1
|
Kang MJ, Kim DK. Synergistic antimicrobial action of chlorogenic acid and ultraviolet-A (365 nm) irradiation; mechanisms and effects on DNA integrity. Food Res Int 2024; 196:115132. [PMID: 39614588 DOI: 10.1016/j.foodres.2024.115132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 12/01/2024]
Abstract
Chlorogenic acid (CGA) is abundant in various plants and notably in coffee beans. This study investigated the bactericidal activity of CGA combined with ultraviolet-A light (UVA, 365 nm) (CGA + UVA) against Escherichia coli DH5α, with the aim of developing novel strategies for food preservation and healthcare. CGA + UVA treatment was superiorin reducing bacterial survival than either treatment alone. At 20 J/cm2 and pH 7, CGA (0.3%) + UVA treatment resulted in only about a 3-log reduction in bacterial survival, whereas at 15 J/cm2 and pH 3, no surviving bacteria could be detected, demostrating that the treatment was more effective at acidic pH. CGA + UVA treatment was also bactericidal in green plum juice, confirming that its low pH-dependent property could be effective in acidic food products. To elucidate the bactericidal mechanism of CGA + UVA treatment, its effects on reactive oxygen species (ROS) generation, membrane integrity, and enzyme activity were measured. ROS generated via the type-1 reaction, such as hydrogen peroxide (H2O2) and hydroxyl radicals (·OH), were mainly detected. CGA + UVA disrupted the bacterial cell membrane, causing the leakage of cellular components, particularly proteins. CGA + UVA treatment also led to deoxyribonucleic acid (DNA) degradation and reduced succinate-coenzyme Q reductase activity by approximately 72 %. Furthermore, CGA + UVA treatment decreased β-lactamase activity and plasmid transforming efficacy with maximal reductions of 68 % and 98 %, respectively, highlighting its potential for increasing antibiotic susceptibility and preventing the spread of antimicrobial resistance. The results demonstrate that CGA + UVA treatment could be used to effectively combat antibiotic-resistant bacteria and prevent the spoilage of preserved foods or food poisoning.
Collapse
Affiliation(s)
- Min-Ju Kang
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Kyun Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Soria S, Carreón-Rodríguez OE, de Anda R, Flores N, Escalante A, Bolívar F. Transcriptional and Metabolic Response of a Strain of Escherichia coli PTS - to a Perturbation of the Energetic Level by Modification of [ATP]/[ADP] Ratio. BIOTECH 2024; 13:10. [PMID: 38651490 PMCID: PMC11036233 DOI: 10.3390/biotech13020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
The intracellular [ATP]/[ADP] ratio is crucial for Escherichia coli's cellular functions, impacting transport, phosphorylation, signaling, and stress responses. Overexpression of F1-ATPase genes in E. coli increases glucose consumption, lowers energy levels, and triggers transcriptional responses in central carbon metabolism genes, particularly glycolytic ones, enhancing carbon flux. In this contribution, we report the impact of the perturbation of the energetic level in a PTS- mutant of E. coli by modifying the [ATP]/[ADP] ratio by uncoupling the cytoplasmic activity of the F1 subunit of the ATP synthase. The disruption of [ATP]/[ADP] ratio in the evolved strain of E. coli PB12 (PTS-) was achieved by the expression of the atpAGD operon encoding the soluble portion of ATP synthase F1-ATPase (strain PB12AGD+). The analysis of the physiological and metabolic response of the PTS- strain to the ATP disruption was determined using RT-qPCR of 96 genes involved in glucose and acetate transport, glycolysis and gluconeogenesis, pentose phosphate pathway (PPP), TCA cycle and glyoxylate shunt, several anaplerotic, respiratory chain, and fermentative pathways genes, sigma factors, and global regulators. The apt mutant exhibited reduced growth despite increased glucose transport due to decreased energy levels. It heightened stress response capabilities under glucose-induced energetic starvation, suggesting that the carbon flux from glycolysis is distributed toward the pentose phosphate and the Entner-Duodoroff pathway with the concomitant. Increase acetate transport, production, and utilization in response to the reduction in the [ATP]/[ADP] ratio. Upregulation of several genes encoding the TCA cycle and the glyoxylate shunt as several respiratory genes indicates increased respiratory capabilities, coupled possibly with increased availability of electron donor compounds from the TCA cycle, as this mutant increased respiratory capability by 240% more than in the PB12. The reduction in the intracellular concentration of cAMP in the atp mutant resulted in a reduced number of upregulated genes compared to PB12, suggesting that the mutant remains a robust genetic background despite the severe disruption in its energetic level.
Collapse
Affiliation(s)
- Sandra Soria
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
- Laboratorio de Soluciones Biotecnológicas (LasoBiotc), Montevideo 11800, Uruguay
| | - Ofelia E. Carreón-Rodríguez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Ramón de Anda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| |
Collapse
|
3
|
Eltayeb LB. Analyzing bacterial persistence and dormancy: A bibliometric exploration of 21st century scientific literature. Saudi J Biol Sci 2024; 31:103936. [PMID: 38327662 PMCID: PMC10847988 DOI: 10.1016/j.sjbs.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
In response to growing concerns about the efficacy of antibiotic treatment, there has been a significant increase in research on bacteria that are resistant to antibiotics over the past two centuries. Such investigations might bring a spotlight on the field's evolution and future prospects. The study was aimed at conducting a measurable bibliometric review of the scientific literature on bacterial persistence and dormancy in the 21st Century. A scientific literature published during 21st Century was analyzed to gain insights into and identify research trends and outputs in persistent bacteria. Bibliometrix (R language package) and the VOS viewer were used to conduct a bibliometric investigation to determine the globally indexed persistent bacteria research output. WoS Core Collection databases were searched for persistent bacteria selected as the subject. A total of 1,160 published documents from 495 sources from the preceding two decades were reviewed. Maximum publications of 112 were observed in 2021 with 860 citations; however, 82 publications appeared in 2015 and were able to get the highest number of citations (4,214), only 43 (3.7%) were single-authored, whereas 1,117 (96.3%) publications are the result of collaborative works. Out of the top 10 countries ranked for publications, the USA took the top spot for the most highly productive country with 435 articles. Dormancy' appeared 2,351 times, followed by 'Escherichia coli" (1,744, and 'Growth' 1,184 times) in research publications on bacterial persistence research. The findings from this study will aid in the creation of strategies and guidelines for regulating and avoiding bacterial persistence status.
Collapse
Affiliation(s)
- Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University – Al-Kharj, 11942 Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Lamprecht O, Ratnikava M, Jacek P, Kaganovitch E, Buettner N, Fritz K, Biazruchka I, Köhler R, Pietsch J, Sourjik V. Regulation by cyclic di-GMP attenuates dynamics and enhances robustness of bimodal curli gene activation in Escherichia coli. PLoS Genet 2023; 19:e1010750. [PMID: 37186613 DOI: 10.1371/journal.pgen.1010750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/25/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Curli amyloid fibers are a major constituent of the extracellular biofilm matrix formed by bacteria of the Enterobacteriaceae family. Within Escherichia coli biofilms, curli gene expression is limited to a subpopulation of bacteria, leading to heterogeneity of extracellular matrix synthesis. Here we show that bimodal activation of curli gene expression also occurs in well-mixed planktonic cultures of E. coli, resulting in all-or-none stochastic differentiation into distinct subpopulations of curli-positive and curli-negative cells at the entry into the stationary phase of growth. Stochastic curli activation in individual E. coli cells could further be observed during continuous growth in a conditioned medium in a microfluidic device, which further revealed that the curli-positive state is only metastable. In agreement with previous reports, regulation of curli gene expression by the second messenger c-di-GMP via two pairs of diguanylate cyclase and phosphodiesterase enzymes, DgcE/PdeH and DgcM/PdeR, modulates the fraction of curli-positive cells. Unexpectedly, removal of this regulatory network does not abolish the bimodality of curli gene expression, although it affects dynamics of activation and increases heterogeneity of expression levels among individual cells. Moreover, the fraction of curli-positive cells within an E. coli population shows stronger dependence on growth conditions in the absence of regulation by DgcE/PdeH and DgcM/PdeR pairs. We thus conclude that, while not required for the emergence of bimodal curli gene expression in E. coli, this c-di-GMP regulatory network attenuates the frequency and dynamics of gene activation and increases its robustness to cellular heterogeneity and environmental variation.
Collapse
Affiliation(s)
- Olga Lamprecht
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Maryia Ratnikava
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Paulina Jacek
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Eugen Kaganovitch
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Nina Buettner
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Kirstin Fritz
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Ina Biazruchka
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Robin Köhler
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Julian Pietsch
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
5
|
Vogeleer P, Létisse F. Dynamic Metabolic Response to (p)ppGpp Accumulation in Pseudomonas putida. Front Microbiol 2022; 13:872749. [PMID: 35495732 PMCID: PMC9048047 DOI: 10.3389/fmicb.2022.872749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The stringent response is a ubiquitous bacterial reaction triggered by nutrient deprivation and mediated by the intracellular concentrations of ppGpp and pppGpp. These alarmones, jointly referred to as (p)ppGpp, control gene transcription, mRNA translation and protein activity to adjust the metabolism and growth rate to environmental changes. While the ability of (p)ppGpp to mediate cell growth slowdown and metabolism adaptation has been demonstrated in Escherichia coli, it’s role in Pseudomonas putida remains unclear. The aims of this study were therefore to determine which forms of (p)ppGpp are synthetized in response to severe growth inhibition in P. putida, and to decipher the mechanisms of (p)ppGpp-mediated metabolic regulation in this bacterium. We exposed exponentially growing cells of P. putida to serine hydroxamate (SHX), a serine analog known to trigger the stringent response, and tracked the dynamics of intra- and extracellular metabolites using untargeted quantitative MS and NMR-based metabolomics, respectively. We found that SHX promotes ppGpp and pppGpp accumulation few minutes after exposure and arrests bacterial growth. Meanwhile, central carbon metabolites increase in concentration while purine pathway intermediates drop sharply. Importantly, in a ΔrelA mutant and a ppGpp0 strain in which (p)ppGpp synthesis genes were deleted, SHX exposure inhibited cell growth but led to an accumulation of purine pathway metabolites instead of a decrease, suggesting that as observed in other bacteria, (p)ppGpp downregulates the purine pathway in P. putida. Extracellular accumulations of pyruvate and acetate were observed as a specific metabolic consequence of the stringent response. Overall, our results show that (p)ppGpp rapidly remodels the central carbon metabolism and the de novo purine biosynthesis pathway in P. putida. These data represent a hypothesis-generating resource for future studies on the stringent response.
Collapse
|
6
|
Maki Y, Yoshida H. Ribosomal Hibernation-Associated Factors in Escherichia coli. Microorganisms 2021; 10:microorganisms10010033. [PMID: 35056482 PMCID: PMC8778775 DOI: 10.3390/microorganisms10010033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 01/30/2023] Open
Abstract
Bacteria convert active 70S ribosomes to inactive 100S ribosomes to survive under various stress conditions. This state, in which the ribosome loses its translational activity, is known as ribosomal hibernation. In gammaproteobacteria such as Escherichia coli, ribosome modulation factor and hibernation-promoting factor are involved in forming 100S ribosomes. The expression of ribosome modulation factor is regulated by (p)ppGpp (which is induced by amino acid starvation), cAMP-CRP (which is stimulated by reduced metabolic energy), and transcription factors involved in biofilm formation. This indicates that the formation of 100S ribosomes is an important strategy for bacterial survival under various stress conditions. In recent years, the structures of 100S ribosomes from various bacteria have been reported, enhancing our understanding of the 100S ribosome. Here, we present previous findings on the 100S ribosome and related proteins and describe the stress-response pathways involved in ribosomal hibernation.
Collapse
|