1
|
González-Román P, Hernández-Oaxaca D, Bustamante-Brito R, Rogel MA, Martínez-Romero E. On the Origins of Symbiotic Fungi in Carmine Cochineals and Their Function in the Digestion of Plant Polysaccharides. INSECTS 2024; 15:783. [PMID: 39452359 PMCID: PMC11508352 DOI: 10.3390/insects15100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
The cochineal insect Dactylopius coccus Costa (Hemiptera) has cultural and economic value because it produces carminic acid that is used commercially. In this study, distinct fungi were cultured from dissected tissue and identified as Penicillium, Coniochaeta, Arthrinium, Cladosporium, Microascus, Aspergillus, and Periconia. Fungi were microscopically observed inside cochineals in the gut, fat body, and ovaries. Since cochineals spend their lives attached to cactus leaves and use the sap as feed, they can obtain fungi from cacti plants. Indeed, we obtained Penicillium, Aspergillus, and Cladosporium fungi from cacti that were identical to those inside cochineals, supporting their plant origin. Fungi could be responsible for the degrading activities in the insect guts, since cellulase, pectinase, and amylase enzymatic activities in insect guts decreased in fungicide-treated cochineals. Our findings set the basis for the further study of the interactions between insects, fungi, and their host plants.
Collapse
Affiliation(s)
| | | | | | | | - Esperanza Martínez-Romero
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM Universidad SN, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
2
|
Masagué S, Fernández PC, Devescovi F, Segura DF, De La Vega GJ, Corley JC, Villacide JM, Martínez AS. Oviposition substrate location by the invasive woodwasp Sirex noctilio: the combined effect of chemical cues emitted by its obligate symbiont Amylostereum areolatum and different host-tree species. PEST MANAGEMENT SCIENCE 2023; 79:3959-3969. [PMID: 37273195 DOI: 10.1002/ps.7596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Sirex noctilio is an invasive forest wasp that affects pines and can result in severe economic losses. The use of semiochemicals offers an opportunity to develop sensitive and specific capturing systems to mitigatenegative impacts. Previous research showed that female S. noctilio would use volatiles emitted by its fungal symbiont, Amylostereum areolatum, but little is known about how these modulate behaviour when combined with pine-wood emissions. Our aim was to understand the relevance of fungal volatiles grown on artificial media and wood from two hosts trees, Pinus contorta and Pinus ponderosa, on behavioural and electroantennographic responses of wasp females. Because background odours can modify an insect's response towards resource-indicating semiochemicals, we propose that the behaviour towards the symbiont (resource) will be modulated by host pine emissions (background odours). RESULTS Olfactometric assays showed that both host species with fungus were attractive when contrasted against air (P. contorta versus Air, χ2 = 12.19, P < 0.001; P. ponderosa versus Air, χ2 = 20.60, P < 0.001) and suggest a clear hierarchy in terms of female preferences towards the tested stimuli, with response highest towards the fungus grown on P. contorta (olfactory preference index: 5.5). Electrophysiological analyses indicate that females detect 62 volatile compounds from the tested sources. CONCLUSION Results indicate a strong synergy between symbiont and host semiochemicals, suggesting that the pine species could play a fundamental role in the interaction. Further understanding of the chemical basis of this, could guide the development of specific and attractive lures, in order to maximize attraction of wasps in surveillance programmes. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Santiago Masagué
- Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias, Bariloche (INTA-CONICET), Río Negro, Argentina
| | - Patricia C Fernández
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Francisco Devescovi
- Instituto de Genética 'Ewald A. Favret' (INTA) - Grupo Vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO-CONICET), Buenos Aires, Argentina
| | - Diego F Segura
- Instituto de Genética 'Ewald A. Favret' (INTA) - Grupo Vinculado al Instituto de Agrobiotecnología y Biología Molecular (IABIMO-CONICET), Buenos Aires, Argentina
| | - Gerardo J De La Vega
- Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias, Bariloche (INTA-CONICET), Río Negro, Argentina
| | - Juan C Corley
- Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias, Bariloche (INTA-CONICET), Río Negro, Argentina
| | - José M Villacide
- Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias, Bariloche (INTA-CONICET), Río Negro, Argentina
| | - Andrés S Martínez
- Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias, Bariloche (INTA-CONICET), Río Negro, Argentina
| |
Collapse
|
3
|
Guo W, Wang W, Tang J, Li T, Li X. Genome analysis and genomic comparison of a fungal cultivar of the nonsocial weevil Euops chinensis reveals its plant decomposition and protective roles in fungus-farming mutualism. Front Microbiol 2023; 14:1048910. [PMID: 36876094 PMCID: PMC9978505 DOI: 10.3389/fmicb.2023.1048910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Fungus-farming mutualisms are models for studying co-evolutionary among species. Compared to well-documented fungus-farming in social insects, the molecular aspects of fungus-farming mutualisms in nonsocial insects have been poorly explored. Euops chinensis is a solitary leaf-rolling weevil feeding on Japanese knotweed (Fallopia japonica). This pest has evolved a special proto-farming bipartite mutualism with the fungus Penicillium herquei, which provide nutrition and defensive protection for the E. chinensis larvae. Here, the genome of P. herquei was sequenced, and the structure and specific gene categories in the P. herquei genome were then comprehensively compared with the other two well-studied Penicillium species (P. decumbens and P. chrysogenum). The assembled P. herquei genome had a 40.25 Mb genome size with 46.7% GC content. A diverse set of genes associating with carbohydrate-active enzymes, cellulose and hemicellulose degradation, transporter, and terpenoid biosynthesis were detected in the P. herquei genome. Comparative genomics demonstrate that the three Penicillium species show similar metabolic and enzymatic potential, however, P. herquei has more genes associated with plant biomass degradation and defense but less genes associating with virulence pathogenicity. Our results provide molecular evidence for plant substrate breakdown and protective roles of P. herquei in E. chinensis mutualistic system. Large metabolic potential shared by Penicillium species at the genus level may explain why some Penicillium species are recruited by the Euops weevils as crop fungi.
Collapse
Affiliation(s)
- Wenfeng Guo
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China.,Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Wei Wang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Jun Tang
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Tianyu Li
- Wuhan Benagen Technology Company Limited, Wuhan, Hubei, China
| | - Xiaoqiong Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Genome-wide comparison deciphers lifestyle adaptation and glass biodeterioration property of Curvularia eragrostidis C52. Sci Rep 2022; 12:11411. [PMID: 35794131 PMCID: PMC9259613 DOI: 10.1038/s41598-022-15334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/22/2022] [Indexed: 11/24/2022] Open
Abstract
Glass biodeterioration by fungi has caused irreversible damage to valuable glass materials such as cultural heritages and optical devices. To date, knowledge about metabolic potential and genomic profile of biodeteriorative fungi is still scarce. Here, we report for the first time the whole genome sequence of Curvularia eragrostidis C52 that strongly degraded silica-based glasses coated with fluorine and hafnium, as expressed by the hyphal surface coverage of 46.16 ± 3.3% and reduced light transmission of 50.93 ± 1.45%. The genome of C. eragrostidis C52 is 36.9 Mb long with a GC content of 52.1% and contains 14,913 protein-coding genes, which is the largest genome ever recorded in the genus Curvularia. Phylogenomic analysis revealed C. eragrostidis C52 formed a distinct cluster with Curvularia sp. IFB-Z10 and was not evolved from compared genomes. Genome-wide comparison showed that strain C52 harbored significantly higher proportion of proteins involved in carbohydrate-active enzymes, peptidases, secreted proteins, and transcriptional factors, which may be potentially attributed to a lifestyle adaptation. Furthermore, 72 genes involved in the biosynthesis of 6 different organic acids were identified and expected to be crucial for the fungal survival in the glass environment. To form biofilm against stress, the fungal strain utilized 32 genes responsible for exopolysaccharide production. These findings will foster a better understanding of the biology of C. eragrostidis and the mechanisms behind fungal biodeterioration in the future.
Collapse
|
5
|
Barcoto MO, Rodrigues A. Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Front Microbiol 2022; 13:812143. [PMID: 35685924 PMCID: PMC9171207 DOI: 10.3389/fmicb.2022.812143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities have extensively transformed the biosphere by extracting and disposing of resources, crossing boundaries of planetary threat while causing a global crisis of waste overload. Despite fundamental differences regarding structure and recalcitrance, lignocellulose and plastic polymers share physical-chemical properties to some extent, that include carbon skeletons with similar chemical bonds, hydrophobic properties, amorphous and crystalline regions. Microbial strategies for metabolizing recalcitrant polymers have been selected and optimized through evolution, thus understanding natural processes for lignocellulose modification could aid the challenge of dealing with the recalcitrant human-made polymers spread worldwide. We propose to look for inspiration in the charismatic fungal-growing insects to understand multipartite degradation of plant polymers. Independently evolved in diverse insect lineages, fungiculture embraces passive or active fungal cultivation for food, protection, and structural purposes. We consider there is much to learn from these symbioses, in special from the community-level degradation of recalcitrant biomass and defensive metabolites. Microbial plant-degrading systems at the core of insect fungicultures could be promising candidates for degrading synthetic plastics. Here, we first compare the degradation of lignocellulose and plastic polymers, with emphasis in the overlapping microbial players and enzymatic activities between these processes. Second, we review the literature on diverse insect fungiculture systems, focusing on features that, while supporting insects' ecology and evolution, could also be applied in biotechnological processes. Third, taking lessons from these microbial communities, we suggest multidisciplinary strategies to identify microbial degraders, degrading enzymes and pathways, as well as microbial interactions and interdependencies. Spanning from multiomics to spectroscopy, microscopy, stable isotopes probing, enrichment microcosmos, and synthetic communities, these strategies would allow for a systemic understanding of the fungiculture ecology, driving to application possibilities. Detailing how the metabolic landscape is entangled to achieve ecological success could inspire sustainable efforts for mitigating the current environmental crisis.
Collapse
Affiliation(s)
- Mariana O. Barcoto
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
6
|
Fu ZY, An JQ, Liu W, Zhang HP, Yang P. Genomic Analyses of the Fungus Paraconiothyrium sp. Isolated from the Chinese White Wax Scale Insect Reveals Its Symbiotic Character. Genes (Basel) 2022; 13:genes13020338. [PMID: 35205383 PMCID: PMC8872350 DOI: 10.3390/genes13020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
The Chinese white wax scale, Ericerus pela, is an insect native to China. It harbors a variety of microbes. The Paraconiothyrium fungus was isolated from E. pela and genome sequenced in this study. A fungal cytotoxicity assay was performed on the Aedes albopictus cell line C6/36. The assembled Paraconiothyrium sp. genome was 39.55 Mb and consisted of 14,174 genes. The coding sequences accounted for 50.75% of the entire genome. Functional pathway analyses showed that Paraconiothyrium sp. possesses complete pathways for the biosynthesis of 20 amino acids, 10 of which E. pela lacks. It also had complementary genes in the vitamin B groups synthesis pathways. Secondary metabolism prediction showed many gene clusters that produce polyketide. Additionally, a large number of genes associated with ‘reduced virulence’ in the genome were annotated with the Pathogen–Host Interaction database. A total of 651 genes encoding carbohydrate-active enzymes were predicted to be mostly involved in plant polysaccharide degradation. Pan-specific genomic analyses showed that genes unique to Paraconiothyrium sp. were enriched in the pathways related to amino acid metabolism and secondary metabolism. GO annotation analysis yielded similar results. The top COG categories were ‘carbohydrate transport and metabolism’, ‘lipid transport and metabolism’, and ‘secondary metabolite biosynthesis, transport and catabolism’. Phylogenetic analyses based on gene family and pan genes showed that Paraconiothyrium sp is clustered together with species from the Didymosphaeriaceae family. A multi-locus sequence analysis showed that it converged with the same branch as P. brasiliense and they formed one group with fungi from the Paraconiothyrium genus. To validate the in vitro toxicity of Paraconiothyrium sp., a cytotoxicity assay was performed. The results showed that medium-cultured Paraconiothyrium sp. had no harmful effect on cell viability. No toxins were secreted by the fungus during growth. Our results imply that Paraconiothyrium sp. may establish a symbiotic relationship with the host to supply complementary nutrition to E. pela.
Collapse
Affiliation(s)
- Zuo-Yi Fu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Jia-Qi An
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Wei Liu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Hong-Ping Zhang
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China;
| | - Pu Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
- Correspondence:
| |
Collapse
|
7
|
Fu N, Li J, Wang M, Ren L, Zong S, Luo Y. Identification and Validation of Reference Genes for Gene Expression Analysis in Different Development Stages of Amylostereum areolatum. Front Microbiol 2022; 12:827241. [PMID: 35095826 PMCID: PMC8790227 DOI: 10.3389/fmicb.2021.827241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022] Open
Abstract
A strict relationship exists between the Sirex noctilio and the Amylostereum areolatum, which is carried and spread by its partner. The growth and development of this symbiotic fungus is key to complete the life history of the Sirex woodwasp. Real-time quantitative polymerase chain reaction (RT-qPCR) is used to measure gene expression in samples of A. areolatum at different growth stages and explore the key genes and pathways involved in the growth and development of this symbiotic fungus. To obtain accurate RT-qPCR data, target genes need to be normalized by reference genes that are stably expressed under specific experimental conditions. In our study, the stability of 10 candidate reference genes in symbiotic fungal samples at different growth and development stages was evaluated using geNorm, NormFinder, BestKeeper, delta Ct methods, and RefFinder. Meanwhile, laccase1 was used to validate the stability of the selected reference gene. Under the experimental conditions of this study, p450, CYP, and γ-TUB were identified as suitable reference genes. This work is the first to systematically evaluate the reference genes for RT-qPCR results normalization during the growth of this symbiotic fungus, which lays a foundation for further gene expression experiments and understanding the symbiotic relationship and mechanism between S. noctilio and A. areolatum.
Collapse
Affiliation(s)
- Ningning Fu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Jiaxing Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Ming Wang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Conlon BH, Gostinčar C, Fricke J, Kreuzenbeck NB, Daniel JM, Schlosser MS, Peereboom N, Aanen DK, de Beer ZW, Beemelmanns C, Gunde-Cimerman N, Poulsen M. Genome reduction and relaxed selection is associated with the transition to symbiosis in the basidiomycete genus Podaxis. iScience 2021; 24:102680. [PMID: 34189441 PMCID: PMC8220239 DOI: 10.1016/j.isci.2021.102680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Insights into the genomic consequences of symbiosis for basidiomycete fungi associated with social insects remain sparse. Capitalizing on viability of spores from centuries-old herbarium specimens of free-living, facultative, and specialist termite-associated Podaxis fungi, we obtained genomes of 10 specimens, including two type species described by Linnaeus >240 years ago. We document that the transition to termite association was accompanied by significant reductions in genome size and gene content, accelerated evolution in protein-coding genes, and reduced functional capacities for oxidative stress responses and lignin degradation. Functional testing confirmed that termite specialists perform worse under oxidative stress, while all lineages retained some capacity to cleave lignin. Mitochondrial genomes of termite associates were significantly larger; possibly driven by smaller population sizes or reduced competition, supported by apparent loss of certain biosynthetic gene clusters. Our findings point to relaxed selection that mirrors genome traits observed among obligate endosymbiotic bacteria of many insects.
Collapse
Affiliation(s)
- Benjamin H. Conlon
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janis Fricke
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoll-Institute, Chemical Biology, 07745 Jena, Germany
| | - Nina B. Kreuzenbeck
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoll-Institute, Chemical Biology, 07745 Jena, Germany
| | - Jan-Martin Daniel
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoll-Institute, Chemical Biology, 07745 Jena, Germany
| | - Malte S.L. Schlosser
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Nils Peereboom
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Duur K. Aanen
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Z. Wilhelm de Beer
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoll-Institute, Chemical Biology, 07745 Jena, Germany
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
9
|
Li J, Li C, Wang M, Wang L, Liu X, Gao C, Ren L, Luo Y. Gut Structure and Microbial Communities in Sirex noctilio (Hymenoptera: Siricidae) and Their Predicted Contribution to Larval Nutrition. Front Microbiol 2021; 12:641141. [PMID: 33897646 PMCID: PMC8060704 DOI: 10.3389/fmicb.2021.641141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
The European woodwasp, Sirex noctilio Fabricius, is a major invasive quarantine pest that attacks and kills pine trees outside of its native range. Insect gut structure and gut microbiota play crucial roles in various life activities. Despite a few reports in nutrition and survival, an extensive study on the S. noctilio larval gut microbiome is lacking. We studied the gut structure using a stereo microscope and used high throughput sequencing of the bacterial 16S rRNA genes and fungal internal transcribed spacer 2 (ITS2) regions to investigate gut microbiota in different developmental stages of S. noctilio, including larvae, adults, and larval frass. We used PICRUSt2 to predict the functional profiles. The larval gut was thin and thread-like from the oral cavity to the anus, carrying few xylem particles in the crop. Pseudomonas, Ralstonia, and Burkholderia s.l were the dominant bacteria in the guts of larvae, adults, and frass, respectively. Even though Pseudomonas was the most abundant among all bacteria, Zoogloea, Ruminobacter, and Nitrosospira, which might be involved in degrading organic matter and fixing nitrogen occurred exclusively in the larval gut indicating their possible role in the growth and development of larvae in pine tree xylem. Fungal communities did not change significantly across different developmental stages or the frass. Amylostereum was dominant in the woodwasp’s larval gut. Functional prediction of bacterial and fungal communities revealed that they may encod enzymes involved in degrading lignocellulose and fixing nitrogen. Ours is the first study that compares gut microbial communities present in S. noctilio larvae, adults, and frass. This study could provide an understanding of larval nutrient acquisition in nutrient-deficient host xylem to some extent. Our study may unlock novel strategies for the development of pest management approaches based on interfering with the gut microbiota and restricting their role in larval survival and development.
Collapse
Affiliation(s)
- Jiale Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Chengcheng Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Ming Wang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Lixiang Wang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Xiaobo Liu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Chenglong Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China.,Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China.,Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing, China
| |
Collapse
|
10
|
Li H, Young SE, Poulsen M, Currie CR. Symbiont-Mediated Digestion of Plant Biomass in Fungus-Farming Insects. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:297-316. [PMID: 32926791 DOI: 10.1146/annurev-ento-040920-061140] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Feeding on living or dead plant material is widespread in insects. Seminal work on termites and aphids has provided profound insights into the critical nutritional role that microbes play in plant-feeding insects. Some ants, beetles, and termites, among others, have evolved the ability to use microbes to gain indirect access to plant substrate through the farming of a fungus on which they feed. Recent genomic studies, including studies of insect hosts and fungal and bacterial symbionts, as well as metagenomics and proteomics, have provided important insights into plant biomass digestion across insect-fungal mutualisms. Not only do advances in understanding of the divergent and complementary functions of complex symbionts reveal the mechanism of how these herbivorous insects catabolize plant biomass, but these symbionts also represent a promising reservoir for novel carbohydrate-active enzyme discovery, which is of considerable biotechnological interest.
Collapse
Affiliation(s)
- Hongjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; ,
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| | - Soleil E Young
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; ,
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark;
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; ,
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| |
Collapse
|
11
|
Genes Identification, Molecular Docking and Dynamics Simulation Analysis of Laccases from Amylostereum areolatum Provides Molecular Basis of Laccase Bound to Lignin. Int J Mol Sci 2020; 21:ijms21228845. [PMID: 33266512 PMCID: PMC7700495 DOI: 10.3390/ijms21228845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022] Open
Abstract
An obligate mutualistic relationship exists between the fungus Amylostereum areolatum and woodwasp Sirex noctilio. The fungus digests lignin in the host pine, providing essential nutrients for the growing woodwasp larvae. However, the functional properties of this symbiosis are poorly described. In this study, we identified, cloned, and characterized 14 laccase genes from A. areolatum. These genes encoded proteins of 508 to 529 amino acids and contained three typical copper-oxidase domains, necessary to confer laccase activity. Besides, we performed molecular docking and dynamics simulation of the laccase proteins in complex with lignin compounds (monomers, dimers, trimers, and tetramers). AaLac2, AaLac3, AaLac6, AaLac8, and AaLac10 were found that had low binding energies with all lignin model compounds tested and three of them could maintain stability when binding to these compounds. Among these complexes, amino acid residues ALA, GLN, LEU, PHE, PRO, and SER were commonly present. Our study reveals the molecular basis of A. areolatum laccases interacting with lignin, which is essential for understanding how the fungus provides nutrients to S. noctilio. These findings might also provide guidance for the control of S. noctilio by informing the design of enzyme mutants that could reduce the efficiency of lignin degradation.
Collapse
|