng. The misidentification highlights the importance of using WGS to continually evaluate diagnostic or bacterial identification tests.
Collapse
Affiliation(s)
- Amanda C. Smith
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Apurva Shrivastava
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - John C. Cartee
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Myriam Bélanger
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Samera Sharpe
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Jorden Lewis
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Suzanna Budionno
- City of Milwaukee Health Department Laboratory, Milwaukee, Wisconsin, USA
| | - Raquel Gomez
- City of Milwaukee Health Department Laboratory, Milwaukee, Wisconsin, USA
| | - Manjeet K. Khubbar
- City of Milwaukee Health Department Laboratory, Milwaukee, Wisconsin, USA
| | - Neisseria gonorrhoeae Working GroupTranMike1HunSopheay1OlusegunSoge O.1HuaChi1HiattBrian1VelizKirstin1JollyLindsay2SpannMaya2KellerEric3MooreTerence3LoomisJillian3ChapelNeil3LeeBenjamin3NeffLindsay4CaseyRavyn4WagnerJenni4YoungErin4OakesonKelly F.4BaldwinTamara5WangChun5RahmanMaliha5OhBonnie5Washington State Department of Health, Washington State Regional Lab, Shoreline, Washington, USATennessee Department of Health, Tennessee Regional Lab Nashville, Nashville, Tennessee, USAMaryland Department of Health, Maryland Regional Lab, Baltimore, Maryland, USAUtah Department of Health and Human Services, Utah Public Health Laboratory, Salt Lake City, Utah, USATexas Department of State Health Services, Texas Regional Lab Austin, Austin, Texas, USA
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
- City of Milwaukee Health Department Laboratory, Milwaukee, Wisconsin, USA
| | - Cau D. Pham
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Kim M. Gernert
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Matthew W. Schmerer
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Brian H. Raphael
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Emily R. Learner
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Ellen N. Kersh
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| | - Sandeep J. Joseph
- STD Laboratory Reference and Research Branch, Division of STD Prevention, NCHHSTP, CDC, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Leong LE, Coldbeck-Shackley RC, McMillan M, Bratcher HB, Turra M, Lawrence A, Kahler C, Maiden MC, Rogers GB, Marshall H. The genomic epidemiology of Neisseria meningitidis carriage from a randomised controlled trial of 4CMenB vaccination in an asymptomatic adolescent population. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 43:100966. [PMID: 38169944 PMCID: PMC10758868 DOI: 10.1016/j.lanwpc.2023.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024]
Abstract
Background Oropharyngeal carriage of Neisseria meningitidis is frequent during adolescence, representing a major source of invasive meningococcal disease. This study examined the impact of a serogroup B vaccination (Bexsero, GSK 4CMenB) programme on adolescent N. meningitidis carriage using genomic data. Methods A total 34,489 oropharyngeal samples were collected as part of a state-wide cluster randomised-controlled trial in South Australia during 2017 and 2018 (NCT03089086). Samples were screened for the presence of N. meningitidis DNA by porA PCR prior to culture. Whole genome sequencing was performed on all 1772 N. meningitidis culture isolates and their genomes were analysed. Findings Unencapsulated meningococci were predominant at baseline (36.3% of isolates), followed by MenB (31.0%), and MenY (20.5%). Most MenB were ST-6058 from hyperinvasive cc41/44, or ST-32 and ST-2870 from cc32. For MenY, ST-23 and ST-1655 from cc23 were prevalent. Meningococcal carriage was mostly unchanged due to the vaccination programme; however, a significant reduction in ST-53 capsule-null meningococci prevalence was observed in 2018 compared to 2017 (OR = 0.52; 95% CI: 0.30-0.87, p = 0.0106). This effect was larger in the vaccinated compared to the control group (OR = 0.37; 95% CI: 0.12-0.98, p = 0.0368). Interpretation While deployment of the 4CMenB vaccination did not alter the carriage of hyperinvasive MenB in the vaccinated population, it altered the carriage of other N. meningitidis sequence types following the vaccination program. Our findings suggest 4CMenB vaccination is unlikely to reduce transmission of hyperinvasive N. meningitidis strains and therefore ongoing targeted vaccination is likely a more effective public health intervention. Funding This work was funded by GlaxoSmithKline Biologicals SA.
Collapse
Affiliation(s)
- Lex E.X. Leong
- Microbiology and Infectious Diseases, SA Pathology, Adelaide 5000, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Microbiome & Host Health, South Australian Health and Medical Research Institute, Bedford Park, 5042, Australia
| | | | - Mark McMillan
- Vaccinology and Immunology Research Trials Unit, Women’s and Children’s Health Network, Adelaide 5000, Australia
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
| | - Holly B. Bratcher
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, United Kingdom
| | - Mark Turra
- Microbiology and Infectious Diseases, SA Pathology, Adelaide 5000, Australia
| | - Andrew Lawrence
- Microbiology and Infectious Diseases, SA Pathology, Adelaide 5000, Australia
| | | | - Martin C.J. Maiden
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, United Kingdom
| | - Geraint B. Rogers
- Microbiome & Host Health, South Australian Health and Medical Research Institute, Bedford Park, 5042, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Australia
| | - Helen Marshall
- Vaccinology and Immunology Research Trials Unit, Women’s and Children’s Health Network, Adelaide 5000, Australia
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
3
|
Genetic Diversity of Meningococcal Serogroup B Vaccine Antigens among Carriage Isolates Collected from Students at Three Universities in the United States, 2015-2016. mBio 2021; 12:mBio.00855-21. [PMID: 34006659 PMCID: PMC8262942 DOI: 10.1128/mbio.00855-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Carriage evaluations were conducted during 2015 to 2016 at two U.S. universities in conjunction with the response to disease outbreaks caused by Neisseria meningitidis serogroup B and at a university where outbreak and response activities had not occurred. All eligible students at the two universities received the serogroup B meningococcal factor H binding protein vaccine (MenB-FHbp); 5.2% of students (181/3,509) at one university received MenB-4C. A total of 1,514 meningococcal carriage isolates were obtained from 8,905 oropharyngeal swabs from 7,001 unique participants. Whole-genome sequencing data were analyzed to understand MenB-FHbp’s impact on carriage and antigen genetic diversity and distribution. Of 1,422 isolates from carriers with known vaccination status (726 [51.0%] from MenB-FHbp-vaccinated, 42 [3.0%] from MenB-4C-vaccinated, and 654 [46.0%] from unvaccinated participants), 1,406 (98.9%) had intact fHbp alleles (716 from MenB-FHbp-vaccinated participants). Of 726 isolates from MenB-FHbp-vaccinated participants, 250 (34.4%) harbored FHbp peptides that may be covered by MenB-FHbp. Genogroup B was detected in 122/1,422 (8.6%) and 112/1,422 (7.9%) isolates from MenB-FHbp-vaccinated and unvaccinated participants, respectively. FHbp subfamily and peptide distributions between MenB-FHbp-vaccinated and unvaccinated participants were not statistically different. Eighteen of 161 MenB-FHbp-vaccinated repeat carriers (11.2%) acquired a new strain containing one or more new vaccine antigen peptides during multiple rounds of sample collection, which was not statistically different (P = 0.3176) from the unvaccinated repeat carriers (1/30; 3.3%). Our findings suggest that lack of MenB vaccine impact on carriage was not due to missing the intact fHbp gene; MenB-FHbp did not affect antigen genetic diversity and distribution during the study period.
Collapse
|