1
|
Bortolucci J, Guazzaroni ME, Schoch T, Dürre P, Reginatto V. Enhancing 1,3-Propanediol Productivity in the Non-Model Chassis Clostridium beijerinckii through Genetic Manipulation. Microorganisms 2023; 11:1855. [PMID: 37513028 PMCID: PMC10383064 DOI: 10.3390/microorganisms11071855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Biotechnological processes at biorefineries are considered one of the most attractive alternatives for valorizing biomasses by converting them into bioproducts, biofuels, and bioenergy. For example, biodiesel can be obtained from oils and grease but generates glycerol as a byproduct. Glycerol recycling has been studied in several bioprocesses, with one of them being its conversion to 1,3-propanediol (1,3-PDO) by Clostridium. Clostridium beijerinckii is particularly interesting because it can produce a range of industrially relevant chemicals, including solvents and organic acids, and it is non-pathogenic. However, while Clostridium species have many potential advantages as chassis for synthetic biology applications, there are significant limitations when considering their use, such as their limited genetic tools, slow growth rate, and oxygen sensitivity. In this work, we carried out the overexpression of the genes involved in the synthesis of 1,3-PDO in C. beijerinckii Br21, which allowed us to increase the 1,3-PDO productivity in this strain. Thus, this study contributed to a better understanding of the metabolic pathways of glycerol conversion to 1,3-PDO by a C. beijerinckii isolate. Also, it made it possible to establish a transformation method of a modular vector in this strain, therefore expanding the limited genetic tools available for this bacterium, which is highly relevant in biotechnological applications.
Collapse
Affiliation(s)
- Jonatã Bortolucci
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto 14040-030, SP, Brazil
| | - María-Eugenia Guazzaroni
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto 14040-030, SP, Brazil
| | - Teresa Schoch
- Institut für Mikrobiologie und Biotechnologie, Universität Ulm, Albert-Einstein-Allee, 11, D-89081 Ulm, Germany
| | - Peter Dürre
- Institut für Mikrobiologie und Biotechnologie, Universität Ulm, Albert-Einstein-Allee, 11, D-89081 Ulm, Germany
| | - Valeria Reginatto
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto 14040-030, SP, Brazil
| |
Collapse
|
2
|
Sheridan PO, Odat MA, Scott KP. Establishing genetic manipulation for novel strains of human gut bacteria. MICROBIOME RESEARCH REPORTS 2023; 2:1. [PMID: 38059211 PMCID: PMC10696588 DOI: 10.20517/mrr.2022.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 12/12/2022] [Indexed: 12/08/2023]
Abstract
Recent years have seen the development of high-accuracy and high-throughput genetic manipulation techniques, which have greatly improved our understanding of genetically tractable microbes. However, challenges remain in establishing genetic manipulation techniques in novel organisms, owing largely to exogenous DNA defence mechanisms, lack of selectable markers, lack of efficient methods to introduce exogenous DNA and an inability of genetic vectors to replicate in their new host. In this review, we describe some of the techniques that are available for genetic manipulation of novel microorganisms. While many reviews exist that focus on the final step in genetic manipulation, the editing of recipient DNA, we particularly focus on the first step in this process, the transfer of exogenous DNA into a strain of interest. Examples illustrating the use of these techniques are provided for a selection of human gut bacteria in which genetic tractability has been established, such as Bifidobacterium, Bacteroides and Roseburia. Ultimately, this review aims to provide an information source for researchers interested in developing genetic manipulation techniques for novel bacterial strains, particularly those of the human gut microbiota.
Collapse
Affiliation(s)
- Paul O. Sheridan
- School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Ma’en Al Odat
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| | - Karen P. Scott
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK
| |
Collapse
|
3
|
Rostain W, Zaplana T, Boutard M, Baum C, Tabuteau S, Sanitha M, Ramya M, Guss A, Ettwiller L, Tolonen AC. Tuning of Gene Expression in Clostridium phytofermentans Using Synthetic Promoters and CRISPRi. ACS Synth Biol 2022; 11:4077-4088. [PMID: 36427328 PMCID: PMC9765743 DOI: 10.1021/acssynbio.2c00385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/27/2022]
Abstract
Control of gene expression is fundamental to cell engineering. Here we demonstrate a set of approaches to tune gene expression in Clostridia using the model Clostridium phytofermentans. Initially, we develop a simple benchtop electroporation method that we use to identify a set of replicating plasmids and resistance markers that can be cotransformed into C. phytofermentans. We define a series of promoters spanning a >100-fold expression range by testing a promoter library driving the expression of a luminescent reporter. By insertion of tet operator sites upstream of the reporter, its expression can be quantitatively altered using the Tet repressor and anhydrotetracycline (aTc). We integrate these methods into an aTc-regulated dCas12a system with which we show in vivo CRISPRi-mediated repression of reporter and fermentation genes in C. phytofermentans. Together, these approaches advance genetic transformation and experimental control of gene expression in Clostridia.
Collapse
Affiliation(s)
- William Rostain
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
| | - Tom Zaplana
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
| | - Magali Boutard
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
| | - Chloé Baum
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
- New
England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Sibylle Tabuteau
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
| | - Mary Sanitha
- Molecular
Genetics Laboratory, Department of Genetic Engineering, College of
Engineering and Technology, SRM Institute
of Science and Technology, SRM Nagar, Kattankulathur-603 203, TN, India
| | - Mohandass Ramya
- Molecular
Genetics Laboratory, Department of Genetic Engineering, College of
Engineering and Technology, SRM Institute
of Science and Technology, SRM Nagar, Kattankulathur-603 203, TN, India
| | - Adam Guss
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6038, United States
| | - Laurence Ettwiller
- New
England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938, United States
| | - Andrew C. Tolonen
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
| |
Collapse
|
4
|
d-Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile. J Bacteriol 2022; 204:e0022922. [PMID: 35862761 PMCID: PMC9380539 DOI: 10.1128/jb.00229-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Clostridioides difficile is a nosocomial pathogen that colonizes the gut and causes diarrhea, colitis, and severe inflammation. Recently, C. difficile has been shown to use toxin-mediated inflammation to promote host collagen degradation, which releases several amino acids into the environment. Amino acids act as electron donors and acceptors in Stickland metabolism, an anaerobic process involving redox reactions between pairs of amino acids. Proline, glycine, and hydroxyproline are the three main constituents of collagen and are assumed to act as electron acceptors, but their exact effects on the growth and physiology of C. difficile are still unclear. Using three standard culture media (supplemented brain heart infusion [BHIS], tryptone-yeast [TY], and C. difficile minimal medium [CDMM]) supplemented with proline, glycine, or hydroxyproline, we grew C. difficile strains R20291, JIR8094, and a panel of mutants unable to express the Stickland selenoenzymes d-proline reductase and glycine reductase. In the wild-type strains, growth yields in rich media (BHIS and TY) were higher with proline and hydroxyproline but not glycine; moreover, proline-stimulated growth yields required the activity of d-proline reductase, whereas hydroxyproline-stimulated growth yields were independent of its activity. While assumed to be a proline auxotroph, C. difficile could surprisingly grow in a defined medium (CDMM) without proline but only if d-proline reductase was absent. We believe the mere presence of this enzyme ultimately determines the organism's strict dependence on proline and likely defines the bioenergetic priorities for thriving in the host. Finally, we demonstrated that addition of proline and hydroxyproline to the culture medium could reduce toxin production but not in cells lacking selenoproteins. IMPORTANCE Stickland metabolism is a core facet of C. difficile physiology that likely plays a major role in host colonization. Here, we carefully delineate the effects of each amino acid on the growth of C. difficile with respect to the selenoenzymes d-proline reductase and glycine reductase. Moreover, we report that d-proline reductase forces C. difficile to strictly depend on proline for growth. Finally, we provide evidence that proline and hydroxyproline suppress toxin production and that selenoproteins are involved in this mechanism. Our findings highlight the significance of selenium-dependent Stickland reactions and may provide insight on what occurs during host infection, especially as it relates to the decision to colonize based on proline as a nutrient.
Collapse
|
5
|
Krause AL, Stinear TP, Monk IR. Barriers to genetic manipulation of Enterococci: Current Approaches and Future Directions. FEMS Microbiol Rev 2022; 46:6650352. [PMID: 35883217 PMCID: PMC9779914 DOI: 10.1093/femsre/fuac036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecalis and Enterococcus faecium are Gram-positive commensal gut bacteria that can also cause fatal infections. To study clinically relevant multi-drug resistant E. faecalis and E. faecium strains, methods are needed to overcome physical (thick cell wall) and enzymatic barriers that limit the transfer of foreign DNA and thus prevent facile genetic manipulation. Enzymatic barriers to DNA uptake identified in E. faecalis and E. faecium include type I, II and IV restriction modification systems and CRISPR-Cas. This review examines E. faecalis and E. faecium DNA defence systems and the methods with potential to overcome these barriers. DNA defence system bypass will allow the application of innovative genetic techniques to expedite molecular-level understanding of these important, but somewhat neglected, pathogens.
Collapse
Affiliation(s)
- Alexandra L Krause
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia
| | - Ian R Monk
- Corresponding author: Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia. E-mail:
| |
Collapse
|
6
|
The selenophosphate synthetase, selD, is important for Clostridioides difficile physiology. J Bacteriol 2021; 203:e0000821. [PMID: 33820795 DOI: 10.1128/jb.00008-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The endospore-forming pathogen, Clostridioides difficile, is the leading cause of antibiotic-associated diarrhea and is a significant burden on the community and healthcare. C. difficile, like all forms of life, incorporates selenium into proteins through a selenocysteine synthesis pathway. The known selenoproteins in C. difficile are involved in a metabolic process that uses amino acids as the sole carbon and nitrogen source (Stickland metabolism). The Stickland metabolic pathway requires the use of two selenium-containing reductases. In this study, we built upon our initial characterization of the CRISPR-Cas9-generated selD mutant by creating a CRISPR-Cas9-mediated restoration of the selD gene at the native locus. Here, we use these CRISPR-generated strains to analyze the importance of selenium-containing proteins on C. difficile physiology. SelD is the first enzyme in the pathway for selenoprotein synthesis and we found that multiple aspects of C. difficile physiology were affected (e.g., growth, sporulation, and outgrowth of a vegetative cell post-spore germination). Using RNAseq, we identified multiple candidate genes which likely aid the cell in overcoming the global loss of selenoproteins to grow in medium which is favorable for using Stickland metabolism. Our results suggest that the absence of selenophosphate (i.e., selenoprotein synthesis) leads to alterations to C. difficile physiology so that NAD+ can be regenerated by other pathways.Importance C. difficile is a Gram-positive, anaerobic gut pathogen which infects thousands of individuals each year. In order to stop the C. difficile lifecycle, other non-antibiotic treatment options are in urgent need of development. Towards this goal, we find that a metabolic process used by only a small fraction of the microbiota is important for C. difficile physiology - Stickland metabolism. Here, we use our CRISPR-Cas9 system to 'knock in' a copy of the selD gene into the deletion strain to restore selD at its native locus. Our findings support the hypothesis that selenium-containing proteins are important for several aspects of C. difficile physiology - from vegetative growth to spore formation and outgrowth post-germination.
Collapse
|