1
|
Tadele G, Jaiteh FK, Oboh M, Oriero E, Dugassa S, Amambua-Ngwa A, Golassa L. Low genetic diversity of Plasmodium falciparum merozoite surface protein 1 and 2 and multiplicity of infections in western Ethiopia following effective malaria interventions. Malar J 2022; 21:383. [PMID: 36522733 PMCID: PMC9753253 DOI: 10.1186/s12936-022-04394-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Genetic diversity of malaria parasites can inform the intensity of transmission and poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity would provide essential information about the ongoing control efforts. This study aimed to explore allelic polymorphism of merozoite surface protein 1 (msp1) and merozoite surface protein 2 (msp2) to determine the genetic diversity and multiplicity of Plasmodium falciparum infections circulating in high and low transmission sites in western Ethiopia. METHODS Parasite genomic DNA was extracted from a total of 225 dried blood spots collected from confirmed uncomplicated P. falciparum malaria-infected patients in western Ethiopia. Of these, 72.4% (163/225) and 27.6% (62/225) of the samples were collected in high and low transmission areas, respectively. Polymorphic msp1 and msp2 genes were used to explore the genetic diversity and multiplicity of falciparum malaria infections. Genotyping of msp1 was successful in 86.5% (141/163) and 88.7% (55/62) samples collected from high and low transmission areas, respectively. Genotyping of msp2 was carried out among 85.3% (139/163) and 96.8% (60/62) of the samples collected in high and low transmission sites, respectively. Plasmodium falciparum msp1 and msp2 genes were amplified by nested PCR and the PCR products were analysed by QIAxcel ScreenGel Software. A P-value of less or equal to 0.05 was considered significant. RESULTS High prevalence of falciparum malaria was identified in children less than 15 years as compared with those ≥ 15 years old (AOR = 2.438, P = 0.005). The three allelic families of msp1 (K1, MAD20, and RO33) and the two allelic families of msp2 (FC27 and 3D7), were observed in samples collected in high and low transmission areas. However, MAD 20 and FC 27 alleles were the predominant allelic families in both settings. Plasmodium falciparum isolates circulating in western Ethiopia had low genetic diversity and mean MOI. No difference in mean MOI between high transmission sites (mean MOI 1.104) compared with low transmission area (mean MOI 1.08) (p > 0.05). The expected heterozygosity of msp1 was slightly higher in isolates collected from high transmission sites (He = 0.17) than in those isolates from low transmission (He = 0.12). However, the heterozygosity of msp2 was not different in both settings (Pfmsp2: 0.04 in high transmission; pfmsp2: 0.03 in low transmission). CONCLUSION Plasmodium falciparum from clinical malaria cases in western Ethiopia has low genetic diversity and multiplicity of infection irrespective of the intensity of transmission at the site of sampling. These may be signaling the effectiveness of malaria control strategies in Ethiopia; although further studies are required to determine how specific intervention strategies and other parameters that drive the pattern.
Collapse
Affiliation(s)
- Geletta Tadele
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Fatou K Jaiteh
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Serrekunda, The Gambia
| | - Mary Oboh
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Serrekunda, The Gambia
| | - Eniyou Oriero
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Serrekunda, The Gambia
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Serrekunda, The Gambia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Rougeron V, Boundenga L, Arnathau C, Durand P, Renaud F, Prugnolle F. A population genetic perspective on the origin, spread and adaptation of the human malaria agents Plasmodium falciparum and Plasmodium vivax. FEMS Microbiol Rev 2021; 46:6373923. [PMID: 34550355 DOI: 10.1093/femsre/fuab047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
Malaria is considered one of the most important scourges that humanity has faced during its history, being responsible every year for numerous deaths worldwide. The disease is caused by protozoan parasites, among which two species are responsible of the majority of the burden, Plasmodium falciparum and Plasmodium vivax. For these two parasite species, the questions of their origin (how and when they appeared in humans), of their spread throughout the world, as well as how they have adapted to humans have long been of interest to the scientific community. Here, we review the current knowledge that has accumulated on these different questions, thanks in particular to the analysis of the genetic and genomic variability of these parasites and comparison with related Plasmodium species infecting other host species (like non-human primates). In this paper we review the existing body of knowledge, including current research dealing with these questions, focusing particularly on genetic analysis and genomic variability of these parasites and comparison with related Plasmodium species infecting other species of host (such as non-human primates).
Collapse
Affiliation(s)
- Virginie Rougeron
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Larson Boundenga
- CIRMF, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Céline Arnathau
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Patrick Durand
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - François Renaud
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Franck Prugnolle
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| |
Collapse
|
3
|
Patino LH, Castillo-Castañeda A, Muñoz M, Muskus C, Rivero-Rodríguez M, Pérez-Doria A, Bejarano EE, Ramírez JD. Revisiting the heterogeneous global genomic population structure of Leishmania infantum. Microb Genom 2021; 7. [PMID: 34491157 PMCID: PMC8715437 DOI: 10.1099/mgen.0.000640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leishmania infantum is the main causative agent responsible for visceral leishmaniasis (VL), a disease with global distribution. The genomic structure and genetic variation of this species have been widely studied in different parts of the world. However, in some countries, this information is still yet unknown, as is the genomic behaviour of the main antigens used in VL diagnosis (rK39 and rK28), which have demonstrated variable sensitivity and specificity in a manner dependent on the geographic region analysed. The objective of this study was to explore the genomic architecture and diversity of four Colombian L. infantum isolates obtained in this study and to compare these results with the genetic analysis of 183 L. infantum isolates from across the world (obtained from public databases), as well as to analyse the whole rK39 and rK28 antigen sequences in our dataset. The results showed that, at the global level, L. infantum has high genetic homogeneity and extensive aneuploidy. Furthermore, we demonstrated that there are distinct populations of L. infantum circulating in various countries throughout the globe and that populations of distant countries have close genomic relationships. Additionally, this study demonstrated the high genetic variability of the rK28 antigen worldwide. In conclusion, our study allowed us to (i) expand our knowledge of the genomic structure of global L. infantum; (ii) describe the intra-specific genomic variability of this species; and (iii) understand the genomic characteristics of the main antigens used in the diagnosis of VL. Additionally, this is the first study to report whole-genome sequences of Colombian L. infantum isolates.
Collapse
Affiliation(s)
- Luz H Patino
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Adriana Castillo-Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Muskus
- Programa de Estudios y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Matilde Rivero-Rodríguez
- Grupo de Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia.,Candidata a doctor en Medicina Tropical, Universidad de Cartagena-SUE Caribe, Colombia
| | - Alveiro Pérez-Doria
- Grupo de Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia
| | - Eduar E Bejarano
- Grupo de Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
4
|
Pegoraro M, Weedall GD. Malaria in the 'Omics Era'. Genes (Basel) 2021; 12:843. [PMID: 34070769 PMCID: PMC8228830 DOI: 10.3390/genes12060843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Genomics has revolutionised the study of the biology of parasitic diseases. The first Eukaryotic parasite to have its genome sequenced was the malaria parasite Plasmodium falciparum. Since then, Plasmodium genomics has continued to lead the way in the study of the genome biology of parasites, both in breadth-the number of Plasmodium species' genomes sequenced-and in depth-massive-scale genome re-sequencing of several key species. Here, we review some of the insights into the biology, evolution and population genetics of Plasmodium gained from genome sequencing, and look at potential new avenues in the future genome-scale study of its biology.
Collapse
Affiliation(s)
| | - Gareth D. Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|