1
|
Wu Z, Liu T, Chen Q, Chen T, Hu J, Sun L, Wang B, Li W, Ni J. Unveiling the unknown viral world in groundwater. Nat Commun 2024; 15:6788. [PMID: 39117653 PMCID: PMC11310336 DOI: 10.1038/s41467-024-51230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Viruses as the prevailing biological entities are poorly understood in underground realms. Here, we establish the first metagenomic Groundwater Virome Catalogue (GWVC) comprising 280,420 viral species ( ≥ 5 kb) detected from 607 monitored wells in seven geo-environmental zones throughout China. In expanding ~10-fold the global portfolio of known groundwater viruses, we uncover over 99% novel viruses and about 95% novel viral clusters. By linking viruses to hosts from 119 prokaryotic phyla, we double the number of microbial phyla known to be virus-infected in groundwater. As keystone ultrasmall symbionts in aquifers, CPR bacteria and DPANN archaea are susceptible to virulent viruses. Certain complete CPR viruses even likely infect non-CPR bacteria, while partial CPR/DPANN viruses harbor cell-surface modification genes that assist symbiont cell adhesion to free-living microbes. This study reveals the unknown viral world and auxiliary metabolism associated with methane, nitrogen, sulfur, and phosphorus cycling in groundwater, and highlights the importance of subsurface virosphere in viral ecology.
Collapse
Affiliation(s)
- Zongzhi Wu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tang Liu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Qian Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tianyi Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Jinyun Hu
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Liyu Sun
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Bingxue Wang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Wenpeng Li
- Center for Groundwater Monitoring, China Institute of Geo-environmental Monitoring, Beijing, 100081, PR China
| | - Jinren Ni
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
2
|
Zhu S, Tan Z, Guo Z, Zheng H, Zhang B, Qin Z, Xie J, Lin Y, Sheng B, Qiu G, Preis S, Wei C. Symbiotic virus-bacteria interactions in biological treatment of coking wastewater manipulating bacterial physiological activities. WATER RESEARCH 2024; 257:121741. [PMID: 38744061 DOI: 10.1016/j.watres.2024.121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/11/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Biological treatment is commonly used in coking wastewater (CWW) treatment. Prokaryotic microbial communities in CWW treatment have been comprehensively studied. However, viruses, as the critical microorganisms affecting microbial processes and thus engineering parameters, still remain poorly understood in CWW treatment context. Employing viromics sequencing, the composition and function of the viral community in CWW treatment were discovered, revealing novel viral communities and key auxiliary metabolic functions. Caudovirales appeared to be the predominant viral order in the oxic-hydrolytic-oxic (OHO) CWW treatment combination, showing relative abundances of 62.47 %, 56.64 % and 92.20 % in bioreactors O1, H and O2, respectively. At the family level, Myoviridae, Podoviridae and Siphoviridae mainly prevailed in bioreactors O1 and H while Phycodnaviridae dominated in O2. A total of 56.23-92.24% of novel viral contigs defied family-level characterization in this distinct CWW habitat. The virus-host prediction results revealed most viruses infecting the specific functional taxa Pseudomonas, Acidovorax and Thauera in the entire OHO combination, demonstrating the viruses affecting bacterial physiology and pollutants removal from CWW. Viral auxiliary metabolic genes (AMGs) were screened, revealing their involvement in the metabolism of contaminants and toxicity tolerance. In the bioreactor O1, AMGs were enriched in detoxification and phosphorus ingestion, where glutathione S-transferase (GSTs) and beta-ketoadipyl CoA thiolase (fadA) participated in biodegradation of polycyclic aromatic hydrocarbons and phenols, respectively. In the bioreactors H and O2, the AMGs focused on cell division and epicyte formation of the hosts, where GDPmannose 4,6-dehydratase (gmd) related to lipopolysaccharides biosynthesis was considered to play an important role in the growth of nitrifiers. The diversities of viruses and AMGs decreased along the CWW treatment process, pointing to a reinforced virus-host adaptive strategy in stressful operation environments. In this study, the symbiotic virus-bacteria interaction patterns were proposed with a theoretical basis for promoting CWW biological treatment efficiency. The findings filled the gaps in the virus-bacteria interactions at the full-scale CWW treatment and provided great value for understanding the mechanism of biological toxicity and sludge activity in industrial wastewater treatment.
Collapse
Affiliation(s)
- Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Zhijie Tan
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ziyu Guo
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huijian Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Baoshan Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhi Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Junting Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuexia Lin
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Binbin Sheng
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Sergei Preis
- Department of Materials and Environmental Technology, Tallinn University of Technology, Tallinn 19086, Estonia
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Gios E, Mosley OE, Hoggard M, Handley KM. High niche specificity and host genetic diversity of groundwater viruses. THE ISME JOURNAL 2024; 18:wrae035. [PMID: 38452204 PMCID: PMC10980836 DOI: 10.1093/ismejo/wrae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Viruses are key members of microbial communities that exert control over host abundance and metabolism, thereby influencing ecosystem processes and biogeochemical cycles. Aquifers are known to host taxonomically diverse microbial life, yet little is known about viruses infecting groundwater microbial communities. Here, we analysed 16 metagenomes from a broad range of groundwater physicochemistries. We recovered 1571 viral genomes that clustered into 468 high-quality viral operational taxonomic units. At least 15% were observed to be transcriptionally active, although lysis was likely constrained by the resource-limited groundwater environment. Most were unclassified (95%), and the remaining 5% were Caudoviricetes. Comparisons with viruses inhabiting other aquifers revealed no shared species, indicating substantial unexplored viral diversity. In silico predictions linked 22.4% of the viruses to microbial host populations, including to ultra-small prokaryotes, such as Patescibacteria and Nanoarchaeota. Many predicted hosts were associated with the biogeochemical cycling of carbon, nitrogen, and sulfur. Metabolic predictions revealed the presence of 205 putative auxiliary metabolic genes, involved in diverse processes associated with the utilization of the host's intracellular resources for biosynthesis and transformation reactions, including those involved in nucleotide sugar, glycan, cofactor, and vitamin metabolism. Viruses, prokaryotes overall, and predicted prokaryotic hosts exhibited narrow spatial distributions, and relative abundance correlations with the same groundwater parameters (e.g. dissolved oxygen, nitrate, and iron), consistent with host control over viral distributions. Results provide insights into underexplored groundwater viruses, and indicate the large extent to which viruses may manipulate microbial communities and biogeochemistry in the terrestrial subsurface.
Collapse
Affiliation(s)
- Emilie Gios
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- NINA, Norwegian Institute for Nature Research, Trondheim 7034, Norway
| | - Olivia E Mosley
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- NatureMetrics Ltd, Surrey Research Park, Guildford GU2 7HJ, United Kingdom
| | - Michael Hoggard
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Kim M Handley
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Gagnon JC, Beauregard-Tousignant S, Marcil JS, Lazar CS. Deep Isolated Aquifer Brines Harbor Atypical Halophilic Microbial Communities in Quebec, Canada. Genes (Basel) 2023; 14:1529. [PMID: 37628582 PMCID: PMC10454208 DOI: 10.3390/genes14081529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The deep terrestrial subsurface, hundreds of meters to kilometers below the surface, is characterized by oligotrophic conditions, dark and often anoxic settings, with fluctuating pH, salinity, and water availability. Despite this, microbial populations are detected and active, contributing to biogeochemical cycles over geological time. Because it is extremely difficult to access the deep biosphere, little is known about the identity and metabolisms of these communities, although they likely possess unknown pathways and might interfere with deep waste deposits. Therefore, we analyzed rock and groundwater microbial communities from deep, isolated brine aquifers in two regions dating back to the Ordovician and Devonian, using amplicon and whole genome sequencing. We observed significant differences in diversity and community structure between both regions, suggesting an impact of site age and composition. The deep hypersaline groundwater did not contain typical halophilic bacteria, and genomes suggested pathways involved in protein and hydrocarbon degradation, and carbon fixation. We identified mainly one strategy to cope with osmotic stress: compatible solute uptake and biosynthesis. Finally, we detected many bacteriophage families, potentially indicating that bacteria are infected. However, we also found auxiliary metabolic genes in the viral genomes, probably conferring an advantage to the infected hosts.
Collapse
Affiliation(s)
- Jean-Christophe Gagnon
- Department of Biological Sciences, University of Québec at Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (J.-C.G.); (S.B.-T.)
- Interuniversity Research Group in Limnology/Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, QC H3C 3P8, Canada
| | - Samuel Beauregard-Tousignant
- Department of Biological Sciences, University of Québec at Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (J.-C.G.); (S.B.-T.)
| | - Jean-Sébastien Marcil
- Derena Geosciences, Quebec, QC G7A 3Y5, Canada;
- Ressources Utica Inc., Quebec, QC G1V 4M7, Canada
| | - Cassandre Sara Lazar
- Department of Biological Sciences, University of Québec at Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (J.-C.G.); (S.B.-T.)
| |
Collapse
|
5
|
Cheng Z, Li X, Palomo A, Yang Q, Han L, Wu Z, Li Z, Zhang M, Chen L, Zhao B, Yu K, Zhang C, Hou S, Zheng Y, Xia Y. Virus impacted community adaptation in oligotrophic groundwater environment revealed by Hi-C coupled metagenomic and viromic study. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131944. [PMID: 37390685 DOI: 10.1016/j.jhazmat.2023.131944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Viruses play a crucial role in microbial mortality, diversity and biogeochemical cycles. Groundwater is the largest global freshwater and one of the most oligotrophic aquatic systems on Earth, but how microbial and viral communities are shaped in this special habitat is largely unexplored. In this study, we collected groundwater samples from 23 to 60 m aquifers at Yinchuan Plain, China. In total, 1920 non-reductant viral contigs were retrieved from metagenomes and viromes constructed by Illumina and Nanopore hybrid sequencing. Only 3% of them could be clustered with known viruses, most of which were Caudoviricetes. Coupling 1.2 Tb Hi-C sequencing with CRISPR matching and homology search, we connected 469 viruses with their hosts while some viral clusters presented a broad-host-range trait. Meanwhile, a large proportion of biosynthesis related auxiliary metabolism genes were identified. Those characteristics might benefit viruses for a better survival in this special oligotrophic environment. Additionally, the groundwater virome showed genomic features distinct from those of the open ocean and wastewater treatment facilities in GC distribution and unannotated gene compositions. This paper expands the current knowledge of the global viromic records and serves as a foundation for a more thorough understanding of viruses in groundwater.
Collapse
Affiliation(s)
- Zhanwen Cheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiang Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Alejandro Palomo
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Yang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Long Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziqi Wu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zengyi Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Miao Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liming Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bixi Zhao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaiqiang Yu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
| | - Shengwei Hou
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Ettinger CL, Saunders M, Selbmann L, Delgado-Baquerizo M, Donati C, Albanese D, Roux S, Tringe S, Pennacchio C, Del Rio TG, Stajich JE, Coleine C. Highly diverse and unknown viruses may enhance Antarctic endoliths' adaptability. MICROBIOME 2023; 11:103. [PMID: 37158954 PMCID: PMC10165816 DOI: 10.1186/s40168-023-01554-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Rock-dwelling microorganisms are key players in ecosystem functioning of Antarctic ice free-areas. Yet, little is known about their diversity and ecology, and further still, viruses in these communities have been largely unexplored despite important roles related to host metabolism and nutrient cycling. To begin to address this, we present a large-scale viral catalog from Antarctic rock microbial communities. RESULTS We performed metagenomic analyses on rocks from across Antarctica representing a broad range of environmental and spatial conditions, and which resulted in a predicted viral catalog comprising > 75,000 viral operational taxonomic units (vOTUS). We found largely undescribed, highly diverse and spatially structured virus communities which had predicted auxiliary metabolic genes (AMGs) with functions indicating that they may be potentially influencing bacterial adaptation and biogeochemistry. CONCLUSION This catalog lays the foundation for expanding knowledge of virosphere diversity, function, spatial ecology, and dynamics in extreme environments. This work serves as a step towards exploring adaptability of microbial communities in the face of a changing climate. Video Abstract.
Collapse
Affiliation(s)
- Cassandra L Ettinger
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
| | - Morgan Saunders
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
- The University of Arizona, Tucson, AZ, USA
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad Y Funcionamiento Ecosistémico, Instituto de Recursos Naturales Y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, Seville, E-41012, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele All'Adige, 38098, Italy
| | - Davide Albanese
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele All'Adige, 38098, Italy
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Susannah Tringe
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Christa Pennacchio
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Tijana G Del Rio
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Claudia Coleine
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
- Laboratorio de Biodiversidad Y Funcionamiento Ecosistémico, Instituto de Recursos Naturales Y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, Seville, E-41012, Spain.
| |
Collapse
|
7
|
Hegarty B, Dai Z, Raskin L, Pinto A, Wigginton K, Duhaime M. A snapshot of the global drinking water virome: Diversity and metabolic potential vary with residual disinfectant use. WATER RESEARCH 2022; 218:118484. [PMID: 35504157 DOI: 10.1016/j.watres.2022.118484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 05/22/2023]
Abstract
Viruses are important drivers of microbial community ecology and evolution, influencing microbial mortality, metabolism, and horizontal gene transfer. However, the effects of viruses remain largely unknown in many environments, including in drinking water systems. Drinking water metagenomic studies have offered a whole community perspective of bacterial impacts on water quality, but have not yet considered the influences of viruses. In this study, we address this gap by mining viral DNA sequences from publicly available drinking water metagenomes from distribution systems in six countries around the world. These datasets provide a snapshot of the taxonomic diversity and metabolic potential of the global drinking water virome; and provide an opportunity to investigate the effects of geography, climate, and drinking water treatment practices on viral diversity. Both environmental conditions and differences in sample processing were found to influence the viral composition. Using free chlorine as the residual disinfectant was associated with clear differences in viral taxonomic diversity and metabolic potential, with significantly fewer viral populations and less even viral community structures than observed in distribution systems without residual disinfectant. Additionally, drinking water viruses carry antibiotic resistance genes (ARGs), as well as genes to survive oxidative stress and nitrogen limitation. Through this study, we have demonstrated that viral communities are diverse across drinking water systems and vary with the use of residual disinfectant. Our findings offer directions for future research to develop a more robust understanding of how virus-bacteria interactions in drinking water distribution systems affect water quality.
Collapse
Affiliation(s)
- Bridget Hegarty
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA
| | - Zihan Dai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA
| | - Ameet Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Georgia
| | - Krista Wigginton
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA.
| | - Melissa Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105N University Ave., 4068 Biological Sciences Building, Ann Arbor, MI 48109-1085, USA.
| |
Collapse
|
8
|
Orazi G, Collins AJ, Whitaker RJ. Prediction of Prophages and Their Host Ranges in Pathogenic and Commensal Neisseria Species. mSystems 2022; 7:e0008322. [PMID: 35418239 PMCID: PMC9238386 DOI: 10.1128/msystems.00083-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/24/2022] [Indexed: 01/03/2023] Open
Abstract
The genus Neisseria includes two pathogenic species, N. gonorrhoeae and N. meningitidis, and numerous commensal species. Neisseria species frequently exchange DNA with one another, primarily via transformation and homologous recombination and via multiple types of mobile genetic elements (MGEs). Few Neisseria bacteriophages (phages) have been identified, and their impact on bacterial physiology is poorly understood. Furthermore, little is known about the range of species that Neisseria phages can infect. In this study, we used three virus prediction tools to scan 248 genomes of 21 different Neisseria species and identified 1,302 unique predicted prophages. Using comparative genomics, we found that many predictions are dissimilar from prophages and other MGEs previously described to infect Neisseria species. We also identified similar predicted prophages in genomes of different Neisseria species. Additionally, we examined CRISPR-Cas targeting of each Neisseria genome and predicted prophage. While CRISPR targeting of chromosomal DNA appears to be common among several Neisseria species, we found that 20% of the prophages we predicted are targeted significantly more than the rest of the bacterial genome in which they were identified (i.e., backbone). Furthermore, many predicted prophages are targeted by CRISPR spacers encoded by other species. We then used these results to infer additional host species of known Neisseria prophages and predictions that are highly targeted relative to the backbone. Together, our results suggest that we have identified novel Neisseria prophages, several of which may infect multiple Neisseria species. These findings have important implications for understanding horizontal gene transfer between members of this genus. IMPORTANCE Drug-resistant Neisseria gonorrhoeae is a major threat to human health. Commensal Neisseria species are thought to serve as reservoirs of antibiotic resistance and virulence genes for the pathogenic species N. gonorrhoeae and N. meningitidis. Therefore, it is important to understand both the diversity of mobile genetic elements (MGEs) that can mediate horizontal gene transfer within this genus and the breadth of species these MGEs can infect. In particular, few bacteriophages (phages) are known to infect Neisseria species. In this study, we identified a large number of candidate phages integrated in the genomes of commensal and pathogenic Neisseria species, many of which appear to be novel phages. Importantly, we discovered extensive interspecies targeting of predicted phages by Neisseria CRISPR-Cas systems, which may reflect their movement between different species. Uncovering the diversity and host range of phages is essential for understanding how they influence the evolution of their microbial hosts.
Collapse
Affiliation(s)
- Giulia Orazi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alan J. Collins
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rachel J. Whitaker
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Johnson G, Banerjee S, Putonti C. Diversity of Pseudomonas aeruginosa Temperate Phages. mSphere 2022; 7:e0101521. [PMID: 35196122 PMCID: PMC8865926 DOI: 10.1128/msphere.01015-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/02/2022] [Indexed: 02/08/2023] Open
Abstract
Modern sequencing technologies have provided insight into the genetic diversity of numerous species, including the human pathogen Pseudomonas aeruginosa. Bacterial genomes often harbor bacteriophage genomes (prophages), which can account for upwards of 20% of the genome. Prior studies have found P. aeruginosa prophages that contribute to their host's pathogenicity and fitness. These advantages come in many different forms, including the production of toxins, promotion of biofilm formation, and displacement of other P. aeruginosa strains. While several different genera and species of P. aeruginosa prophages have been studied, there has not been a comprehensive study of the overall diversity of P. aeruginosa-infecting prophages. Here, we present the results of just such an analysis. A total of 6,852 high-confidence prophages were identified from 5,383 P. aeruginosa genomes from strains isolated from the human body and other environments. In total, 3,201 unique prophage sequences were identified. While 53.1% of these prophage sequences displayed sequence similarity to publicly available phage genomes, novel and highly mosaic prophages were discovered. Among these prophages, there is extensive diversity, including diversity within the functionally conserved integrase and C repressor coding regions, two genes responsible for prophage entering and persisting through the lysogenic life cycle. Analysis of integrase, C repressor, and terminase coding regions revealed extensive reassortment among P. aeruginosa prophages. This catalog of P. aeruginosa prophages provides a resource for future studies into the evolution of the species. IMPORTANCE Prophages play a critical role in the evolution of their host species and can also contribute to the virulence and fitness of pathogenic species. Here, we conducted a comprehensive investigation of prophage sequences from 5,383 publicly available Pseudomonas aeruginosa genomes from human as well as environmental isolates. We identified a diverse population of prophages, including tailed phages, inoviruses, and microviruses; 46.9% of the prophage sequences found share no significant sequence similarity with characterized phages, representing a vast array of novel P. aeruginosa-infecting phages. Our investigation into these prophages found substantial evidence of reassortment. In producing this, the first catalog of P. aeruginosa prophages, we uncovered both novel prophages as well as genetic content that have yet to be explored.
Collapse
Affiliation(s)
- Genevieve Johnson
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
| | - Swarnali Banerjee
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|