1
|
Varfolomeeva LA, Shipkov NS, Dergousova NI, Boyko KM, Khrenova MG, Tikhonova TV, Popov VO. Molecular mechanism of thiocyanate dehydrogenase at atomic resolution. Int J Biol Macromol 2024; 279:135058. [PMID: 39191340 DOI: 10.1016/j.ijbiomac.2024.135058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Some sulfur-oxidizing bacteria playing an important role in global geochemical cycles utilize thiocyanate as the sole source of energy and nitrogen. In these bacteria the process of thiocyanate into cyanate conversion is mediated by thiocyanate dehydrogenases - a recently discovered family of copper-containing enzymes with the three‑copper active site unique among the other copper proteins. To get a deeper insight into the structure and molecular mechanism of action of thiocyanate dehydrogenases we isolated, purified, and comprehensively characterized an enzyme from the bacterium Pelomicrobium methylotrophicum. High-resolution crystal structures of the thiocyanate dehydrogenase in the free state and in the complexes with the transition state analog, thiourea, and the closest substrate analog, selenocyanate, unveiled the fine details of molecular events occurring at the enzyme active site. During the reaction thiocyanate dehydrogenase undergoes profound conformational change that affects the position of the constituent copper ions and results in the activation of the attacking water molecule. The structure of the enzyme complex with the selenium atom bridged in-between two copper ions was obtained representing an important transient intermediate. Structures of the complexes with inhibitors supplemented with quantum chemical calculations clarify the role of copper ions and refine molecular mechanism of catalysis by thiocyanate dehydrogenase.
Collapse
Affiliation(s)
- Larisa A Varfolomeeva
- Laboratory of Enzyme Engineering, Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russian Federation
| | - Nikolai S Shipkov
- Laboratory of Enzyme Engineering, Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russian Federation
| | - Natalia I Dergousova
- Laboratory of Enzyme Engineering, Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russian Federation
| | - Konstantin M Boyko
- Laboratory of Enzyme Engineering, Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russian Federation
| | - Maria G Khrenova
- Laboratory of Enzyme Engineering, Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russian Federation; Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russian Federation
| | - Tamara V Tikhonova
- Laboratory of Enzyme Engineering, Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russian Federation
| | - Vladimir O Popov
- Laboratory of Enzyme Engineering, Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russian Federation; Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russian Federation.
| |
Collapse
|
2
|
Tikhonova TV, Lilina AV, Osipov EM, Shipkov NS, Dergousova NI, Kulikova OG, Popov VO. Catalytic Properties of Flavocytochrome c Sulfide Dehydrogenase from Haloalkaliphilic Bacterium Thioalkalivibrio paradoxus. BIOCHEMISTRY (MOSCOW) 2021; 86:361-369. [PMID: 33838635 DOI: 10.1134/s0006297921030111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Flavocytochrome c sulfide dehydrogenase (FCC) is one of the central enzymes of the respiratory chain in sulfur-oxidizing bacteria. FCC catalyzes oxidation of sulfide and polysulfide ions to elemental sulfur accompanied by electron transfer to cytochrome c. The catalytically active form of the enzyme is a non-covalently linked heterodimer composed of flavin- and heme-binding subunits. The Thioalkalivibrio paradoxus ARh1 genome contains five copies of genes encoding homologous FCCs with an amino acid sequence identity from 36 to 54%. When growing on thiocyanate or thiosulfate as the main energy source, the bacterium synthesizes products of different copies of FCC genes. In this work, we isolated and characterized FCC synthesized during the growth of Tv. paradoxus on thiocyanate. FCC was shown to oxidize exclusively sulfide but not other reduced sulfur compounds, such as thiosulfate, sulfite, tetrathionate, and sulfur, and it also does not catalyze the reverse reaction of sulfur reduction to sulfide. Kinetic parameters of the sulfide oxidation reaction are characterized.
Collapse
Affiliation(s)
- Tamara V Tikhonova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Anastasiya V Lilina
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Evgenii M Osipov
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Nikolay S Shipkov
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Nataliya I Dergousova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Olga G Kulikova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
3
|
Trinuclear copper biocatalytic center forms an active site of thiocyanate dehydrogenase. Proc Natl Acad Sci U S A 2020; 117:5280-5290. [PMID: 32094184 DOI: 10.1073/pnas.1922133117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biocatalytic copper centers are generally involved in the activation and reduction of dioxygen, with only few exceptions known. Here we report the discovery and characterization of a previously undescribed copper center that forms the active site of a copper-containing enzyme thiocyanate dehydrogenase (suggested EC 1.8.2.7) that was purified from the haloalkaliphilic sulfur-oxidizing bacterium of the genus Thioalkalivibrio ubiquitous in saline alkaline soda lakes. The copper cluster is formed by three copper ions located at the corners of a near-isosceles triangle and facilitates a direct thiocyanate conversion into cyanate, elemental sulfur, and two reducing equivalents without involvement of molecular oxygen. A molecular mechanism of catalysis is suggested based on high-resolution three-dimensional structures, electron paramagnetic resonance (EPR) spectroscopy, quantum mechanics/molecular mechanics (QM/MM) simulations, kinetic studies, and the results of site-directed mutagenesis.
Collapse
|
4
|
Oshiki M, Fukushima T, Kawano S, Kasahara Y, Nakagawa J. Thiocyanate Degradation by a Highly Enriched Culture of the Neutrophilic Halophile Thiohalobacter sp. Strain FOKN1 from Activated Sludge and Genomic Insights into Thiocyanate Metabolism. Microbes Environ 2019; 34:402-412. [PMID: 31631078 PMCID: PMC6934394 DOI: 10.1264/jsme2.me19068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Thiocyanate (SCN-) is harmful to a wide range of organisms, and its removal is essential for environmental protection. A neutrophilic halophile capable of thiocyanate degradation, Thiohalobacter sp. strain FOKN1, was highly enriched (relative abundance; 98.4%) from activated sludge collected from a bioreactor receiving thiocyanate-rich wastewater. The enrichment culture degraded 3.38 mM thiocyanate within 140 h, with maximum activity at pH 8.8, 37°C, and 0.18 M sodium chloride. Thiocyanate degradation was inhibited by 30 mg L-1 phenol, but not by thiosulfate. Microbial thiocyanate degradation is catalyzed by thiocyanate dehydrogenase, while limited information is currently available on the molecular mechanisms underlying thiocyanate degradation by the thiocyanate dehydrogenase of neutrophilic halophiles. Therefore, (meta)genomic and proteomic analyses of enrichment cultures were performed to elucidate the whole genome sequence and proteome of Thiohalobacter sp. strain FOKN1. The 3.23-Mb circular Thiohalobacter sp. strain FOKN1 genome was elucidated using a PacBio RSII sequencer, and the expression of 914 proteins was identified by tandem mass spectrometry. The Thiohalobacter sp. strain FOKN1 genome had a gene encoding thiocyanate dehydrogenase, which was abundant in the proteome, suggesting that thiocyanate is degraded by thiocyanate dehydrogenase to sulfur and cyanate. The sulfur formed may be oxidized to sulfate by the sequential oxidation reactions of dissimilatory sulfite reductase, adenosine-5'-phosphosulfate reductase, and dissimilatory ATP sulfurylase. Although the Thiohalobacter sp. strain FOKN1 genome carried a gene encoding cyanate lyase, its protein expression was not detectable. The present study advances the understanding of the molecular mechanisms underlying thiocyanate degradation by the thiocyanate dehydrogenase of neutrophilic halophiles.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College
| | - Toshikazu Fukushima
- Advanced Technology Research Laboratories, Research & Development, Nippon Steel Corporation
| | - Shuichi Kawano
- Department of Computer and Network Engineering Graduate School of Informatics and Engineering, The University of Electro-Communications
| | | | - Junichi Nakagawa
- Advanced Technology Research Laboratories, Research & Development, Nippon Steel Corporation
| |
Collapse
|
5
|
Tsallagov SI, Sorokin DY, Tikhonova TV, Popov VO, Muyzer G. Comparative Genomics of Thiohalobacter thiocyanaticus HRh1 T and Guyparkeria sp. SCN-R1, Halophilic Chemolithoautotrophic Sulfur-Oxidizing Gammaproteobacteria Capable of Using Thiocyanate as Energy Source. Front Microbiol 2019; 10:898. [PMID: 31118923 PMCID: PMC6504805 DOI: 10.3389/fmicb.2019.00898] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/09/2019] [Indexed: 12/01/2022] Open
Abstract
The genomes of Thiohalobacter thiocyanaticus and Guyparkeria (formerly known as Halothiobacillus) sp. SCN-R1, two gammaproteobacterial halophilic sulfur-oxidizing bacteria (SOB) capable of thiocyanate oxidation via the "cyanate pathway", have been analyzed with a particular focus on their thiocyanate-oxidizing potential and sulfur oxidation pathways. Both genomes encode homologs of the enzyme thiocyanate dehydrogenase (TcDH) that oxidizes thiocyanate via the "cyanate pathway" in members of the haloalkaliphilic SOB of the genus Thioalkalivibrio. However, despite the presence of conservative motives indicative of TcDH, the putative TcDH of the halophilic SOB have a low overall amino acid similarity to the Thioalkalivibrio enzyme, and also the surrounding genes in the TcDH locus were different. In particular, an alternative copper transport system Cus is present instead of Cop and a putative zero-valent sulfur acceptor protein gene appears just before TcDH. Moreover, in contrast to the thiocyanate-oxidizing Thioalkalivibrio species, both genomes of the halophilic SOB contained a gene encoding the enzyme cyanate hydratase. The sulfur-oxidizing pathway in the genome of Thiohalobacter includes a Fcc type of sulfide dehydrogenase, a rDsr complex/AprAB/Sat for oxidation of zero-valent sulfur to sulfate, and an incomplete Sox pathway, lacking SoxCD. The sulfur oxidation pathway reconstructed from the genome of Guyparkeria sp. SCN-R1 was more similar to that of members of the Thiomicrospira-Hydrogenovibrio group, including a Fcc type of sulfide dehydrogenase and a complete Sox complex. One of the outstanding properties of Thiohalobacter is the presence of a Na+-dependent ATP synthase, which is rarely found in aerobic Prokaryotes.Overall, the results showed that, despite an obvious difference in the general sulfur-oxidation pathways, halophilic and haloalkaliphilic SOB belonging to different genera within the Gammaproteobacteria developed a similar unique thiocyanate-degrading mechanism based on the direct oxidative attack on the sulfane atom of thiocyanate.
Collapse
Affiliation(s)
- Stanislav I. Tsallagov
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Tamara V. Tikhonova
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir O. Popov
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Watts MP, Moreau JW. Thiocyanate biodegradation: harnessing microbial metabolism for mine remediation. MICROBIOLOGY AUSTRALIA 2018. [DOI: 10.1071/ma18047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Thiocyanate (SCN–) forms in the reaction between cyanide (CN–) and reduced sulfur species, e.g. in gold ore processing and coal-coking wastewater streams, where it is present at millimolar (mM) concentrations1. Thiocyanate is also present naturally at nM to µM concentrations in uncontaminated aquatic environments2. Although less toxic than its precursor CN–, SCN– can harm plants and animals at higher concentrations3, and thus needs to be removed from wastewater streams prior to disposal or reuse. Fortunately, SCN– can be biodegraded by microorganisms as a supply of reduced sulfur and nitrogen for energy sources, in addition to nutrients for growth4. Research into how we can best harness the ability of microbes to degrade SCN– may offer newer, more cost-effective and environmentally sustainable treatment solutions5. By studying biodegradation pathways of SCN– in laboratory and field treatment bioreactor systems, we can also gain fundamental insights into connections across the natural biogeochemical cycles of carbon, sulfur and nitrogen6.
Collapse
|