1
|
Böttcher L, Fonseca LL, Laubenbacher RC. Control of medical digital twins with artificial neural networks. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2025; 383:20240228. [PMID: 40078154 PMCID: PMC11904622 DOI: 10.1098/rsta.2024.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 03/14/2025]
Abstract
The objective of precision medicine is to tailor interventions to an individual patient's unique characteristics. A key technology for this purpose involves medical digital twins, computational models of human biology that can be personalized and dynamically updated to incorporate patient-specific data. Certain aspects of human biology, such as the immune system, are not easily captured with physics-based models, such as differential equations. Instead, they are often multi-scale, stochastic and hybrid. This poses a challenge to existing control and optimization approaches that cannot be readily applied to such models. Recent advances in neural-network control methods hold promise in addressing complex control problems. However, the application of these approaches to biomedical systems is still in its early stages. This work employs dynamics-informed neural-network controllers as an alternative approach to control of medical digital twins. As a first use case, we focus on the control of agent-based models (ABMs), a versatile and increasingly common modelling platform in biomedicine. The effectiveness of the proposed neural-network control methods is illustrated and benchmarked against other methods with two widely used ABMs. To account for the inherent stochastic nature of the ABMs we aim to control, we quantify uncertainty in relevant model and control parameters.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.
Collapse
Affiliation(s)
- Lucas Böttcher
- Department of Computational Science and Philosophy, Frankfurt School of Finance and Management, Frankfurt am Main60322, Germany
- Department of Medicine, Laboratory for Systems Medicine, University of Florida, Gainesville, FL, USA
| | - Luis L. Fonseca
- Department of Medicine, Laboratory for Systems Medicine, University of Florida, Gainesville, FL, USA
| | - Reinhard C. Laubenbacher
- Department of Medicine, Laboratory for Systems Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Sangha JS, Gogulancea V, Curtis TP, Jakubovics NS, Barrett P, Metris A, Ofiţeru ID. Advancing dental biofilm models: the integral role of pH in predicting S. mutans colonization. mSphere 2025; 10:e0074324. [PMID: 39660862 PMCID: PMC11774048 DOI: 10.1128/msphere.00743-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Mathematical models can provide insights into complex interactions and dynamics within microbial communities to complement and extend experimental laboratory approaches. For dental biofilms, they can give a basis for evaluating biofilm growth or the transition from health to disease. We have developed mathematical models to simulate the transition toward a cariogenic microbial biofilm, modeled as the overgrowth of Streptococcus mutans within a five-species dental community. This work builds on experimental data from a continuous flow reactor with hydroxyapatite coupons for biofilm growth, in a chemically defined medium with varying concentrations of glucose and lactic acid. The biofilms formed on the coupons were simulated using individual-based models (IbMs), with bacterial growth modeled using experimentally measured kinetic parameters. The IbM assumes that the maximum theoretical growth yield for biomass is dependent on the local concentration of reactants and products, while the growth rates were described using traditional Monod equations. We have simulated all the conditions studied experimentally, considering different initial relative abundance of the five species, and also different initial clustering in the biofilm. The simulation results only reproduced the experimental dominance of S. mutans at high glucose concentration after we considered the species-specific effect of pH on growth rates. This highlights the significance of the aciduric property of S. mutans in the development of caries. Our study demonstrates the potential of combining in vitro and in silico studies to gain a new understanding of the factors that influence dental biofilm dynamics.IMPORTANCEWe have developed in silico models able to reproduce the relative abundance measured in vitro in the synthetic dental biofilm communities growing in a chemically defined medium. The advantage of this combination of in vitro and in silico models is that we can study the influence of one parameter at a time and aim for direct validation. Our work demonstrates the utility of individual-based models for simulating diverse conditions affecting dental biofilm scenarios, such as the frequency of glucose intake, sucrose pulsing, or integration of pathogenic or probiotic species. Although in silico models are reductionist approaches, they have the advantage of not being limited in the scenarios they can test by the ethical consideration of an in vivo system, thus significantly contributing to dental biofilm research.
Collapse
Affiliation(s)
- Jay S. Sangha
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Valentina Gogulancea
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas P. Curtis
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicholas S. Jakubovics
- Faculty of Medical Sciences, Newcastle University, School of Dental Sciences, Newcastle upon Tyne, United Kingdom
| | - Paul Barrett
- Safety and Environmental Assurance Centre, Unilever, Bedfordshire, United Kingdom
| | - Aline Metris
- Safety and Environmental Assurance Centre, Unilever, Bedfordshire, United Kingdom
| | - Irina D. Ofiţeru
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Yamamoto Y, Yamamoto T, Miyamoto N, Kinoshita K, Nishikawa S, Adachi T, Takizawa S, Inoue R, Matoba S, Kanamura N. Oral Function and the Oral Microbiome in the Elderly in the Kyotango Area. Dent J (Basel) 2024; 12:16. [PMID: 38248224 PMCID: PMC10814942 DOI: 10.3390/dj12010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION Prevention of tooth loss contributes to an extended life expectancy, namely longevity. Aging-related oral hypofunction, including tooth loss, markedly increases the risks of functional disorder and mortality. Dysbiosis of the oral microbiome has recently been associated with various diseases, such as liver cirrhosis, pancreatic cancer, colorectal cancer, and inflammatory bowel disease. Therefore, the relationship between the oral microbiome and systemic health has been attracting increasing attention. In the present study, we examined oral function and the oral microbiome in the elderly in a world-leading longevity area. MATERIALS AND METHODS An oral examination, chewing ability/tongue-lip motor function/saliva tests, and a metagenomic analysis with a 16S rRNA gene-targeting next-generation sequencer were conducted on 78 subjects aged ≥80 years. Twenty-six healthy individuals aged between 20 and 39 years were also investigated as controls. The data obtained were statistically analyzed. The protocol of the present study was approved by the Ethics Review Board of our university (ERB-C-885). RESULTS Chewing ability, tongue-lip motor function, and saliva volume were normal in elderly subjects with a current tooth number ≥20, but were significantly lower in those with a current tooth number <20. The oral microbiome in elderly subjects with a current tooth number ≥20 and young controls differed from that in elderly subjects with a current tooth number <20. CONCLUSION Tooth number ≥20 in elderly subjects in the longevity area contributed to the maintenance of both oral function and the diversity of the oral microbiome.
Collapse
Affiliation(s)
- Yoshiaki Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.Y.); (N.M.); (K.K.); (S.N.); (T.A.); (S.T.); (N.K.)
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.Y.); (N.M.); (K.K.); (S.N.); (T.A.); (S.T.); (N.K.)
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.Y.); (N.M.); (K.K.); (S.N.); (T.A.); (S.T.); (N.K.)
| | - Kohei Kinoshita
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.Y.); (N.M.); (K.K.); (S.N.); (T.A.); (S.T.); (N.K.)
| | - Satomi Nishikawa
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.Y.); (N.M.); (K.K.); (S.N.); (T.A.); (S.T.); (N.K.)
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.Y.); (N.M.); (K.K.); (S.N.); (T.A.); (S.T.); (N.K.)
| | - Shigeta Takizawa
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.Y.); (N.M.); (K.K.); (S.N.); (T.A.); (S.T.); (N.K.)
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka 572-8508, Japan;
| | - Satoaki Matoba
- Department of Longevity and Regional Epidemiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.Y.); (N.M.); (K.K.); (S.N.); (T.A.); (S.T.); (N.K.)
| |
Collapse
|
4
|
Chen JF, Hsia KC, Kuo YW, Chen SH, Huang YY, Li CM, Hsu YC, Tsai SY, Ho HH. Safety Assessment and Probiotic Potential Comparison of Bifidobacterium longum subsp. infantis BLI-02, Lactobacillus plantarum LPL28, Lactobacillus acidophilus TYCA06, and Lactobacillus paracasei ET-66. Nutrients 2023; 16:126. [PMID: 38201957 PMCID: PMC10780348 DOI: 10.3390/nu16010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Bifidobacterium longum subsp. infantis BLI-02, Lactobacillus paracasei ET-66, Lactobacillus plantarum LPL28, and Lactobacillus acidophilus TYCA06, isolated from healthy breast milk, miso, and the healthy human gut, were assessed for safety in this study. BLI-02, LPL28, TYCA06, and ET-66 exhibited no antibiotic resistance and mutagenic activity in the Ames test at the highest dosage (5000 μg/plate). No genotoxicity was observed in micronucleus and chromosomal aberration assays in rodent spermatogonia at the maximum dosage of 10 g/kg body weight (BW). No acute and sub-chronic toxicity occurred in mice and rats at the maximum tested dosage of 10 g/kg BW and 1.5 g/kg BW, respectively. The lyophilized powder of these strains survived a low pH and high bile salt environment, adhering strongly to Caco-2 cells. Unique antimicrobial activities were noted in these strains, with BLI-02 demonstrating the best growth inhibition against Vibrio parahaemolyticus, LPL28 exhibiting the best growth inhibition against Helicobacter pylori, and ET-66 showing the best growth inhibition against Aggregatibacter actinomycetemcomitans. Based on the present study, the lyophilized powder of these four strains appears to be a safe probiotic supplement at tested dosages. It should be applicable for clinical or healthcare applications.
Collapse
Affiliation(s)
- Jui-Fen Chen
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Ko-Chiang Hsia
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Yi-Wei Kuo
- Functional Investigation Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan;
| | - Shu-Hui Chen
- Process Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan;
| | - Yen-Yu Huang
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Ching-Min Li
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Yu-Chieh Hsu
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Shin-Yu Tsai
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Hsieh-Hsun Ho
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
- Functional Investigation Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan;
- Process Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan;
| |
Collapse
|