1
|
Mitosch K, Beyß M, Phapale P, Drotleff B, Nöh K, Alexandrov T, Patil KR, Typas A. A pathogen-specific isotope tracing approach reveals metabolic activities and fluxes of intracellular Salmonella. PLoS Biol 2023; 21:e3002198. [PMID: 37594988 PMCID: PMC10468081 DOI: 10.1371/journal.pbio.3002198] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/30/2023] [Accepted: 06/16/2023] [Indexed: 08/20/2023] Open
Abstract
Pathogenic bacteria proliferating inside mammalian host cells need to rapidly adapt to the intracellular environment. How they achieve this and scavenge essential nutrients from the host has been an open question due to the difficulties in distinguishing between bacterial and host metabolites in situ. Here, we capitalized on the inability of mammalian cells to metabolize mannitol to develop a stable isotopic labeling approach to track Salmonella enterica metabolites during intracellular proliferation in host macrophage and epithelial cells. By measuring label incorporation into Salmonella metabolites with liquid chromatography-mass spectrometry (LC-MS), and combining it with metabolic modeling, we identify relevant carbon sources used by Salmonella, uncover routes of their metabolization, and quantify relative reaction rates in central carbon metabolism. Our results underline the importance of the Entner-Doudoroff pathway (EDP) and the phosphoenolpyruvate carboxylase for intracellularly proliferating Salmonella. More broadly, our metabolic labeling strategy opens novel avenues for understanding the metabolism of pathogens inside host cells.
Collapse
Affiliation(s)
- Karin Mitosch
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Beyß
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- RWTH Aachen University, Computational Systems Biotechnology, Aachen, Germany
| | - Prasad Phapale
- Metabolomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Theodore Alexandrov
- Metabolomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- BioInnovation Institute, Copenhagen, Denmark
| | - Kiran R. Patil
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
2
|
Tanabe Y, Yamaguchi H, Yoshida M, Kai A, Okazaki Y. Characterization of a bloom-associated alphaproteobacterial lineage, 'Candidatus Phycosocius': insights into freshwater algal-bacterial interactions. ISME COMMUNICATIONS 2023; 3:20. [PMID: 36906708 PMCID: PMC10008586 DOI: 10.1038/s43705-023-00228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
Marine bacterial lineages associated with algal blooms, such as the Roseobacter clade, have been well characterized in ecological and genomic contexts, yet such lineages have rarely been explored in freshwater blooms. This study performed phenotypic and genomic analyses of an alphaproteobacterial lineage 'Candidatus Phycosocius' (denoted the CaP clade), one of the few lineages ubiquitously associated with freshwater algal blooms, and described a novel species: 'Ca. Phycosocius spiralis.' Phylogenomic analyses indicated that the CaP clade is a deeply branching lineage in the Caulobacterales. Pangenome analyses revealed characteristic features of the CaP clade: aerobic anoxygenic photosynthesis and essential vitamin B auxotrophy. Genome size varies widely among members of the CaP clade (2.5-3.7 Mb), likely a result of independent genome reductions at each lineage. This includes a loss of tight adherence pilus genes (tad) in 'Ca. P. spiralis' that may reflect its adoption of a unique spiral cell shape and corkscrew-like burrowing activity at the algal surface. Notably, quorum sensing (QS) proteins showed incongruent phylogenies, suggesting that horizontal transfers of QS genes and QS-involved interactions with specific algal partners might drive CaP clade diversification. This study elucidates the ecophysiology and evolution of proteobacteria associated with freshwater algal blooms.
Collapse
Affiliation(s)
- Yuuhiko Tanabe
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki, 305-8506, Japan.
- Algae Biomass and Energy System R&D Center, University of Tsukuba, Ibaraki, 305-8572, Japan.
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki, 305-8506, Japan
| | - Masaki Yoshida
- Algae Biomass and Energy System R&D Center, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Atsushi Kai
- Algae Biomass and Energy System R&D Center, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan
| |
Collapse
|
3
|
Zhang C, Liu N. Noncoding RNAs in the Glycolysis of Ovarian Cancer. Front Pharmacol 2022; 13:855488. [PMID: 35431949 PMCID: PMC9005897 DOI: 10.3389/fphar.2022.855488] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/15/2022] [Indexed: 01/11/2023] Open
Abstract
Energy metabolism reprogramming is the characteristic feature of tumors. The tumorigenesis, metastasis, and drug resistance of ovarian cancer (OC) is dependent on energy metabolism. Even under adequate oxygen conditions, OC cells tend to convert glucose to lactate, and glycolysis can rapidly produce ATP to meet their metabolic energy needs. Non-coding RNAs (ncRNAs) interact directly with DNA, RNA, and proteins to function as an essential regulatory in gene expression and tumor pathology. Studies have shown that ncRNAs regulate the process of glycolysis by interacting with the predominant glycolysis enzyme and cellular signaling pathway, participating in tumorigenesis and progression. This review summarizes the mechanism of ncRNAs regulation in glycolysis in OC and investigates potential therapeutic targets.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Baroukh C, Zemouri M, Genin S. Trophic preferences of the pathogen Ralstonia solanacearum and consequences on its growth in xylem sap. Microbiologyopen 2022; 11:e1240. [PMID: 35212480 PMCID: PMC8770891 DOI: 10.1002/mbo3.1240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Ralstonia solanacearum is one of the most destructive pathogens worldwide. In the last 30 years, the molecular mechanisms at the origin of R. solanacearum pathogenicity have been studied in depth. However, the nutrition status of the pathogen once inside the plant has been poorly investigated. Yet, the pathogen needs substrates to sustain a fast-enough growth, maintain its virulence and subvert the host immunity. This study aimed to explore in-depth the xylem environment where the pathogen is abundant, and its trophic preferences. First, we determined the composition of tomato xylem sap, where fast multiplication of the pathogen occurs. Then, kinetic growth on single and mixtures of carbon sources in relation to this environment was performed to fully quantify growth. Finally, we calculated the concentration of available metabolites in the xylem sap flux to assess how much it can support bacterial growth in planta. Overall, the study underlines the adaptation of R. solanacearum to the xylem environment and the fact that the pathogen assimilates several substrates at the same time in media composed of several carbon sources. It also provides metrics on key physiological parameters governing the growth of this major pathogen, which will be instrumental in the future to better understand its metabolic behavior during infection.
Collapse
Affiliation(s)
| | - Meriem Zemouri
- LIPMEINRACNRSUniversité de ToulouseCastanet‐TolosanFrance
| | - Stéphane Genin
- LIPMEINRACNRSUniversité de ToulouseCastanet‐TolosanFrance
| |
Collapse
|
5
|
Insights into Alexandrium minutum Nutrient Acquisition, Metabolism and Saxitoxin Biosynthesis through Comprehensive Transcriptome Survey. BIOLOGY 2021; 10:biology10090826. [PMID: 34571703 PMCID: PMC8465370 DOI: 10.3390/biology10090826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Alexandrium minutum is one of the causing organisms for the occurrence of harmful algae bloom (HABs) in marine ecosystems. This species produces saxitoxin, one of the deadliest neurotoxins which can cause human mortality. However, molecular information such as genes and proteins catalog on this species is still lacking. Therefore, this study has successfully characterized several new molecular mechanisms regarding A. minutum environmental adaptation and saxitoxin biosynthesis. Ultimately, this study provides a valuable resource for facilitating future dinoflagellates’ molecular response to environmental changes. Abstract The toxin-producing dinoflagellate Alexandrium minutum is responsible for the outbreaks of harmful algae bloom (HABs). It is a widely distributed species and is responsible for producing paralytic shellfish poisoning toxins. However, the information associated with the environmental adaptation pathway and toxin biosynthesis in this species is still lacking. Therefore, this study focuses on the functional characterization of A. minutum unigenes obtained from transcriptome sequencing using the Illumina Hiseq 4000 sequencing platform. A total of 58,802 (47.05%) unigenes were successfully annotated using public databases such as NCBI-Nr, UniprotKB, EggNOG, KEGG, InterPRO and Gene Ontology (GO). This study has successfully identified key features that enable A. minutum to adapt to the marine environment, including several carbon metabolic pathways, assimilation of various sources of nitrogen and phosphorus. A. minutum was found to encode homologues for several proteins involved in saxitoxin biosynthesis, including the first three proteins in the pathway of saxitoxin biosynthesis, namely sxtA, sxtG and sxtB. The comprehensive transcriptome analysis presented in this study represents a valuable resource for understanding the dinoflagellates molecular metabolic model regarding nutrient acquisition and biosynthesis of saxitoxin.
Collapse
|
6
|
Metaproteomics Reveals Alteration of the Gut Microbiome in Weaned Piglets Due to the Ingestion of the Mycotoxins Deoxynivalenol and Zearalenone. Toxins (Basel) 2021; 13:toxins13080583. [PMID: 34437454 PMCID: PMC8402495 DOI: 10.3390/toxins13080583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
The ingestion of mycotoxins can cause adverse health effects and represents a severe health risk to humans and livestock. Even though several acute and chronic effects have been described, the effect on the gut metaproteome is scarcely known. For that reason, we used metaproteomics to evaluate the effect of the mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) on the gut microbiome of 15 weaned piglets. Animals were fed for 28 days with feed contaminated with different concentrations of DON (DONlow: 870 μg DON/kg feed, DONhigh: 2493 μg DON/kg feed) or ZEN (ZENlow: 679 μg ZEN/kg feed, ZENhigh: 1623 μg ZEN/kg feed). Animals in the control group received uncontaminated feed. The gut metaproteome composition in the high toxin groups shifted compared to the control and low mycotoxin groups, and it was also more similar among high toxin groups. These changes were accompanied by the increase in peptides belonging to Actinobacteria and a decrease in peptides belonging to Firmicutes. Additionally, DONhigh and ZENhigh increased the abundance of proteins associated with the ribosomes and pentose-phosphate pathways, while decreasing glycolysis and other carbohydrate metabolism pathways. Moreover, DONhigh and ZENhigh increased the abundance of the antioxidant enzyme thioredoxin-dependent peroxiredoxin. In summary, the ingestion of DON and ZEN altered the abundance of different proteins associated with microbial metabolism, genetic processing, and oxidative stress response, triggering a disruption in the gut microbiome structure.
Collapse
|
7
|
Shi W, Li X, Su X, Wen H, Chen T, Wu H, Liu M. The role of multiple metabolic genes in predicting the overall survival of colorectal cancer: A study based on TCGA and GEO databases. PLoS One 2021; 16:e0251323. [PMID: 34398900 PMCID: PMC8367004 DOI: 10.1371/journal.pone.0251323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/25/2021] [Indexed: 12/22/2022] Open
Abstract
The recent advances in gene chip technology have led to the identification of multiple metabolism-related genes that are closely associated with colorectal cancer (CRC). Nevertheless, none of these genes could accurately diagnose or predict CRC. The prognosis of CRC has been made by previous prognostic models constructed by using multiple genes, however, the predictive function of multi-gene prognostic models using metabolic genes for the CRC prognosis remains unexplored. In this study, we used the TCGA-CRC cohort as the test dataset and the GSE39582 cohort as the experimental dataset. Firstly, we constructed a prognostic model using metabolic genes from the TCGA-CRC cohort, which were also associated with CRC prognosis. We analyzed the advantages of the prognostic model in the prognosis of CRC and its regulatory mechanism of the genes associated with the model. Secondly, the outcome of the TCGA-CRC cohort analysis was validated using the GSE39582 cohort. We found that the prognostic model can be employed as an independent prognostic risk factor for estimating the CRC survival rate. Besides, compared with traditional clinical pathology, it can precisely predict CRC prognosis as well. The high-risk group of the prognostic model showed a substantially lower survival rate as compared to the low-risk group. In addition, gene enrichment analysis of metabolic genes showed that genes in the prognostic model are enriched in metabolism and cancer-related pathways, which may explain its underlying mechanism. Our study identified a novel metabolic profile containing 11 genes for prognostic prediction of CRC. The prognostic model may unravel the imbalanced metabolic microenvironment, and it might promote the development of biomarkers for predicting treatment response and streamlining metabolic therapy in CRC.
Collapse
Affiliation(s)
- Weijun Shi
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xincan Li
- Department of General Medicine, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xu Su
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Hexin Wen
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tianwen Chen
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huazhang Wu
- School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
- * E-mail: (HW); (ML)
| | - Mulin Liu
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- * E-mail: (HW); (ML)
| |
Collapse
|
8
|
Jyoti P, Patil N, Masakapalli SK. Insights into the Polyhydroxybutyrate Biosynthesis in Ralstonia solanacearum Using Parallel 13C Tracers and Comparative Genome Analysis. ACS Chem Biol 2021; 16:1215-1222. [PMID: 34143620 DOI: 10.1021/acschembio.1c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial accumulation of poly(3-hydroxybutyrate) [P(3HB)] is a metabolic strategy often adopted to cope with challenging surroundings. Ralstonia solanacearum, a phytopathogen, seems to be an ideal candidate with inherent ability to accumulate this biodegradable polymer of high industrial relevance. This study is focused on investigating the metabolic networks that channel glucose into P(3HB) using comparative genome analysis, 13C tracers, microscopy, gas chromatography-mass spectrometry (GC-MS), and proton nuclear magnetic resonance (1H NMR). Comparative genome annotation of 87 R. solanacearum strains confirmed the presence of a conserved P(3HB) biosynthetic pathway genes in the chromosome. Parallel 13C glucose feeding ([1-13C], [1,2-13C]) analysis mapped the glucose oxidation to 3-hydroxybutyrate (3HB), the metabolic precursor of P(3HB) via the Entner-Doudoroff pathway (ED pathway), potentially to meet the NADPH demands. Fluorescence microscopy, GC-MS, and 1H NMR analysis further confirmed the ability of R. solanacearum to accumulate P(3HB) granules. In addition, it is demonstrated that the carbon/nitrogen (C/N) ratio influences the P(3HB) yields, thereby highlighting the need to further optimize the bioprocessing parameters. This study provided key insights into the biosynthetic abilities of R. solanacearum as a promising P(3HB) producer.
Collapse
Affiliation(s)
- Poonam Jyoti
- BioX Center, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand 175075, Himachal Pradesh, India
| | - Nitin Patil
- BioX Center, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand 175075, Himachal Pradesh, India
| | - Shyam Kumar Masakapalli
- BioX Center, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand 175075, Himachal Pradesh, India
| |
Collapse
|
9
|
Genome-Wide Metabolic Reconstruction of the Synthesis of Polyhydroxyalkanoates from Sugars and Fatty Acids by Burkholderia Sensu Lato Species. Microorganisms 2021; 9:microorganisms9061290. [PMID: 34204835 PMCID: PMC8231600 DOI: 10.3390/microorganisms9061290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Burkholderia sensu lato (s.l.) species have a versatile metabolism. The aims of this review are the genomic reconstruction of the metabolic pathways involved in the synthesis of polyhydroxyalkanoates (PHAs) by Burkholderia s.l. genera, and the characterization of the PHA synthases and the pha genes organization. The reports of the PHA synthesis from different substrates by Burkholderia s.l. strains were reviewed. Genome-guided metabolic reconstruction involving the conversion of sugars and fatty acids into PHAs by 37 Burkholderia s.l. species was performed. Sugars are metabolized via the Entner-Doudoroff (ED), pentose-phosphate (PP), and lower Embden-Meyerhoff-Parnas (EMP) pathways, which produce reducing power through NAD(P)H synthesis and PHA precursors. Fatty acid substrates are metabolized via β-oxidation and de novo synthesis of fatty acids into PHAs. The analysis of 194 Burkholderia s.l. genomes revealed that all strains have the phaC, phaA, and phaB genes for PHA synthesis, wherein the phaC gene is generally present in ≥2 copies. PHA synthases were classified into four phylogenetic groups belonging to class I II and III PHA synthases and one outlier group. The reconstruction of PHAs synthesis revealed a high level of gene redundancy probably reflecting complex regulatory layers that provide fine tuning according to diverse substrates and physiological conditions.
Collapse
|
10
|
Bhatia M, Thakur J, Suyal S, Oniel R, Chakraborty R, Pradhan S, Sharma M, Sengupta S, Laxman S, Masakapalli SK, Bachhawat AK. Allosteric inhibition of MTHFR prevents futile SAM cycling and maintains nucleotide pools in one-carbon metabolism. J Biol Chem 2020; 295:16037-16057. [PMID: 32934008 PMCID: PMC7681022 DOI: 10.1074/jbc.ra120.015129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/12/2020] [Indexed: 01/05/2023] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) links the folate cycle to the methionine cycle in one-carbon metabolism. The enzyme is known to be allosterically inhibited by SAM for decades, but the importance of this regulatory control to one-carbon metabolism has never been adequately understood. To shed light on this issue, we exchanged selected amino acid residues in a highly conserved stretch within the regulatory region of yeast MTHFR to create a series of feedback-insensitive, deregulated mutants. These were exploited to investigate the impact of defective allosteric regulation on one-carbon metabolism. We observed a strong growth defect in the presence of methionine. Biochemical and metabolite analysis revealed that both the folate and methionine cycles were affected in these mutants, as was the transsulfuration pathway, leading also to a disruption in redox homeostasis. The major consequences, however, appeared to be in the depletion of nucleotides. 13C isotope labeling and metabolic studies revealed that the deregulated MTHFR cells undergo continuous transmethylation of homocysteine by methyltetrahydrofolate (CH3THF) to form methionine. This reaction also drives SAM formation and further depletes ATP reserves. SAM was then cycled back to methionine, leading to futile cycles of SAM synthesis and recycling and explaining the necessity for MTHFR to be regulated by SAM. The study has yielded valuable new insights into the regulation of one-carbon metabolism, and the mutants appear as powerful new tools to further dissect out the intersection of one-carbon metabolism with various pathways both in yeasts and in humans.
Collapse
Affiliation(s)
- Muskan Bhatia
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab, India
| | - Jyotika Thakur
- BioX Center, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| | - Shradha Suyal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab, India
| | - Ruchika Oniel
- Institute for Stem Cell Science and Regenerative Medicine (inStem), NCBS-TIFR Campus, Bangalore, India
| | - Rahul Chakraborty
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shalini Pradhan
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab, India
| | - Shantanu Sengupta
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), NCBS-TIFR Campus, Bangalore, India
| | - Shyam Kumar Masakapalli
- BioX Center, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, India
| | - Anand Kumar Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
11
|
Efficient System Wide Metabolic Pathway Comparisons in Multiple Microbes Using Genome to KEGG Orthology (G2KO) Pipeline Tool. Interdiscip Sci 2020; 12:311-322. [PMID: 32632821 DOI: 10.1007/s12539-020-00375-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022]
Abstract
Comparison of system-wide metabolic pathways among microbes provides valuable insights of organisms' metabolic capabilities that can further assist in rationally screening organisms in silico for various applications. In this work, we present a much needed, efficient and user-friendly Genome to KEGG Orthology (G2KO) pipeline tool that facilitates efficient comparison of system wide metabolic networks of multiple organisms simultaneously. The optimized strategy primarily involves automatic retrieval of the KEGG Orthology (KO) identifiers of user defined organisms from the KEGG database followed by overlaying and visualization of the metabolic genes using the KEGG Mapper reconstruct pathway tool. We demonstrate the applicability of G2KO via two case studies in which we processed 24,314 genes across 15 organisms, mapped on to 530 reference pathways in KEGG, while focusing on pathways of interest. First, an in-silico designing of synthetic microbial consortia towards bioprocessing of cellulose to valuable products by comparing the cellulose degradation and fermentative pathways of microbes was undertaken. Second, we comprehensively compared the amino acid biosynthetic pathways of multiple microbes and demonstrated the potential of G2KO as an efficient tool for metabolic studies. We envisage the tool will find immensely useful to the metabolic engineers as well as systems biologists. The tool's web-server, along with tutorial is publicly available at https://faculty.iitmandi.ac.in/~shyam/tools/g2ko/g2ko.cgi . Also, standalone tool can be downloaded freely from https://sourceforge.net/projects/g2ko/ , and from the supplementary.
Collapse
|